Research article

A diffusive predator-prey model with generalist predator and time delay

  • Received: 27 October 2021 Revised: 11 December 2021 Accepted: 13 December 2021 Published: 23 December 2021
  • MSC : 34K18, 35B32

  • Time delay in the resource limitation of the prey is incorporated into a diffusive predator-prey model with generalist predator. By analyzing the eigenvalue spectrum, time delay inducing instability and Hopf bifurcation are investigated. Some conditions for determining the bifurcation direction and the stability of the bifurcating periodic solution are obtained by utilizing the normal form method and center manifold reduction for partial functional differential equation. The results suggest that time delay can destabilize the stability of coexisting equilibrium and induce bifurcating periodic solution when it increases through a certain threshold.

    Citation: Ruizhi Yang, Dan Jin, Wenlong Wang. A diffusive predator-prey model with generalist predator and time delay[J]. AIMS Mathematics, 2022, 7(3): 4574-4591. doi: 10.3934/math.2022255

    Related Papers:

    [1] Chenxuan Nie, Dan Jin, Ruizhi Yang . Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and generalist predator. AIMS Mathematics, 2022, 7(7): 13344-13360. doi: 10.3934/math.2022737
    [2] Yingyan Zhao, Changjin Xu, Yiya Xu, Jinting Lin, Yicheng Pang, Zixin Liu, Jianwei Shen . Mathematical exploration on control of bifurcation for a 3D predator-prey model with delay. AIMS Mathematics, 2024, 9(11): 29883-29915. doi: 10.3934/math.20241445
    [3] Sahabuddin Sarwardi, Hasanur Mollah, Aeshah A. Raezah, Fahad Al Basir . Direction and stability of Hopf bifurcation in an eco-epidemic model with disease in prey and predator gestation delay using Crowley-Martin functional response. AIMS Mathematics, 2024, 9(10): 27930-27954. doi: 10.3934/math.20241356
    [4] Fatao Wang, Ruizhi Yang, Yining Xie, Jing Zhao . Hopf bifurcation in a delayed reaction diffusion predator-prey model with weak Allee effect on prey and fear effect on predator. AIMS Mathematics, 2023, 8(8): 17719-17743. doi: 10.3934/math.2023905
    [5] Qinghui Liu, Xin Zhang . Chaos detection in predator-prey dynamics with delayed interactions and Ivlev-type functional response. AIMS Mathematics, 2024, 9(9): 24555-24575. doi: 10.3934/math.20241196
    [6] Francesca Acotto, Ezio Venturino . How do predator interference, prey herding and their possible retaliation affect prey-predator coexistence?. AIMS Mathematics, 2024, 9(7): 17122-17145. doi: 10.3934/math.2024831
    [7] Wei Ou, Changjin Xu, Qingyi Cui, Yicheng Pang, Zixin Liu, Jianwei Shen, Muhammad Zafarullah Baber, Muhammad Farman, Shabir Ahmad . Hopf bifurcation exploration and control technique in a predator-prey system incorporating delay. AIMS Mathematics, 2024, 9(1): 1622-1651. doi: 10.3934/math.2024080
    [8] Ming Wu, Hongxing Yao . Stability and bifurcation of a delayed diffusive predator-prey model affected by toxins. AIMS Mathematics, 2023, 8(9): 21943-21967. doi: 10.3934/math.20231119
    [9] Hairong Li, Yanling Tian, Ting Huang, Pinghua Yang . Hopf bifurcation and hybrid control of a delayed diffusive semi-ratio-dependent predator-prey model. AIMS Mathematics, 2024, 9(10): 29608-29632. doi: 10.3934/math.20241434
    [10] Weili Kong, Yuanfu Shao . The effects of fear and delay on a predator-prey model with Crowley-Martin functional response and stage structure for predator. AIMS Mathematics, 2023, 8(12): 29260-29289. doi: 10.3934/math.20231498
  • Time delay in the resource limitation of the prey is incorporated into a diffusive predator-prey model with generalist predator. By analyzing the eigenvalue spectrum, time delay inducing instability and Hopf bifurcation are investigated. Some conditions for determining the bifurcation direction and the stability of the bifurcating periodic solution are obtained by utilizing the normal form method and center manifold reduction for partial functional differential equation. The results suggest that time delay can destabilize the stability of coexisting equilibrium and induce bifurcating periodic solution when it increases through a certain threshold.



