Research article

A diffusive predator-prey model with generalist predator and time delay

  • Received: 27 October 2021 Revised: 11 December 2021 Accepted: 13 December 2021 Published: 23 December 2021
  • MSC : 34K18, 35B32

  • Time delay in the resource limitation of the prey is incorporated into a diffusive predator-prey model with generalist predator. By analyzing the eigenvalue spectrum, time delay inducing instability and Hopf bifurcation are investigated. Some conditions for determining the bifurcation direction and the stability of the bifurcating periodic solution are obtained by utilizing the normal form method and center manifold reduction for partial functional differential equation. The results suggest that time delay can destabilize the stability of coexisting equilibrium and induce bifurcating periodic solution when it increases through a certain threshold.

    Citation: Ruizhi Yang, Dan Jin, Wenlong Wang. A diffusive predator-prey model with generalist predator and time delay[J]. AIMS Mathematics, 2022, 7(3): 4574-4591. doi: 10.3934/math.2022255

    Related Papers:

  • Time delay in the resource limitation of the prey is incorporated into a diffusive predator-prey model with generalist predator. By analyzing the eigenvalue spectrum, time delay inducing instability and Hopf bifurcation are investigated. Some conditions for determining the bifurcation direction and the stability of the bifurcating periodic solution are obtained by utilizing the normal form method and center manifold reduction for partial functional differential equation. The results suggest that time delay can destabilize the stability of coexisting equilibrium and induce bifurcating periodic solution when it increases through a certain threshold.



    加载中


    [1] F. Yi, J. Wei, J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equations, 246 (2009), 1944–1977. https://doi.org/10.1016/j.jde.2008.10.024 doi: 10.1016/j.jde.2008.10.024
    [2] Y. Song, T. Zhang, Y. Peng, Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Commun. Nonlinear Sci. Numer. Simul., 33 (2016), 229–258. https://doi.org/10.1016/j.cnsns.2015.10.002 doi: 10.1016/j.cnsns.2015.10.002
    [3] S. Djilali, Pattern formation of a diffusive predator-prey model with herd behavior and nonlocal prey competition, Math. Methods Appl. Sci., 43 (2020), 2233–2250. https://doi.org/10.1002/mma.6036 doi: 10.1002/mma.6036
    [4] R. Yuan, W. Jiang, Y. Wang, Saddle-node-Hopf bifurcation in a modified Leslie-Gower predator-prey model with time-delay and prey harvesting, J. Math. Anal. Appl., 422 (2015), 1072–1090. https://doi.org/10.1016/j.jmaa.2014.09.037 doi: 10.1016/j.jmaa.2014.09.037
    [5] J. Wang, H. Cheng, Y. Li, X. Zhang, The geometrical analysis of a predator-prey model with multi-state dependent impulsive, J. Appl. Anal. Comput., 8 (2018), 427–442. https://doi.org/10.11948/2018.427 doi: 10.11948/2018.427
    [6] Y, Song, S. Wu, H. Wang, Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect, J. Differ. Equations, 267 (2019), 6316–6351. https://doi.org/10.1016/j.jde.2019.06.025 doi: 10.1016/j.jde.2019.06.025
    [7] P. H. Leslie, J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219–234. https://doi.org/10.1093/biomet/47.3-4.219 doi: 10.1093/biomet/47.3-4.219
    [8] H. I. Freedman, Deterministic mathematical models in population ecology, Biometrics, 22 (1980), 219–236. https://doi.org/10.2307/2530090 doi: 10.2307/2530090
    [9] Y. Kang, L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator, J. Math. Biol., 67 (2013), 1227–1259. https://doi.org/10.1007/s00285-012-0584-z doi: 10.1007/s00285-012-0584-z
    [10] S. Madec, J. Casas, G. Barles, C. Suppo, Bistability induced by generalist natural enemies can reverse pest invasions, J. Math. Biol., 75 (2017), 543–575. https://doi.org/10.1007/s00285-017-1093-x doi: 10.1007/s00285-017-1093-x
    [11] L. N. Guin, S. Acharya, Dynamic behaviour of a reaction-diffusion predator-prey model with both refuge and harvesting, Nonlinear Dynam., 88 (2017), 1501–1533. https://doi.org/10.1007/s11071-016-3326-8 doi: 10.1007/s11071-016-3326-8
    [12] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331–340. https://doi.org/10.2307/3866 doi: 10.2307/3866
    [13] T. Huang, H. Zhang, H. Yang, N. Wang, F. Zhang, Complex patterns in a space- and time-discrete predator-prey model with Beddington-DeAngelis functional response, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 182–199. https://doi.org/10.1016/j.cnsns.2016.07.004 doi: 10.1016/j.cnsns.2016.07.004
    [14] H. Li, Z. She, Dynamics of a non-autonomous density-dependent predator-prey model with Beddington-DeAngelis type, Commun. Nonlinear Sci. Numer. Simul., 09 (2016), 1650050. https://doi.org/10.1142/s1793524516500509 doi: 10.1142/s1793524516500509
    [15] A. Lahrouz, A. Settati, P. S. Mandal, Dynamics of a switching diffusion modified Leslie-Gower predator-prey system with Beddington-DeAngelis functional response, Nonlinear Dynam., 85 (2016), 853–870. https://doi.org/10.1007/s11071-016-2728-y doi: 10.1007/s11071-016-2728-y
    [16] Z. Jiang, L. Wang, Global Hopf bifurcation for a predator-prey system with three delays, Int. J. Bifurcat. Chaos, 27 (2017), 1750108. https://doi.org/10.1142/s0218127417501085 doi: 10.1142/s0218127417501085
    [17] Y. Song, Y. Peng, T. Zhang, The spatially inhomogeneous Hopf bifurcation induced by memory delay in a memory-based diffusion system, J. Differ. Equations, 300 (2021), 597–624. https://doi.org/10.1016/j.jde.2021.08.010 doi: 10.1016/j.jde.2021.08.010
    [18] X. Y. Meng, F. L. Meng, Bifurcation analysis of a special delayed predator-prey model with herd behavior and prey harvesting, AIMS Math., 6 (2021), 5695–5719. https://doi.org/10.3934/math.2021336 doi: 10.3934/math.2021336
    [19] J. Wu, Theory and applications of partial functional differential equations, Springer Berlin, 1996.
    [20] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of partial functional differential equations, Cambridge-New York: Cambridge University Press, 1981.
    [21] G. W. Harrison, Comparing predator-prey models to Luckinbill's experiment with Didinium and Paramecium, Ecology, 76 (1995), 357–374. https://doi.org/10.2307/1941195 doi: 10.2307/1941195
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2232) PDF downloads(142) Cited by(24)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog