
Time delay in the resource limitation of the prey is incorporated into a diffusive predator-prey model with generalist predator. By analyzing the eigenvalue spectrum, time delay inducing instability and Hopf bifurcation are investigated. Some conditions for determining the bifurcation direction and the stability of the bifurcating periodic solution are obtained by utilizing the normal form method and center manifold reduction for partial functional differential equation. The results suggest that time delay can destabilize the stability of coexisting equilibrium and induce bifurcating periodic solution when it increases through a certain threshold.
Citation: Ruizhi Yang, Dan Jin, Wenlong Wang. A diffusive predator-prey model with generalist predator and time delay[J]. AIMS Mathematics, 2022, 7(3): 4574-4591. doi: 10.3934/math.2022255
[1] | Chenxuan Nie, Dan Jin, Ruizhi Yang . Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and generalist predator. AIMS Mathematics, 2022, 7(7): 13344-13360. doi: 10.3934/math.2022737 |
[2] | Yingyan Zhao, Changjin Xu, Yiya Xu, Jinting Lin, Yicheng Pang, Zixin Liu, Jianwei Shen . Mathematical exploration on control of bifurcation for a 3D predator-prey model with delay. AIMS Mathematics, 2024, 9(11): 29883-29915. doi: 10.3934/math.20241445 |
[3] | Sahabuddin Sarwardi, Hasanur Mollah, Aeshah A. Raezah, Fahad Al Basir . Direction and stability of Hopf bifurcation in an eco-epidemic model with disease in prey and predator gestation delay using Crowley-Martin functional response. AIMS Mathematics, 2024, 9(10): 27930-27954. doi: 10.3934/math.20241356 |
[4] | Fatao Wang, Ruizhi Yang, Yining Xie, Jing Zhao . Hopf bifurcation in a delayed reaction diffusion predator-prey model with weak Allee effect on prey and fear effect on predator. AIMS Mathematics, 2023, 8(8): 17719-17743. doi: 10.3934/math.2023905 |
[5] | Qinghui Liu, Xin Zhang . Chaos detection in predator-prey dynamics with delayed interactions and Ivlev-type functional response. AIMS Mathematics, 2024, 9(9): 24555-24575. doi: 10.3934/math.20241196 |
[6] | Francesca Acotto, Ezio Venturino . How do predator interference, prey herding and their possible retaliation affect prey-predator coexistence?. AIMS Mathematics, 2024, 9(7): 17122-17145. doi: 10.3934/math.2024831 |
[7] | Wei Ou, Changjin Xu, Qingyi Cui, Yicheng Pang, Zixin Liu, Jianwei Shen, Muhammad Zafarullah Baber, Muhammad Farman, Shabir Ahmad . Hopf bifurcation exploration and control technique in a predator-prey system incorporating delay. AIMS Mathematics, 2024, 9(1): 1622-1651. doi: 10.3934/math.2024080 |
[8] | Ming Wu, Hongxing Yao . Stability and bifurcation of a delayed diffusive predator-prey model affected by toxins. AIMS Mathematics, 2023, 8(9): 21943-21967. doi: 10.3934/math.20231119 |
[9] | Hairong Li, Yanling Tian, Ting Huang, Pinghua Yang . Hopf bifurcation and hybrid control of a delayed diffusive semi-ratio-dependent predator-prey model. AIMS Mathematics, 2024, 9(10): 29608-29632. doi: 10.3934/math.20241434 |
[10] | Weili Kong, Yuanfu Shao . The effects of fear and delay on a predator-prey model with Crowley-Martin functional response and stage structure for predator. AIMS Mathematics, 2023, 8(12): 29260-29289. doi: 10.3934/math.20231498 |
Time delay in the resource limitation of the prey is incorporated into a diffusive predator-prey model with generalist predator. By analyzing the eigenvalue spectrum, time delay inducing instability and Hopf bifurcation are investigated. Some conditions for determining the bifurcation direction and the stability of the bifurcating periodic solution are obtained by utilizing the normal form method and center manifold reduction for partial functional differential equation. The results suggest that time delay can destabilize the stability of coexisting equilibrium and induce bifurcating periodic solution when it increases through a certain threshold.
Predator-prey model mainly describes the interaction between two populations with predation relationship. Since predator-prey relationship exists widely in nature, many scholars have studied the predator-prey models [1,2,3,4]. Considering the influence of different factors on the population, a variety of predator-prey models have been established [5,6]. Among these predator-prey models, Leslie-Gower predator-prey model is one of the classical model [7], with the following form
˙u(t)=r1u(1−uK1)−φ(u,v)v,˙v(t)=r2v(1−βvu). | (1.1) |
u(t) and v(t) stand for prey and predator's densities. r1 and K1 stand for the growth rate and the carrying capacity of the prey. φ(u,v) is the functional response. The predator also follows the logistic growth law, where r2 and u/β stand for the growth rate of predator and the carrying capacity of the predator.
Another classical predator-prey model is Gauss predator-prey model [8], with the form
˙u(t)=r1u(1−uK1)−φ(u,v)v,˙v(t)=cφ(u,v)v−dv. | (1.2) |
c and d are the conversion rate and death rate.
In predator-prey model, predators are mainly divided into specialist predators and generalist predators. Specialist predators feed almost exclusively on one specie of prey and require more specific environmental conditions. But, the generalist predators feed on many types of species, and can change its diet to another species when its a focal prey population begin to run short [9,10,11]. In [10], the authors studied a diffusive predator-prey model with generalist predator. They aimed to formalize the conditions in which spatial biological control can be achieved by generalists [10]. In [11], the authors studied the spatiotemporal dynamics and bifurcations of a diffusive predator-prey model with generalist predator and the combined the effect of linear prey harvesting and constant proportion of prey refuge. According to [10], the predator-prey model with generalist predators is of the following form
˙u(t)=r1u(1−uK1)−φ(u,v)v,˙v(t)=r2v(1−vK2)+cφ(u,v)v. | (1.3) |
K2 stands for the carrying capacity of the predator in absence of focal prey.
Predator-prey models with different functional responses can show different dynamic behaviors. In [10], the authors used the Type Ⅱ functional response to reflect the effect of predator to the prey. Holling Type Ⅱ functional response is a kind of prey-dependent functional response. Predator-dependent response function is also important. Such as Beddington-DeAngelis type [12], with the following form
φ(u,v)=BuC+A1u+A2v, |
where B, C, A1 and A2 stand for the maximum predator attack rate, the half-saturation constant, the effect of handling time and the magnitude of interference among predators. Some works all suggest that Beddington-DeAngelis functional response can enrich the dynamics of predator-prey model [13,14,15].
Moreover, time delay exists widely in the population model. The delayed predator-prey model has attracted wide attention from scholars [16,17,18]. These results show that time delay can enrich the dynamics of predator-prey model. Considering the generalist predator and discrete time delay τ in the resource limitation of the prey, we propose the following predator-prey model.
{∂u(x,t)∂t=d1Δu+r1u(1−u(t−τ)K1)−BuvC+A1u+A2v,∂v(x,t)∂t=d2Δv+r2v(1−vK2)+EBuvC+A1u+A2v,x∈Ω,t>0∂u(x,t)∂ν=∂v(x,t)∂ν=0,x∈∂Ω,t>0u(x,t)=u1(x,t)≥0,v(x,t)=v1(x,t)≥0,x∈Ω,t∈[−τ,0]. | (1.4) |
All the parameters in the model are positive. u(x,t) and v(x,t) stand for the densities of prey and predator at the location x and time t, respectively. E is conversion rate of prey. The boundary condition is Neumann boundary condition. The aim of this article is to study the dynamics of model (1.4) from the point of view of stability and bifurcation. Whether time delay can induce some new dynamic phenomena?
The organization of this paper is as follows. In Sec. 2, the existence of coexisting equilibrium of the model is given. In Sec. 3, stability of equilibria and the existence of Hopf bifurcation is considered. In Sec. 4, the property of Hopf bifurcation is analyzed. In Sec. 5, some numerical simulations are carried. In Sec. 6, a brief conclusion is given.
Denote ˜u=u/K1, ˜v=u/K2 and ˜t=tr2, system (1.4) is changed to (after dropping tildes):
{∂u(x,t)∂t=d1Δu+ru[1−u(t−τ)−av1+bu+cv],∂v(x,t)∂t=d2Δv+v(1−v)+euv1+bu+cv,x∈Ω,t>0,∂u(x,t)∂ν=∂v(x,t)∂ν=0,x∈∂Ω,t>0,u(x,t)=u1(x,t)≥0,v(x,t)=v1(x,t)≥0,x∈Ω,t∈[−τ,0], | (2.1) |
where
d1=D1r2,d2=D2r2,r=r1b,a=BK2C,b=A1K1C,c=A2K2C,e=EBK1Cr2. | (2.2) |
We assume Ω=(0,lπ), where l>0.
Solving the following equations,
{ru[1−u−av1+bu+cv]=0,v(1−v)+euv1+bu+cv=0. | (2.3) |
We can obtained that (0,0), (1,0) and (0,1) are three boundary equilibria. And the coexisting equilibrium (u∗,v∗) satisfying v∗=(1−u∗)(1+bu∗)a−c+cu∗. Obviously, v∗>0 implies max{0,c−ac}<u∗<1. In addition, form (2.3), we can easily obtained that
eu∗−eu2∗+av∗−av2∗=0. |
Submitting v∗=(1−u∗)(1+bu∗)a−c+cu∗ into it, yields h(u∗)=0, where
h(u)=(ab2+c2e)u3+β2u2+β1u−a(1−a+c),β1=a−2ab+a2b+ac−abc+a2e−2ace+c2e,β2=2ab−ab2+abc+2ace−2c2e. | (2.4) |
Theorem 2.1. If c>a−1, system (2.1) has at least one coexisting equilibrium (u∗,v∗), where u∗ is the root of h(u∗)=0 in interval (max{0,c−ac},1) and v∗=(1−u∗)(1+bu∗)a−c+cu∗.
Proof. By direct calculation, we have h(1)=a2(1+b+e)>0, h(c−ac)=−a2(ab−bc−c)2c3≤0 and h(0)=−a(1−a+c). If c>a, then c−ac=max{0,c−ac} and h(c−ac)<0. Then h(u∗)=0 has at least one root in interval (c−ac,1). If a−1<c≤a, then 0=max{0,c−ac} and h(0)<0. Then h(u∗)=0 has at least one root in interval (0,1). This completes the proof.
Linearize system (2.1) at (u∗,v∗)
(∂u∂t∂v∂t)=dΔ(u(t)v(t))+L1(u(t)v(t))+L2(u(t−τ)v(t−τ)), | (3.1) |
where
L1=(ra1−ra2b1−b2),L2=(−ru∗000), |
and
a1=abu∗v∗(1+bu∗+cv∗)2>0,a2=u∗a(1+bu∗)(1+bu∗+cv∗)2>0,b1=ev∗(1+cv∗)(1+bu∗+cv∗)2>0,b2=v∗(1+ceu∗(1+bu∗+cv∗)2)>0. | (3.2) |
The characteristic equation of (3.1) is
det(λI−Mn−L1−L2e−λτ)=0, | (3.3) |
where I=diag{1,1} and Mn=−n2/l2diag{d1,d2}, n∈N0. Then, we have
λ2+λAn+Bn+(Cn+λru∗)e−λτ=0,n∈N0, | (3.4) |
where
An=(d1+d2)n2l2−ra1+b2,Bn=d1d2n4l4−(a1d2r−d1b2)n2l2+r(a2b1−a1b2),Cn=d2ru∗n2l2+b2ru∗. |
When τ=0, the characteristic Eq (2.1) is
λ2−trnλ+Δn(r)=0,n∈N0, | (3.5) |
where
{trn=r(a1−u∗)−b2−n2l2(d1+d2),Δn=r[a2b1−b2(a1−u∗)]−n2l2[d2r(a1−u∗)−b2d1]+d1d2n4l4, | (3.6) |
and the eigenvalues are given by
λ(n)1,2(r)=trn±√tr2n−4Δn2,n∈N0. | (3.7) |
We make the following hypothesis
(H1)c>a,(H2)a−1<c≤a,andc>a(1−1/b). | (3.8) |
Proposition 3.1. If hypothesis (H1) (or (H2)) holds, then a1−u∗<0.
Proof. It is easy to obtain that a1−u∗=−u∗ϕ(u∗)a(1+bu∗), where ϕ(u)=bcu2+2b(a−c)u+a−ab+bc. By direct calculation, we have ϕ(1)=a(1+b)>0, ϕ(c−ac)=a(1+b−abc), ϕ(0)=a−ab+bc and ϕ′(c−ac)=0. From the proof of Theorem 2.1, we can obtain that u∗∈(c−ac,1) under hypothesis (H1). And ϕ(c−ac)>0, implying that ϕ(u∗)>0. Hence a1−u∗<0 under hypothesis (H1). Similarly, we can verify that a1−u∗<0 under hypothesis (H2).
Theorem 3.1. Suppose (H1) (or (H2)) holds. Then the equilibrium E∗(u∗,v∗) is locally asymptotically stable.
Proof. By the Proposition 3.1, we know that a1−u∗<0 under hypothesis (H1) (or (H1)). Then we have trn<0 and Δn>0 for n∈N0. This implies that all eigenvalues of (3.5) have negative real parts. Then the equilibrium E∗(u∗,v∗) is locally asymptotically stable.
Now, we study the stability of E∗(u∗,v∗) when τ>0. Let iω (ω>0) be a solution of Eq (3.4), we have
−ω2+iωAn+Bn+(Cn+iωru∗)(cosωτ−isinωτ)=0. |
Then we have
{−ω2+Bn+Cncosωτ+ωru∗sinωτ=0,Anω−Cnsinωτ+ωru∗cosωτ=0. |
This leads to
ω4+(A2n−2Bn−r2u2∗)ω2+B2n−C2n=0. | (3.9) |
Denote z=ω2, then (3.9) can be changed into
z2+(A2n−2Bn−r2u2∗)z+B2n−C2n=0=0, | (3.10) |
and the roots of (3.10) are
z±=12[−(A2n−2Bn−r2u2∗)±√(A2n−2Bn−r2u2∗)2−4(B2n−C2n)]. |
Under (H1) (or (H2)), we have
Bn+Cn=Δn>0. |
By direct computation,
A2n−2Bn−r2u2∗=(d21+d22)n4l4−2(a1d1r−b2d2)n2l2+b22−r(2a2b1+r(u2∗−a21)),Bn−Cn=d1d2n4l4−[(d2r(a1+u∗))−b2d1]n2l2+r[a2b1−b2(a1+u∗)]. |
Fix parameters r,a,b,c,e,d1,d2,l, define
D={k∈N0∣Eq(3.10)has positive roots withn=k.} | (3.11) |
For n∈D, if z+>0, Eq (3.4) has a pair of purely imaginary roots ±iω+n at τj,+n, j∈N0; if z−>0, Eq (3.4) has a pair of purely imaginary roots ±iω−n at τj,−n, j∈N0, where
ω±n=√z±n,τj,±n=τ0,±n+2jπω±n,(j=0,1,2,⋯),τ0,±n=1ω±narccos(Cn−ru∗An)(ω±n)2−BnCnC2n+r2u2∗(ω±n)2. | (3.12) |
From (3.12), we have τ0,±n<τj,±n (j∈N). For k∈D, define the smallest τ so that the stability will change, τ∗=min{τ0,±korτ0,+k∣k∈D}.
Lemma 3.1. Suppose (H1) (or (H2)) holds.If (A2n−2Bn−r2u2∗)2−4(B2n−C2n)>0, then Re(dλdτ)|τ=τj,+n>0, Re(dλdτ)|τ=τj,−n<0 for τ∈D and j∈N0.
Proof. Differentiating two sides of (3.4) with respect τ, we have
(dλdτ)−1=2λ+An+ru∗e−λτ(Cn+λru∗)λe−λτ−τλ. |
Then
[Re(dλdτ)−1]τ=τj,±n=Re[2λ+An+ru∗e−λτ(Cn+λru∗)λe−λτ−τλ]τ=τj,±n=[1Λω2(2ω2+A2n−2Bn−r2u2∗)]τ=τj,±n=±[1Λω2√(A2n−2Bn−r2u2∗)2−4(B2n−C2n)]τ=τj,±n, |
where Λ=ω4b22+C2nω2>0. Therefore Re(dλdτ)|τ=τj,+n>0, Re(dλdτ)|τ=τj,−n<0.
Theorem 3.2. Suppose (H1) (or (H2)) holds. For system (2.1), the following statements are true.
(i) E∗(u∗,v∗) is locally asymptotically stable for all τ≥0 when D=∅.
(ii) E∗(u∗,v∗) is locally asymptotically stable for τ∈[0,τ∗), and unstable for τ∈[τ∗,τ∗+ϵ) with some ϵ when D≠∅.
(iii) System (2.1) undergoes a Hopf bifurcation at the equilibriumE∗(u∗,v∗) when τ=τj,+n (orτ=τj,−n), j∈N0, n∈D when D≠∅.
Using the same process, we can obtain the following theorem about the stability of boundary equilibria.
Theorem 3.3. For system (2.1), the following statements are true.
(i) (0,0) is always unstable for all τ≥0;
(ii) (1,0) is always unstable when τ=0;
(iii) (0,1) is locally asymptotically stable for a>1+c and τ≥0; and unstable for a<1+c and τ≥0.
Now, we will study the property of Hopf bifurcation by the method in [19,20]. For a critical value τj,+n (or τj,−n), we denote it as ˜τ. Let ˜u(x,t)=u(x,τt)−u∗ and ˜v(x,t)=v(x,τt)−v∗, then the system (2.1) is (drop the tildes)
{∂u∂t=τ[d1Δu+r(u+u∗)(1−u(t−1)−u∗−a(v+v∗)1+b(u+u∗)+c(v+v∗))],∂v∂t=τ[d2Δv+(v+v∗)(1−v−v∗)+e(u+u∗)(v+v∗)1+b(u+u∗)+c(v+v∗)]. | (4.1) |
Denote τ=˜τ+ε, and U=(u(x,t),v(x,t))T. In the phase space C1:=C([−1,0],X), (4.1) can be rewritten as
dU(t)dt=˜τDΔU(t)+L˜τ(Ut)+F(Ut,ε), | (4.2) |
where Lε(φ) and F(φ,ε) are
Lε(ϕ)=ε(ra1ϕ1(0)−ra2ϕ2(0)−ru∗ϕ1(−1)b1ϕ1(0)−b2ϕ2(0)), | (4.3) |
F(ϕ,ε)=εDΔϕ+Lε(ϕ)+f(ϕ,ε), | (4.4) |
with
f(ϕ,ε)=(˜τ+ε)(F1(ϕ,ε),F2(ϕ,ε))T,F1(ϕ,ε)=r(ϕ1(0)+u∗)(1−ϕ1(−1)−u∗−a(ϕ2(0)+v∗)1+b(ϕ1(0)+u∗)+c(ϕ2(0)+v∗))−ra1ϕ1(0)+ra2ϕ2(0)+ru∗ϕ1(−1),F2(ϕ,ε)=(ϕ2(0)+v∗)(1−ϕ2(0)−v∗)+e(ϕ1(0)+u∗)(ϕ2(0)+v∗)1+b(ϕ1(0)+u∗)+c(ϕ2(0)+v∗)−b1ϕ1(0)+b2ϕ2(0), |
respectively, for ϕ=(ϕ1,ϕ2)T∈C1.
Consider the linear equation
dU(t)dt=˜τDΔU(t)+L˜τ(Ut). | (4.5) |
We know that Λn:={iωn˜τ,−iωn˜τ} are characteristic roots of
dz(t)dt=−˜τDn2l2z(t)+L˜τ(zt). | (4.6) |
By Riesz representation theorem, there exists a 2×2 matrix function ηn(σ,˜τ), (−1≤σ≤0), whose elements are of bounded variation functions such that
−˜τDn2l2ϕ(0)+L˜τ(ϕ)=∫0−1dηn(σ,τ)ϕ(σ) |
for ϕ∈C([−1,0],R2).
Choose
ηn(σ,τ)={τEσ=0,0σ∈(−1,0),−τFσ=−1, | (4.7) |
where
E=(ra1−d1n2l2−ra2b1−b2−d2n2l2),F=(−ru∗000). | (4.8) |
Define the bilinear paring
(ψ,φ)=ψ(0)φ(0)−∫0−1∫σξ=0ψ(ξ−σ)dηn(σ,˜τ)φ(ξ)dξ=ψ(0)φ(0)+˜τ∫0−1ψ(ξ+1)Fφ(ξ)dξ, | (4.9) |
for φ∈C([−1,0],R2), ψ∈C([0,1],R2). A(˜τ) has a pair of simple purely imaginary eigenvalues ±iωn˜τ, and they are also eigenvalues of A∗.
Define p1(θ)=(1,ξ)Teiωn˜τσ(σ∈[−1,0]),q1(r)=(1,η)e−iωn˜τr(r∈[0,1]), where
ξ=b1b2+d2n2/l2+iωn,η=a2r−b2−d2n2/l2+iωn. |
Let Φ=(Φ1,Φ2) and Ψ∗=(Ψ∗1,Ψ∗2)T with
Φ1(σ)=p1(σ)+p2(σ)2=(Re(eiωn˜τσ)Re(ξeiωn˜τσ)),Φ2(σ)=p1(σ)−p2(σ)2i=(Im(eiωn˜τσ)Im(ξeiωn˜τσ)), |
for θ∈[−1,0], and
Ψ∗1(r)=q1(r)+q2(r)2=(Re(e−iωn˜τr)Re(ηe−iωn˜τr)),Ψ∗2(r)=q1(r)−q2(r)2i=(Im(e−iωn˜τr)Im(ηe−iωn˜τr)), |
for r∈[0,1]. Then we can compute by (4.9)
D∗1:=(Ψ∗1,Φ1),D∗2:=(Ψ∗1,Φ2),D∗3:=(Ψ∗2,Φ1),D∗4:=(Ψ∗2,Φ2). |
Define (Ψ∗,Φ)=(Ψ∗j,Φk)=(D∗1D∗2D∗3D∗4) and construct a new basis Ψ for P∗ by
Ψ=(Ψ1,Ψ2)T=(Ψ∗,Φ)−1Ψ∗. |
Then (Ψ,Φ)=I2. In addition, define fn:=(β1n,β2n), where
β1n=(cosnlx0),β2n=(0cosnlx). |
We also define
c⋅fn=c1β1n+c2β2n,forc=(c1,c2)T∈C1, |
and
<u,v>:=1lπ∫lπ0u1¯v1dx+1lπ∫lπ0u2¯v2dx |
for u=(u1,u2), v=(v1,v2), u,v∈X and <φ,f0>=(<φ,f10>,<φ,f20>)T.
Rewrite Eq (4.1) as the following abstract form
dU(t)dt=A˜τUt+R(Ut,ε), | (4.10) |
where
R(Ut,ε)={0,θ∈[−1,0),F(Ut,ε),θ=0. | (4.11) |
The solution is
Ut=Φ(x1x2)fn+h(x1,x2,ε), | (4.12) |
where
(x1x2)=(Ψ,<Ut,fn>), |
and
h(x1,x2,ε)∈PSC1,h(0,0,0)=0,Dh(0,0,0)=0. |
Then
Ut=Φ(x1(t)x2(t))fn+h(x1,x2,0). | (4.13) |
Let z=x1−ix2, and notice that p1=Φ1+iΦ2. Then we have
Φ(x1x2)fn=(Φ1,Φ2)(z+¯z2i(z−¯z)2)fn=12(p1z+¯p1¯z)fn, |
and
h(x1,x2,0)=h(z+¯z2,i(z−¯z)2,0). |
Equation (4.13) is
Ut=12(p1z+¯p1¯z)fn+h(z+¯z2,i(z−¯z)2,0)=12(p1z+¯p1¯z)fn+W(z,¯z), | (4.14) |
where
W(z,¯z)=h(z+¯z2,i(z−¯z)2,0). |
From [19], z satisfies
˙z=iωn˜τz+g(z,¯z), | (4.15) |
where
g(z,¯z)=(Ψ1(0)−iΨ2(0))<F(Ut,0),fn>. | (4.16) |
Let
W(z,¯z)=W20z22+W11z¯z+W02¯z22+⋯, | (4.17) |
g(z,¯z)=g20z22+g11z¯z+g02¯z22+⋯, | (4.18) |
then
ut(0)=12(z+¯z)cos(nxl)+W(1)20(0)z22+W(1)11(0)z¯z+W(1)02(0)¯z22+⋯, |
vt(0)=12(ξ+¯ξ¯z)cos(nxl)+W(2)20(0)z22+W(2)11(0)z¯z+W(2)02(0)¯z22+⋯, |
ut(−1)=12(ze−iωn˜τ+¯zeiωn˜τ)cos(nxl)+W(1)20(−1)z22+W(1)11(−1)z¯z+W(1)02(−1)¯z22+⋯, |
vt(−1)=12(ξze−iωn˜τ+¯ξ¯zeiωn˜τ)cos(nxl)+W(2)20(−1)z22+W(2)11(−1)z¯z+W(2)02(−1)¯z22+⋯, |
and
¯F1(Ut,0)=1˜τF1=α1u2t(0)+α2ut(0)vt(0)+α3v2t(0)+α4u3t(0)+α5u2t(0)vt(0)+α6ut(0)v2t(0)+α7v3t(0)+O(4), | (4.19) |
¯F2(Ut,0)=1˜τF2=−v2t(0)+β1u2t(−1)+β2ut(−1)vt(−1)+β3v2t(−1)+β4u3t(−1)+β5u2t(−1)vt(−1)+β6ut(−1)v2t(−1)+β7v3t(−1)+O(4), | (4.20) |
with α1=arv∗(b+bcv∗)(1+bu∗+cv∗)3, α2=−ar(1+cv∗+b(u∗+2cu∗v∗))(1+bu∗+cv∗)3, α3=aru∗(c+bcu∗)(1+bu∗+cv∗)3, α4=−ab2rv∗(1+cv∗)(1+bu∗+cv∗)4, α5=abr(1−c2v2∗+b(u∗+2cu∗v∗))(1+bu∗+cv∗)4, α6=acr(1−b2u2∗+cv∗+2bcu∗v∗)(1+bu∗+cv∗)4, α7=−6ac2ru∗(1+bu∗)(1+bu∗+cv∗)4, β1=−ev∗(b+bcv∗)(1+bu∗+cv∗)3, β2=e(1+cv∗+b(u∗+2cu∗v∗))(1+bu∗+cv∗)3, β3=−1−eu∗(c+bcu∗)(1+bu∗+cv∗)3, β4=b2ev∗(1+cv∗)(1+bu∗+cv∗)4, β5=−be(1−c2v2∗+b(u∗+2cu∗v∗))(1+bu∗+cv∗)4, β6=−ce(1−b2u2∗+cv∗+2bcu∗v∗)(1+bu∗+cv∗)4, β7=c2eu∗(1+bu∗)(1+bu∗+cv∗)4.
Hence,
¯F1(Ut,0)=cos2(nxl)(z22χ20+z¯zχ11+¯z22¯χ20)+z2¯z2(χ1cosnxl+χ2cos3nxl)+⋯,¯F2(Ut,0)=cos2(nxl)(z22ς20+z¯zς11+¯z22¯ς20)+z2¯z2(ς1cosnxl+ς2cos3nxl)+⋯, | (4.21) |
<F(Ut,0),fn>=˜τ(¯F1(Ut,0)f1n+¯F2(Ut,0)f2n)=z22˜τ(χ20ς20)Γ+z¯z˜τ(χ11ς11)Γ+¯z22˜τ(¯χ20¯ς20)Γ+z2¯z2˜τ(κ1κ2)+⋯, | (4.22) |
with
Γ=1lπ∫lπ0cos3(nxl)dx,κ1=χ1lπ∫lπ0cos2(nxl)dx+χ2lπ∫lπ0cos4(nxl)dx,κ2=ς1lπ∫lπ0cos2(nxl)dx+ς2lπ∫lπ0cos4(nxl)dx |
and
χ20=12e−iτωn(−r+eiτωn(α1+ξ(α2+α3ξ))),
χ11=−14e−iτωn((1+e2iτωn)r−eiτωn(2α1+2α3ˉξξ+α2(ˉξ+ξ))),
χ1=W111(0)(−e−iτωnr+2α1+α2ξ)+W211(0)(α2+2α3ξ)+12W120(0)(−eiτωnr+2α1+α2ˉξ)
+12W220(0)(α2+2α3ˉξ)−rW111(−1)−rW120(−1)2,
χ2=14(3α4+α5(ˉξ+2ξ)+ξ(2α6ˉξ+α6ξ+3α7ˉξξ)),
ς20=12(β1+ξ(β2+β3ξ)), ς11=14(2β1+2β3ˉξξ+β2(ˉξ+ξ)),
ς1=W111(0)(2β1+β2ξ)+W211(0)(β2+2β3ξ)+W120(0)(β1+β2ˉξ2)+12W220(0)(β2+2β3ˉξ),
ς2=14(3β4+β5(ˉξ+2ξ)+ξ(2β6ˉξ+β6ξ+3β7ˉξξ)).
Denote
Ψ1(0)−iΨ2(0):=(γ1γ2). |
Notice that
1lπ∫lπ0cos3nxldx=0,n=1,2,3,⋯, |
and we have
(Ψ1(0)−iΨ2(0))<F(Ut,0),fn>=z22(γ1χ20+γ2ς20)Γ˜τ+z¯z(γ1χ11+γ2ς11)Γ˜τ+¯z22(γ1¯χ20+γ2¯ς20)Γ˜τ+z2¯z2˜τ[γ1κ1+γ2κ2]+⋯. | (4.23) |
Then by (4.16), (4.18) and (4.23), we have g20=g11=g02=0, for n=1,2,3,⋯. If n=0, we have:
g20=γ1˜τχ20+γ2˜τς20,g11=γ1˜τχ11+γ2˜τς11,g02=γ1˜τ¯χ20+γ2˜τ¯ς20. |
And for n∈N0, g21=˜τ(γ1κ1+γ2κ2).
From [19], we have
˙W(z,¯z)=W20z˙z+W11˙z¯z+W11z˙¯z+W02¯z˙¯z+⋯, |
A˜τW(z,¯z)=A˜τW20z22+A˜τW11z¯z+A˜τW02¯z22+⋯, |
and
˙W(z,¯z)=A˜τW+H(z,¯z), |
where
H(z,¯z)=H20z22+W11z¯z+H02¯z22+⋯=X0F(Ut,0)−Φ(Ψ,<X0F(Ut,0),fn>⋅fn). | (4.24) |
Hence, we have
(2iωn˜τ−A˜τ)W20=H20,−A˜τW11=H11,(−2iωn˜τ−A˜τ)W02=H02, | (4.25) |
that is
W20=(2iωn˜τ−A˜τ)−1H20,W11=−A−1˜τH11,W02=(−2iωn˜τ−A˜τ)−1H02. | (4.26) |
Then
H(z,¯z)=−Φ(0)Ψ(0)<F(Ut,0),fn>⋅fn=−(p1(θ)+p2(θ)2,p1(θ)−p2(θ)2i)(Φ1(0)Φ2(0))<F(Ut,0),fn>⋅fn=−12[p1(θ)(Φ1(0)−iΦ2(0))+p2(θ)(Φ1(0)+iΦ2(0))]<F(Ut,0),fn>⋅fn=−12[(p1(θ)g20+p2(θ)¯g02)z22+(p1(θ)g11+p2(θ)¯g11)z¯z+(p1(θ)g02+p2(θ)¯g20)¯z22]+⋯. |
Therefore,
H20(θ)={0n∈N,−12(p1(θ)g20+p2(θ)¯g02)⋅f0n=0, |
H11(θ)={0n∈N,−12(p1(θ)g11+p2(θ)¯g11)⋅f0n=0, |
H02(θ)={0n∈N,−12(p1(θ)g02+p2(θ)¯g20)⋅f0n=0, |
and
H(z,¯z)(0)=F(Ut,0)−Φ(Ψ,<F(Ut,0),fn>)⋅fn, |
where
H20(0)={˜τ(χ20ς20)cos2(nxl),n∈N,˜τ(χ20ς20)−12(p1(0)g20+p2(0)¯g02)⋅f0,n=0. | (4.27) |
H11(0)={˜τ(χ11ς11)cos2(nxl),n∈N,˜τ(χ11ς11)−12(p1(0)g11+p2(0)¯g11)⋅f0,n=0. |
By the definition of A˜τ and (4.25), we have
˙W20=A˜τW20=2iωn˜τW20+12(p1(θ)g20+p2(θ)¯g02)⋅fn,−1≤θ<0. |
That is
W20(θ)=i2iωn˜τ(g20p1(θ)+¯g023p2(θ))⋅fn+E1e2iωn˜τθ, |
where
E1={W20(0)n=1,2,3,⋯,W20(0)−i2iωn˜τ(g20p1(θ)+¯g023p2(θ))⋅f0n=0. |
By the definition of A˜τ and (4.25), we have that for −1≤θ<0
−(g20p1(0)+¯g023p2(0))⋅f0+2iωn˜τE1−A˜τ(i2ωn˜τ(g20p1(0)+¯g023p2(0))⋅f0)−A˜τE1−L˜τ(i2ωn˜τ(g20p1(0)+¯g023p2(0))⋅fn+E1e2iωn˜τθ)=˜τ(χ20ς20)−12(p1(0)g20+p2(0)¯g02)⋅f0. |
As
A˜τp1(0)+L˜τ(p1⋅f0)=iω0p1(0)⋅f0, |
and
A˜τp2(0)+L˜τ(p2⋅f0)=−iω0p2(0)⋅f0, |
we have
2iωnE1−A˜τE1−L˜τE1e2iωn=˜τ(χ20ς20)cos2(nxl),n∈N0. |
That is
E1=˜τE(χ20ς20)cos2(nxl), |
where
E=(2iωn˜τ+d1n2l2−ra1ra2−b1e−2iωn˜τ2iωn˜τ+d2n2l2−α−b2e−2iωn˜τ)−1. |
Similarly, from (4.26), we have
−˙W11=i2ωn˜τ(p1(θ)g11+p2(θ)¯g11)⋅fn,−1≤θ<0. |
That is
W11(θ)=i2iωn˜τ(p1(θ)¯g11−p1(θ)g11)+E2. |
Similarly, we have
E2=˜τE∗(χ11ς11)cos2(nxl), |
where
E∗=(d1n2l2−ra1ra2−b1d2n2l2−b2−α)−1. |
Thus, we have
c1(0)=i2ωn˜τ(g20g11−2|g11|2−|g02|23)+12g21,μ2=−Re(c1(0))Re(λ′(τjn)),T2=−1ωn˜τ[Im(c1(0))+μ2Im(λ′(τjn))],β2=2Re(c1(0)). | (4.28) |
Theorem 4.1. When μ2>0 (or μ2<0), the bifurcating periodic solutions exists for τ>τj,±n (or τ<τj,±n), andare orbitally asymptotically stable(or unstable) when β2<0 (or β2>0).
According to the reference [21], we choose r1=19.3, K1=400, r2=8.8, K2=5, B=10.76, C=60.6, A1=0.00728, A2=1. By (2.2), we can obtain a, b, c, e and r. Fix d1=0.1, d2=0.2, l=2. We give the coexisting equilibrium (Figure 1), and bifurcation diagram (Figure 2) of system (2.1) with parameter E. It shows that the density of prey (predator) in the coexisting equilibrium decreases (increases) and the stable region increases with the increase of parameter E. This indicates that increasing parameter E is benefit to prey and predator to reach the steady state (coexisting equilibrium).
When E=8.8, we can obtain (u∗,v∗)≈(0.0037,1.2370) is a unique coexisting equilibrium. Hypothesis (H1) is satisfied. We have τ∗=τ00≈0.2440. Then E∗(u∗,v∗) is local stable when τ∈[0,τ∗) (shown in Figure 3). When τ=τ∗, Hopf bifurcation occurs. We can obtain
μ2≈81.0352>0,β2≈−556.5305<0,andT2≈2035.9058>0. |
Then, when τ>3.4595, the local stable bifurcating periodic solutions exists (shown in Figure 4).
In this paper, we propose a diffusive predator-prey system with generalist predator and time delay in the resource limitation of the prey. We obtained that system (2.1) has three boundary equilibria: (0,0) (predator and prey extinction equilibrium), (1,0) (predator extinction equilibrium) and (0,1) (prey extinction equilibrium). We mainly analyze the stability and Hopf bifurcation of coexisting equilibrium. By the theory of normal form and center manifold method, we give some parameters that determining the property of Hopf bifurcation: Bifurcation direction and the stability of the bifurcating periodic solution.
Since the predators are generalist type and have other food resource, they will not be extinct. This is in agreement with the Theorem 3.3. When the predator attack rate is large enough a>1+c, all the prey will be caught by the predator. This will lead to the extinction of the prey, and the predator will reach a balanced state. It is also in agreement with the Theorem 3.3 that (0,1) is local asymptotically stable for a>1+c. When the predator attack rate is not large enough a<1+c, then the prey and predator will coexist.
The conversion rate E can affect the the density of prey (predator) in the coexisting equilibrium. With the increase of conversion rate, the density of prey (predator) will decrease (increase) and the stable region will increase. In addition, time delay will also affect the stability of the equilibrium point when the parameters satisfying the condition D≠∅. Specifically, when the time delay is small than the critical value τ∗, the prey and the predator will coexist and tend to the coexisting equilibrium. But when time delay is larger than the critical value τ∗, the prey and predator will exhibit oscillatory behavior. In addition, the spatial inhomogeneous periodic solutions may exist, but they are generally unstable.
This research is supported by Fundamental Research Funds for the Central Universities (No. DL13BB17), Heilongjiang Provincial Natural Science Foundation (No. A2018001), Postdoctoral Science Foundation of China (No. 2019M651237) and National Nature Science Foundation of China (No. 11601070).
The authors declare that they have no competing interests.
[1] |
F. Yi, J. Wei, J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equations, 246 (2009), 1944–1977. https://doi.org/10.1016/j.jde.2008.10.024 doi: 10.1016/j.jde.2008.10.024
![]() |
[2] |
Y. Song, T. Zhang, Y. Peng, Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Commun. Nonlinear Sci. Numer. Simul., 33 (2016), 229–258. https://doi.org/10.1016/j.cnsns.2015.10.002 doi: 10.1016/j.cnsns.2015.10.002
![]() |
[3] |
S. Djilali, Pattern formation of a diffusive predator-prey model with herd behavior and nonlocal prey competition, Math. Methods Appl. Sci., 43 (2020), 2233–2250. https://doi.org/10.1002/mma.6036 doi: 10.1002/mma.6036
![]() |
[4] |
R. Yuan, W. Jiang, Y. Wang, Saddle-node-Hopf bifurcation in a modified Leslie-Gower predator-prey model with time-delay and prey harvesting, J. Math. Anal. Appl., 422 (2015), 1072–1090. https://doi.org/10.1016/j.jmaa.2014.09.037 doi: 10.1016/j.jmaa.2014.09.037
![]() |
[5] |
J. Wang, H. Cheng, Y. Li, X. Zhang, The geometrical analysis of a predator-prey model with multi-state dependent impulsive, J. Appl. Anal. Comput., 8 (2018), 427–442. https://doi.org/10.11948/2018.427 doi: 10.11948/2018.427
![]() |
[6] |
Y, Song, S. Wu, H. Wang, Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect, J. Differ. Equations, 267 (2019), 6316–6351. https://doi.org/10.1016/j.jde.2019.06.025 doi: 10.1016/j.jde.2019.06.025
![]() |
[7] |
P. H. Leslie, J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219–234. https://doi.org/10.1093/biomet/47.3-4.219 doi: 10.1093/biomet/47.3-4.219
![]() |
[8] |
H. I. Freedman, Deterministic mathematical models in population ecology, Biometrics, 22 (1980), 219–236. https://doi.org/10.2307/2530090 doi: 10.2307/2530090
![]() |
[9] |
Y. Kang, L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator, J. Math. Biol., 67 (2013), 1227–1259. https://doi.org/10.1007/s00285-012-0584-z doi: 10.1007/s00285-012-0584-z
![]() |
[10] |
S. Madec, J. Casas, G. Barles, C. Suppo, Bistability induced by generalist natural enemies can reverse pest invasions, J. Math. Biol., 75 (2017), 543–575. https://doi.org/10.1007/s00285-017-1093-x doi: 10.1007/s00285-017-1093-x
![]() |
[11] |
L. N. Guin, S. Acharya, Dynamic behaviour of a reaction-diffusion predator-prey model with both refuge and harvesting, Nonlinear Dynam., 88 (2017), 1501–1533. https://doi.org/10.1007/s11071-016-3326-8 doi: 10.1007/s11071-016-3326-8
![]() |
[12] |
J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331–340. https://doi.org/10.2307/3866 doi: 10.2307/3866
![]() |
[13] |
T. Huang, H. Zhang, H. Yang, N. Wang, F. Zhang, Complex patterns in a space- and time-discrete predator-prey model with Beddington-DeAngelis functional response, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 182–199. https://doi.org/10.1016/j.cnsns.2016.07.004 doi: 10.1016/j.cnsns.2016.07.004
![]() |
[14] |
H. Li, Z. She, Dynamics of a non-autonomous density-dependent predator-prey model with Beddington-DeAngelis type, Commun. Nonlinear Sci. Numer. Simul., 09 (2016), 1650050. https://doi.org/10.1142/s1793524516500509 doi: 10.1142/s1793524516500509
![]() |
[15] |
A. Lahrouz, A. Settati, P. S. Mandal, Dynamics of a switching diffusion modified Leslie-Gower predator-prey system with Beddington-DeAngelis functional response, Nonlinear Dynam., 85 (2016), 853–870. https://doi.org/10.1007/s11071-016-2728-y doi: 10.1007/s11071-016-2728-y
![]() |
[16] |
Z. Jiang, L. Wang, Global Hopf bifurcation for a predator-prey system with three delays, Int. J. Bifurcat. Chaos, 27 (2017), 1750108. https://doi.org/10.1142/s0218127417501085 doi: 10.1142/s0218127417501085
![]() |
[17] |
Y. Song, Y. Peng, T. Zhang, The spatially inhomogeneous Hopf bifurcation induced by memory delay in a memory-based diffusion system, J. Differ. Equations, 300 (2021), 597–624. https://doi.org/10.1016/j.jde.2021.08.010 doi: 10.1016/j.jde.2021.08.010
![]() |
[18] |
X. Y. Meng, F. L. Meng, Bifurcation analysis of a special delayed predator-prey model with herd behavior and prey harvesting, AIMS Math., 6 (2021), 5695–5719. https://doi.org/10.3934/math.2021336 doi: 10.3934/math.2021336
![]() |
[19] | J. Wu, Theory and applications of partial functional differential equations, Springer Berlin, 1996. |
[20] | B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of partial functional differential equations, Cambridge-New York: Cambridge University Press, 1981. |