    Predator-prey model mainly describes the interaction between two populations with predation relationship. Since predator-prey relationship exists widely in nature, many scholars have studied the predator-prey models [1,2,3,4]. Considering the influence of different factors on the population, a variety of predator-prey models have been established [5,6]. Among these predator-prey models, Leslie-Gower predator-prey model is one of the classical model [7], with the following form

    ˙u(t)=r1u(1uK1)φ(u,v)v,˙v(t)=r2v(1βvu). (1.1)

    u(t) and v(t) stand for prey and predator's densities. r1 and K1 stand for the growth rate and the carrying capacity of the prey. φ(u,v) is the functional response. The predator also follows the logistic growth law, where r2 and u/β stand for the growth rate of predator and the carrying capacity of the predator.

    Another classical predator-prey model is Gauss predator-prey model [8], with the form

    ˙u(t)=r1u(1uK1)φ(u,v)v,˙v(t)=cφ(u,v)vdv. (1.2)

    c and d are the conversion rate and death rate.

    In predator-prey model, predators are mainly divided into specialist predators and generalist predators. Specialist predators feed almost exclusively on one specie of prey and require more specific environmental conditions. But, the generalist predators feed on many types of species, and can change its diet to another species when its a focal prey population begin to run short [9,10,11]. In [10], the authors studied a diffusive predator-prey model with generalist predator. They aimed to formalize the conditions in which spatial biological control can be achieved by generalists [10]. In [11], the authors studied the spatiotemporal dynamics and bifurcations of a diffusive predator-prey model with generalist predator and the combined the effect of linear prey harvesting and constant proportion of prey refuge. According to [10], the predator-prey model with generalist predators is of the following form

    ˙u(t)=r1u(1uK1)φ(u,v)v,˙v(t)=r2v(1vK2)+cφ(u,v)v. (1.3)

    K2 stands for the carrying capacity of the predator in absence of focal prey.

    Predator-prey models with different functional responses can show different dynamic behaviors. In [10], the authors used the Type Ⅱ functional response to reflect the effect of predator to the prey. Holling Type Ⅱ functional response is a kind of prey-dependent functional response. Predator-dependent response function is also important. Such as Beddington-DeAngelis type [12], with the following form

    φ(u,v)=BuC+A1u+A2v,

    where B, C, A1 and A2 stand for the maximum predator attack rate, the half-saturation constant, the effect of handling time and the magnitude of interference among predators. Some works all suggest that Beddington-DeAngelis functional response can enrich the dynamics of predator-prey model [13,14,15].

    Moreover, time delay exists widely in the population model. The delayed predator-prey model has attracted wide attention from scholars [16,17,18]. These results show that time delay can enrich the dynamics of predator-prey model. Considering the generalist predator and discrete time delay τ in the resource limitation of the prey, we propose the following predator-prey model.

    {u(x,t)t=d1Δu+r1u(1u(tτ)K1)BuvC+A1u+A2v,v(x,t)t=d2Δv+r2v(1vK2)+EBuvC+A1u+A2v,xΩ,t>0u(x,t)ν=v(x,t)ν=0,xΩ,t>0u(x,t)=u1(x,t)0,v(x,t)=v1(x,t)0,xΩ,t[τ,0]. (1.4)

    All the parameters in the model are positive. u(x,t) and v(x,t) stand for the densities of prey and predator at the location x and time t, respectively. E is conversion rate of prey. The boundary condition is Neumann boundary condition. The aim of this article is to study the dynamics of model (1.4) from the point of view of stability and bifurcation. Whether time delay can induce some new dynamic phenomena?

    The organization of this paper is as follows. In Sec. 2, the existence of coexisting equilibrium of the model is given. In Sec. 3, stability of equilibria and the existence of Hopf bifurcation is considered. In Sec. 4, the property of Hopf bifurcation is analyzed. In Sec. 5, some numerical simulations are carried. In Sec. 6, a brief conclusion is given.

    Denote ˜u=u/K1, ˜v=u/K2 and ˜t=tr2, system (1.4) is changed to (after dropping tildes):

    {u(x,t)t=d1Δu+ru[1u(tτ)av1+bu+cv],v(x,t)t=d2Δv+v(1v)+euv1+bu+cv,xΩ,t>0,u(x,t)ν=v(x,t)ν=0,xΩ,t>0,u(x,t)=u1(x,t)0,v(x,t)=v1(x,t)0,xΩ,t[τ,0], (2.1)

    where

    d1=D1r2,d2=D2r2,r=r1b,a=BK2C,b=A1K1C,c=A2K2C,e=EBK1Cr2. (2.2)

    We assume Ω=(0,lπ), where l>0.

    Solving the following equations,

    {ru[1uav1+bu+cv]=0,v(1v)+euv1+bu+cv=0. (2.3)

    We can obtained that (0,0), (1,0) and (0,1) are three boundary equilibria. And the coexisting equilibrium (u,v) satisfying v=(1u)(1+bu)ac+cu. Obviously, v>0 implies max{0,cac}<u<1. In addition, form (2.3), we can easily obtained that

    eueu2+avav2=0.

    Submitting v=(1u)(1+bu)ac+cu into it, yields h(u)=0, where

    h(u)=(ab2+c2e)u3+β2u2+β1ua(1a+c),β1=a2ab+a2b+acabc+a2e2ace+c2e,β2=2abab2+abc+2ace2c2e. (2.4)

    Theorem 2.1. If c>a1, system (2.1) has at least one coexisting equilibrium (u,v), where u is the root of h(u)=0 in interval (max{0,cac},1) and v=(1u)(1+bu)ac+cu.

    Proof. By direct calculation, we have h(1)=a2(1+b+e)>0, h(cac)=a2(abbcc)2c30 and h(0)=a(1a+c). If c>a, then cac=max{0,cac} and h(cac)<0. Then h(u)=0 has at least one root in interval (cac,1). If a1<ca, then 0=max{0,cac} and h(0)<0. Then h(u)=0 has at least one root in interval (0,1). This completes the proof.

    Linearize system (2.1) at (u,v)

    (utvt)=dΔ(u(t)v(t))+L1(u(t)v(t))+L2(u(tτ)v(tτ)), (3.1)

    where

    L1=(ra1ra2b1b2),L2=(ru000),

    and

    a1=abuv(1+bu+cv)2>0,a2=ua(1+bu)(1+bu+cv)2>0,b1=ev(1+cv)(1+bu+cv)2>0,b2=v(1+ceu(1+bu+cv)2)>0. (3.2)

    The characteristic equation of (3.1) is

    det(λIMnL1L2eλτ)=0, (3.3)

    where I=diag{1,1} and Mn=n2/l2diag{d1,d2}, nN0. Then, we have

    λ2+λAn+Bn+(Cn+λru)eλτ=0,nN0, (3.4)

    where

    An=(d1+d2)n2l2ra1+b2,Bn=d1d2n4l4(a1d2rd1b2)n2l2+r(a2b1a1b2),Cn=d2run2l2+b2ru.

    When τ=0, the characteristic Eq (2.1) is

    λ2trnλ+Δn(r)=0,nN0, (3.5)

    where

    {trn=r(a1u)b2n2l2(d1+d2),Δn=r[a2b1b2(a1u)]n2l2[d2r(a1u)b2d1]+d1d2n4l4, (3.6)

    and the eigenvalues are given by

    λ(n)1,2(r)=trn±tr2n4Δn2,nN0. (3.7)

    We make the following hypothesis

    (H1)c>a,(H2)a1<ca,andc>a(11/b). (3.8)

    Proposition 3.1. If hypothesis (H1) (or (H2)) holds, then a1u<0.

    Proof. It is easy to obtain that a1u=uϕ(u)a(1+bu), where ϕ(u)=bcu2+2b(ac)u+aab+bc. By direct calculation, we have ϕ(1)=a(1+b)>0, ϕ(cac)=a(1+babc), ϕ(0)=aab+bc and ϕ(cac)=0. From the proof of Theorem 2.1, we can obtain that u(cac,1) under hypothesis (H1). And ϕ(cac)>0, implying that ϕ(u)>0. Hence a1u<0 under hypothesis (H1). Similarly, we can verify that a1u<0 under hypothesis (H2).

    Theorem 3.1. Suppose (H1) (or (H2)) holds. Then the equilibrium E(u,v) is locally asymptotically stable.

    Proof. By the Proposition 3.1, we know that a1u<0 under hypothesis (H1) (or (H1)). Then we have trn<0 and Δn>0 for nN0. This implies that all eigenvalues of (3.5) have negative real parts. Then the equilibrium E(u,v) is locally asymptotically stable.

    Now, we study the stability of E(u,v) when τ>0. Let iω (ω>0) be a solution of Eq (3.4), we have

    ω2+iωAn+Bn+(Cn+iωru)(cosωτisinωτ)=0.

    Then we have

    {ω2+Bn+Cncosωτ+ωrusinωτ=0,AnωCnsinωτ+ωrucosωτ=0.

    This leads to

    ω4+(A2n2Bnr2u2)ω2+B2nC2n=0. (3.9)

    Denote z=ω2, then (3.9) can be changed into

    z2+(A2n2Bnr2u2)z+B2nC2n=0=0, (3.10)

    and the roots of (3.10) are

    z±=12[(A2n2Bnr2u2)±(A2n2Bnr2u2)24(B2nC2n)].