[21] |
G. W. Harrison, Comparing predator-prey models to Luckinbill's experiment with Didinium and Paramecium, Ecology, 76 (1995), 357–374. https://doi.org/10.2307/1941195 doi: 10.2307/1941195
![]() |
1. | Xiaowen Zhang, Wufei Huang, Jiaxin Ma, Ruizhi Yang, Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and schooling behavior, 2022, 30, 2688-1594, 2510, 10.3934/era.2022128 | |
2. | Liye Wang, Wenlong Wang, Ruizhi Yang, Stability switch and Hopf bifurcations for a diffusive plankton system with nonlocal competition and toxic effect, 2023, 8, 2473-6988, 9716, 10.3934/math.2023490 | |
3. | Amina Hammoum, Tewfik Sari, Karim Yadi, The Rosenzweig–MacArthur Graphical Criterion for a Predator-Prey Model with Variable Mortality Rate, 2023, 22, 1575-5460, 10.1007/s12346-023-00739-6 | |
4. | Biswajit Paul, Surajit Debnath, Prahlad Majumdar, Suman Sarkar, Uttam Ghosh, Effect of Environmental Fluctuation in the Dynamics of a Three-Species Food Chain Model with Sexually Reproductive Generalized Type Top Predator and Crowley-Martin Type Functional Response Between Predators, 2023, 53, 0103-9733, 10.1007/s13538-023-01262-4 | |
5. | Kuldeep Singh, Mukesh Kumar, Ramu Dubey, Teekam Singh, Untangling role of cooperative hunting among predators and herd behavior in prey with a dynamical systems approach, 2022, 162, 09600779, 112420, 10.1016/j.chaos.2022.112420 | |
6. | Wenqi Zhang, Dan Jin, Ruizhi Yang, Hopf Bifurcation in a Predator–Prey Model with Memory Effect in Predator and Anti-Predator Behaviour in Prey, 2023, 11, 2227-7390, 556, 10.3390/math11030556 | |
7. | Figen Kangalgil, Seval Isșık, Effect of immigration in a predator-prey system: Stability, bifurcation and chaos, 2022, 7, 2473-6988, 14354, 10.3934/math.2022791 | |
8. | Dipankar Kumar, Md. Mehedi Hasan, Gour Chandra Paul, Dipok Debnath, Nayan Mondal, Omar Faruk, Revisiting the spatiotemporal dynamics of a diffusive predator-prey system: An analytical approach, 2023, 44, 22113797, 106122, 10.1016/j.rinp.2022.106122 | |
9. | Xubin Jiao, Xiaodi Li, Youping Yang, Dynamics and bifurcations of a Filippov Leslie-Gower predator-prey model with group defense and time delay, 2022, 162, 09600779, 112436, 10.1016/j.chaos.2022.112436 | |
10. | Yanfeng Li, A diffusive plankton system with time delay and habitat complexity effects under Neumann boundary condition, 2022, 2022, 1687-2770, 10.1186/s13661-022-01617-x | |
11. | Chenxuan Nie, Dan Jin, Ruizhi Yang, Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and generalist predator, 2022, 7, 2473-6988, 13344, 10.3934/math.2022737 | |
12. | Yujia Xiang, Yuqi Jiao, Xin Wang, Ruizhi Yang, Dynamics of a delayed diffusive predator-prey model with Allee effect and nonlocal competition in prey and hunting cooperation in predator, 2023, 31, 2688-1594, 2120, 10.3934/era.2023109 | |
13. | Ting Gao, Xinyou Meng, Stability and Hopf bifurcation of a delayed diffusive phytoplankton-zooplankton-fish model with refuge and two functional responses, 2023, 8, 2473-6988, 8867, 10.3934/math.2023445 | |
14. | Fatao Wang, Ruizhi Yang, Yining Xie, Jing Zhao, Hopf bifurcation in a delayed reaction diffusion predator-prey model with weak Allee effect on prey and fear effect on predator, 2023, 8, 2473-6988, 17719, 10.3934/math.2023905 | |
15. | Samir Biswas, Lakpa Thendup Bhutia, Tapan Kumar Kar, Bidhan Bhunia, Esita Das, Spatiotemporal analysis of a modified Leslie–Gower model with cross-diffusion and harvesting, 2024, 470, 01672789, 134381, 10.1016/j.physd.2024.134381 | |
16. | Haisu Zhang, Haokun Qi, Hopf Bifurcation Analysis of a Predator–Prey Model with Prey Refuge and Fear Effect Under Non-diffusion and Diffusion, 2023, 22, 1575-5460, 10.1007/s12346-023-00837-5 | |
17. | Yining Xie, Jing Zhao, Ruizhi Yang, Stability Analysis and Hopf Bifurcation of a Delayed Diffusive Predator–Prey Model with a Strong Allee Effect on the Prey and the Effect of Fear on the Predator, 2023, 11, 2227-7390, 1996, 10.3390/math11091996 | |
18. | Miao Peng, Rui Lin, Zhengdi Zhang, Lei Huang, The dynamics of a delayed predator-prey model with square root functional response and stage structure, 2024, 32, 2688-1594, 3275, 10.3934/era.2024150 | |
19. | Nursanti Anggriani, Hasan S. Panigoro, Emli Rahmi, Olumuyiwa James Peter, Sayooj Aby Jose, A predator–prey model with additive Allee effect and intraspecific competition on predator involving Atangana–Baleanu–Caputo derivative, 2023, 49, 22113797, 106489, 10.1016/j.rinp.2023.106489 | |
20. | Muhammad Aqib Abbasi, Maria Samreen, Analyzing multi-parameter bifurcation on a prey–predator model with the Allee effect and fear effect, 2024, 180, 09600779, 114498, 10.1016/j.chaos.2024.114498 | |
21. | Muhammad Aqib Abbasi, Periodic behavior and dynamical analysis of a prey–predator model incorporating the Allee effect and fear effect, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-04909-6 | |
22. | Heping Jiang, Complex dynamics induced by harvesting rate and delay in a diffusive Leslie-Gower predator-prey model, 2023, 8, 2473-6988, 20718, 10.3934/math.20231056 | |
23. | Christian Cortés García, Jasmidt Vera Cuenca, Impact of alternative food on predator diet in a Leslie-Gower model with prey refuge and Holling Ⅱ functional response, 2023, 20, 1551-0018, 13681, 10.3934/mbe.2023610 | |
24. | Dan Jin, Ruizhi Yang, HOPF BIFURCATION IN A PREDATOR-PREY MODEL WITH MEMORY EFFECT AND INTRA-SPECIES COMPETITION IN PREDATOR, 2023, 13, 2156-907X, 1321, 10.11948/20220127 |