    Under (H1) (or (H2)), we have

    Bn+Cn=Δn>0.

    By direct computation,

    A2n2Bnr2u2=(d21+d22)n4l42(a1d1rb2d2)n2l2+b22r(2a2b1+r(u2a21)),BnCn=d1d2n4l4[(d2r(a1+u))b2d1]n2l2+r[a2b1b2(a1+u)].

    Fix parameters r,a,b,c,e,d1,d2,l, define

    D={kN0Eq(3.10)has positive roots withn=k.} (3.11)

    For nD, if z+>0, Eq (3.4) has a pair of purely imaginary roots ±iω+n at τj,+n, jN0; if z>0, Eq (3.4) has a pair of purely imaginary roots ±iωn at τj,n, jN0, where

    ω±n=z±n,τj,±n=τ0,±n+2jπω±n,(j=0,1,2,),τ0,±n=1ω±narccos(CnruAn)(ω±n)2BnCnC2n+r2u2(ω±n)2. (3.12)

    From (3.12), we have τ0,±n<τj,±n (jN). For kD, define the smallest τ so that the stability will change, τ=min{τ0,±korτ0,+kkD}.

    Lemma 3.1. Suppose (H1) (or (H2)) holds.If (A2n2Bnr2u2)24(B2nC2n)>0, then Re(dλdτ)|τ=τj,+n>0, Re(dλdτ)|τ=τj,n<0 for τD and jN0.

    Proof. Differentiating two sides of (3.4) with respect τ, we have

    (dλdτ)1=2λ+An+rueλτ(Cn+λru)λeλττλ.

    Then

    [Re(dλdτ)1]τ=τj,±n=Re[2λ+An+rueλτ(Cn+λru)λeλττλ]τ=τj,±n=[1Λω2(2ω2+A2n2Bnr2u2)]τ=τj,±n=±[1Λω2(A2n2Bnr2u2)24(B2nC2n)]τ=τj,±n,

    where Λ=ω4b22+C2nω2>0. Therefore Re(dλdτ)|τ=τj,+n>0, Re(dλdτ)|τ=τj,n<0.

    Theorem 3.2. Suppose (H1) (or (H2)) holds. For system (2.1), the following statements are true.

    (i) E(u,v) is locally asymptotically stable for all τ0 when D=.

    (ii) E(u,v) is locally asymptotically stable for τ[0,τ), and unstable for τ[τ,τ+ϵ) with some ϵ when D.

    (iii) System (2.1) undergoes a Hopf bifurcation at the equilibriumE(u,v) when τ=τj,+n (orτ=τj,n), jN0, nD when D.

    Using the same process, we can obtain the following theorem about the stability of boundary equilibria.

    Theorem 3.3. For system (2.1), the following statements are true.

    (i) (0,0) is always unstable for all τ0;

    (ii) (1,0) is always unstable when τ=0;

    (iii) (0,1) is locally asymptotically stable for a>1+c and τ0; and unstable for a<1+c and τ0.

    Now, we will study the property of Hopf bifurcation by the method in [19,20]. For a critical value τj,+n (or τj,n), we denote it as ˜τ. Let ˜u(x,t)=u(x,τt)u and ˜v(x,t)=v(x,τt)v, then the system (2.1) is (drop the tildes)

    {ut=τ[d1Δu+r(u+u)(1u(t1)ua(v+v)1+b(u+u)+c(v+v))],vt=τ[d2Δv+(v+v)(1vv)+e(u+u)(v+v)1+b(u+u)+c(v+v)]. (4.1)

    Denote τ=˜τ+ε, and U=(u(x,t),v(x,t))T. In the phase space C1:=C([1,0],X), (4.1) can be rewritten as

    dU(t)dt=˜τDΔU(t)+L˜τ(Ut)+F(Ut,ε), (4.2)

    where Lε(φ) and F(φ,ε) are

    Lε(ϕ)=ε(ra1ϕ1(0)ra2ϕ2(0)ruϕ1(1)b1ϕ1(0)b2ϕ2(0)), (4.3)
    F(ϕ,ε)=εDΔϕ+Lε(ϕ)+f(ϕ,ε), (4.4)

    with

    f(ϕ,ε)=(˜τ+ε)(F1(ϕ,ε),F2(ϕ,ε))T,F1(ϕ,ε)=r(ϕ1(0)+u)(1ϕ1(1)ua(ϕ2(0)+v)1+b(ϕ1(0)+u)+c(ϕ2(0)+v))ra1ϕ1(0)+ra2ϕ2(0)+ruϕ1(1),F2(ϕ,ε)=(ϕ2(0)+v)(1ϕ2(0)v)+e(ϕ1(0)+u)(ϕ2(0)+v)1+b(ϕ1(0)+u)+c(ϕ2(0)+v)b1ϕ1(0)+b2ϕ2(0),

    respectively, for ϕ=(ϕ1,ϕ2)TC1.

    Consider the linear equation

    dU(t)dt=˜τDΔU(t)+L˜τ(Ut). (4.5)

    We know that Λn:={iωn˜τ,iωn˜τ} are characteristic roots of

    dz(t)dt=˜τDn2l2z(t)+L˜τ(zt). (4.6)

    By Riesz representation theorem, there exists a 2×2 matrix function ηn(σ,˜τ), (1σ0), whose elements are of bounded variation functions such that

    ˜τDn2l2ϕ(0)+L˜τ(ϕ)=01dηn(σ,τ)ϕ(σ)

    for ϕC([1,0],R2).

    Choose

    ηn(σ,τ)={τEσ=0,0σ(1,0),τFσ=1, (4.7)

    where

    E=(ra1d1n2l2ra2b1b2d2n2l2),F=(ru000). (4.8)

    Define the bilinear paring

    (ψ,φ)=ψ(0)φ(0)01σξ=0ψ(ξσ)dηn(σ,˜τ)φ(ξ)dξ=ψ(0)φ(0)+˜τ01ψ(ξ+1)Fφ(ξ)dξ, (4.9)

    for φC([1,0],R2), ψC([0,1],R2). A(˜τ) has a pair of simple purely imaginary eigenvalues ±iωn˜τ, and they are also eigenvalues of A.

    Define p1(θ)=(1,ξ)Teiωn˜τσ(σ[1,0]),q1(r)=(1,η)eiωn˜τr(r[0,1]), where

    ξ=b1b2+d2n2/l2+iωn,η=a2rb2d2n2/l2+iωn.

    Let Φ=(Φ1,Φ2) and Ψ=(Ψ1,Ψ2)T with

    Φ1(σ)=p1(σ)+p2(σ)2=(Re(eiωn˜τσ)Re(ξeiωn˜τσ)),Φ2(σ)=p1(σ)p2(σ)2i=(Im(eiωn˜τσ)Im(ξeiωn˜τσ)),

    for θ[1,0], and

    Ψ1(r)=q1(r)+q2(r)2=(Re(eiωn˜τr)Re(ηeiωn˜τr)),Ψ2(r)=q1(r)q2(r)2i=(Im(eiωn˜τr)Im(ηeiωn˜τr)),

    for r[0,1]. Then we can compute by (4.9)

    D1:=(Ψ1,Φ1),D2:=(Ψ1,Φ2),D3:=(Ψ2,Φ1),D4:=(Ψ2,Φ2).

    Define (Ψ,Φ)=(Ψj,Φk)=(D1D2D3D4) and construct a new basis Ψ for P by

    Ψ=(Ψ1,Ψ2)T=(Ψ,Φ)1Ψ.

    Then (Ψ,Φ)=I2. In addition, define fn:=(β1n,β2n), where

    β1n=(cosnlx0),β2n=(0cosnlx).

    We also define

    cfn=c1β1n+c2β2n,forc=(c1,c2)TC1,

    and

    <u,v>:=1lπlπ0u1¯v1dx+1lπlπ0u2¯v2dx

    for u=(u1,u2), v=(v1,v2), u,vX and <φ,f0>=(<φ,f10>,<φ,f20>)T.

    Rewrite Eq (4.1) as the following abstract form

    dU(t)dt=A˜τUt+R(Ut,ε), (4.10)

    where

    R(Ut,ε)={0,θ[1,0),F(Ut,ε),θ=0. (4.11)

    The solution is

    Ut=Φ(x1x2)fn+h(x1,x2,ε), (4.12)

    where

    (x1x2)=(Ψ,<Ut,fn>),

    and

    h(x1,x2,ε)PSC1,h(0,0,0)=0,Dh(0,0,0)=0.

    Then

    Ut=Φ(x1(t)x2(t))fn+h(x1,x2,0). (4.13)

    Let z=x1ix2, and notice that p1=Φ1+iΦ2. Then we have

    Φ(x1x2)fn=(Φ1,Φ2)(z+¯z2i(z¯z)2)fn=12(p1z+¯p1¯z)fn,

    and

    h(x1,x2,0)=h(z+¯z2,i(z¯z)2,0).

    Equation (4.13) is

    Ut=12(p1z+¯p1¯z)fn+h(z+¯z2,i(z¯z)2,0)=12(p1z+¯p1¯z)fn+W(z,¯z), (4.14)

    where

    W(z,¯z)=h(z+¯z2,i(z¯z)2,0).

    From [19], z satisfies

    ˙z=iωn˜τz+g(z,¯z), (4.15)

    where

    g(z,¯z)=(Ψ1(0)iΨ2(0))<F(Ut,0),fn>. (4.16)

    Let

    W(z,¯z)=W20z22+W11z¯z+W02¯z22+, (4.17)
    g(z,¯z)=g20z22+g11z¯z+g02¯z22+, (4.18)

    then

    ut(0)=12(z+¯z)cos(nxl)+W(1)20(0)z22+W(1)11(0)z¯z+W(1)02(0)¯z22+,
    vt(0)=12(ξ+¯ξ¯z)cos(nxl)+W(2)20(0)z22+W(2)11(0)z¯z+W(2)02(0)¯z22+,
    ut(1)=12(zeiωn˜τ+¯zeiωn˜τ)cos(nxl)+W(1)20(1)z22+W(1)11(1)z¯z+W(1)02(1)¯z22+,
    vt(1)=12(ξzeiωn˜τ+¯ξ¯zeiωn˜τ)cos(nxl)+W(2)20(1)z22+W(2)11(1)z¯z+W(2)02(1)¯z22+,

    and

    ¯F1(Ut,0)=1˜τF1=α1u2t(0)+α2ut(0)vt(0)+α3v2t(0)+α4u3t(0)+α5u2t(0)vt(0)+α6ut(0)v2t(0)+α7v3t(0)+O(4), (4.19)
    ¯F2(Ut,0)=1˜τF2=v2t(0)+β1u2t(1)+β2ut(1)vt(1)+β3v2t(1)+β4u3t(1)+β5u2t(1)vt(1)+β6ut(1)v2t(1)+β7v3t(1)+O(4), (4.20)

    with α1=arv(b+bcv)(1+bu+cv)3, α2=ar(1+cv+b(u+2cuv))(1+bu+cv)3, α3=aru(c+bcu)(1+bu+cv)3, α4=ab2rv(1+cv)(1+bu+cv)4, α5=abr(1c2v2+b(u+2cuv))(1+bu+cv)4, α6=acr(1b2u2+cv+2bcuv)(1+bu+cv)4, α7=6ac2ru(1+bu)(1+bu+cv)4, β1=ev(b+bcv)(1+bu+cv)3, β2=e(1+cv+b(u+2cuv))(1+bu+cv)3, β3=1eu(c+bcu)(1+bu+cv)3, β4=b2ev(1+cv)(1+bu+cv)4, β5=be(1c2v2+b(u+2cuv))(1+bu+cv)4, β6=ce(1b2u2+cv+2bcuv)(1+bu+cv)4, β7=c2eu(1+bu)(1+bu+cv)4.

    Hence,

    ¯F1(Ut,0)=cos2(nxl)(z22χ20+z¯zχ11+¯z22¯χ20)+z2¯z2(χ1cosnxl+χ2cos3nxl)+,¯F2(Ut,0)=cos2(nxl)(z22ς20+z¯zς11+¯z22¯ς20)+z2¯z2(ς1cosnxl+ς2cos3nxl)+, (4.21)
    <F(Ut,0),fn>=˜τ(¯F1(Ut,0)f1n+¯F2(Ut,0)f2n)=z22˜τ(χ20ς20)Γ+z¯z˜τ(χ11ς11)Γ+¯z22˜τ(¯χ20¯ς20)Γ+z2¯z2˜τ(κ1κ2)+, (4.22)

    with

    Γ=1lπlπ0cos3(nxl)dx,κ1=χ1lπlπ0cos2(nxl)dx+χ2lπlπ0cos4(nxl)dx,κ2=ς1lπlπ0cos2(nxl)dx+ς2lπlπ0cos4(nxl)dx

    and

    χ20=12eiτωn(r+eiτωn(α1+ξ(α2+α3ξ))),

    χ11=14eiτωn((1+e2iτωn)reiτωn(2α1+2α3ˉξξ+α2(ˉξ+ξ))),

    χ1=W111(0)(eiτωnr+2α1+α2ξ)+W211(0)(α2+2α3ξ)+12W120(0)(eiτωnr+2α1+α2ˉξ)

    +12W220(0)(α2+2α3ˉξ)rW111(1)rW120(1)2,

    χ2=14(3α4+α5(ˉξ+2ξ)+ξ(2α6ˉξ+α6ξ+3α7ˉξξ)),

    ς20=12(β1+ξ(β2+β3ξ)), ς11=14(2β1+2β3ˉξξ+β2(ˉξ+ξ)),

    ς1=W111(0)(2β1+β2ξ)+W211(0)(β2+2β3ξ)+W120(0)(β1+β2ˉξ2)+12W220(0)(β2+2β3ˉξ),

    ς2=14(3β4+β5(ˉξ+2ξ)+ξ(2β6ˉξ+β6ξ+3β7ˉξξ)).

    Denote

    Ψ1(0)iΨ2(0):=(γ1γ2).

    Notice that

    1lπlπ0cos3nxldx=0,n=1,2,3,,

    and we have

    (Ψ1(0)iΨ2(0))<F(Ut,0),fn>=z22(γ1χ20+γ2ς20)Γ˜τ+z¯z(γ1χ11+γ2ς11)Γ˜τ+¯z22(γ1¯χ20+γ2¯ς20)Γ˜τ+z2¯z2˜τ[γ1κ1+γ2κ2]+. (4.23)

    Then by (4.16), (4.18) and (4.23), we have g20=g11=g02=0, for n=1,2,3,. If n=0, we have:

    g20=γ1˜τχ20+γ2˜τς20,g11=γ1˜τχ11+γ2˜τς11,g02=γ1˜τ¯χ20+γ2˜τ¯ς20.

    And for nN0, g21=˜τ(γ1κ1+γ2κ2).

    From [19], we have

    ˙W(z,¯z)=W20z˙z+W11˙z¯z+W11z˙¯z+W02¯z˙¯z+,
    A˜τW(z,¯z)=A˜τW20z22+A˜τW11z¯z+A˜τW02¯z22+,

    and

    ˙W(z,¯z)=A˜τW+H(z,¯z),

    where

    H(z,¯z)=H20z22+W11z¯z+H02¯z22+=X0F(Ut,0)Φ(Ψ,<X0F(Ut,0),fn>fn). (4.24)

    Hence, we have

    (2iωn˜τA˜τ)W20=H20,A˜τW11=H11,(2iωn˜τA˜τ)W02=H02, (4.25)

    that is

    W20=(2iωn˜τA˜τ)1H20,W11=A1˜τH11,W02=(2iωn˜τA˜τ)1H02. (4.26)

    Then

    H(z,¯z)=Φ(0)Ψ(0)<F(Ut,0),fn>fn=(p1(θ)+p2(θ)2,p1(θ)p2(θ)2i)(Φ1(0)Φ2(0))<F(Ut,0),fn>fn=12[p1(θ)(Φ1(0)iΦ2(0))+p2(θ)(Φ1(0)+iΦ2(0))]<F(Ut,0),fn>fn=12[(p1(θ)g20+p2(θ)¯g02)z22+(p1(θ)g11+p2(θ)¯g11)z¯z+(p1(θ)g02+p2(θ)¯g20)¯z22]+.

    Therefore,

    H20(θ)={0nN,12(p1(θ)g20+p2(θ)¯g02)f0n=0,
    H11(θ)={0nN,12(p1(θ)g11+p2(θ)¯g11)f0n=0,
    H02(θ)={0nN,12(p1(θ)g02+p2(θ)¯g20)f0n=0,

    and

    H(z,¯z)(0)=F(Ut,0)Φ(Ψ,<F(Ut,0),fn>)fn,

    where

    H20(0)={˜τ(χ20ς20)cos2(nxl),nN,˜τ(χ20ς20)12(p1(0)g20+p2(0)¯g02)f0,n=0. (4.27)
    H11(0)={˜τ(χ11ς11)cos2(nxl),nN,˜τ(χ11ς11)12(p1(0)g11+p2(0)¯g11)f0,n=0.

    By the definition of A˜τ and (4.25), we have

    ˙W20=A˜τW20=2iωn˜τW20+12(p1(θ)g20+p2(θ)¯g02)fn,1θ<0.

    That is

    W20(θ)=i2iωn˜τ(g20p1(θ)+¯g023p2(θ))fn+E1e2iωn˜τθ,

    where

    E1={W20(0)n=1,2,3,,W20(0)i2iωn˜τ(g20p1(θ)+¯g023p2(θ))f0n=0.

    By the definition of A˜τ and (4.25), we have that for 1θ<0

    (g20p1(0)+¯g023p2(0))f0+2iωn˜τE1A˜τ(i2ωn˜τ(g20p1(0)+¯g023p2(0))f0)A˜τE1L˜τ(i2ωn˜τ(g20p1(0)+¯g023p2(0))fn+E1e2iωn˜τθ)=˜τ(χ20ς20)12(p1(0)g20+p2(0)¯g02)f0.

    As

    A˜τp1(0)+L˜τ(p1f0)=iω0p1(0)f0,

    and

    A˜τp2(0)+L˜τ(p2f0)=iω0p2(0)f0,

    we have

    2iωnE1A˜τE1L˜τE1e2iωn=˜τ(χ20ς20)cos2(nxl),nN0.

    That is

    E1=˜τE(χ20ς20)cos2(nxl),

    where

    E=(2iωn˜τ+d1n2l2ra1ra2b1e2iωn˜τ2iωn˜τ+d2n2l2αb2e2iωn˜τ)1.

    Similarly, from (4.26), we have

    ˙W11=i2ωn˜τ(p1(θ)g11+p2(θ)¯g11)fn,1θ<0.

    That is

    W11(θ)=i2iωn˜τ(p1(θ)¯g11p1(θ)g11)+E2.

    Similarly, we have

    E2=˜τE(χ11ς11)cos2(nxl),

    where

    E=(d1n2l2ra1ra2b1d2n2l2b2α)1.

    Thus, we have

    c1(0)=i2ωn˜τ(g20g112|g11|2|g02|23)+12g21,μ2=Re(c1(0))Re(λ(τjn)),T2=1ωn˜τ[Im(c1(0))+μ2Im(λ(τjn))],β2=2Re(c1(0)). (4.28)

    Theorem 4.1. When μ2>0 (or μ2<0), the bifurcating periodic solutions exists for τ>τj,±n (or τ<τj,±n), andare orbitally asymptotically stable(or unstable) when β2<0 (or β2>0).

    According to the reference [21], we choose r1=19.3, K1=400, r2=8.8, K2=5, B=10.76, C=60.6, A1=0.00728, A2=1. By (2.2), we can obtain a, b, c, e and r. Fix d1=0.1, d2=0.2, l=2. We give the coexisting equilibrium (Figure 1), and bifurcation diagram (Figure 2) of system (2.1) with parameter E. It shows that the density of prey (predator) in the coexisting equilibrium decreases (increases) and the stable region increases with the increase of parameter E. This indicates that increasing parameter E is benefit to prey and predator to reach the steady state (coexisting equilibrium).

    Figure 1.  The coexisting equilibrium of system (2.1) with parameter E.
    Figure 2.  Bifurcation diagram of system (2.1) with parameter E.

    When E=8.8, we can obtain (u,v)(0.0037,1.2370) is a unique coexisting equilibrium. Hypothesis (H1) is satisfied. We have τ=τ000.2440. Then E(u,v) is local stable when τ[0,τ) (shown in Figure 3). When τ=τ, Hopf bifurcation occurs. We can obtain

    μ281.0352>0,β2556.5305<0,andT22035.9058>0.
    Figure 3.  Numerical simulations of system (2.1) for τ=0.2, and initial condition is (0.00367+0.0001cosx,1.23699+0.001sinx).

    Then, when τ>3.4595, the local stable bifurcating periodic solutions exists (shown in Figure 4).

    Figure 4.  Numerical simulations of system (2.1) for τ=0.3, and initial condition is (0.00367+0.0001cosx,1.23699+0.001sinx).

    In this paper, we propose a diffusive predator-prey system with generalist predator and time delay in the resource limitation of the prey. We obtained that system (2.1) has three boundary equilibria: (0,0) (predator and prey extinction equilibrium), (1,0) (predator extinction equilibrium) and (0,1) (prey extinction equilibrium). We mainly analyze the stability and Hopf bifurcation of coexisting equilibrium. By the theory of normal form and center manifold method, we give some parameters that determining the property of Hopf bifurcation: Bifurcation direction and the stability of the bifurcating periodic solution.

    Since the predators are generalist type and have other food resource, they will not be extinct. This is in agreement with the Theorem 3.3. When the predator attack rate is large enough a>1+c, all the prey will be caught by the predator. This will lead to the extinction of the prey, and the predator will reach a balanced state. It is also in agreement with the Theorem 3.3 that (0,1) is local asymptotically stable for a>1+c. When the predator attack rate is not large enough a<1+c, then the prey and predator will coexist.

    The conversion rate E can affect the the density of prey (predator) in the coexisting equilibrium. With the increase of conversion rate, the density of prey (predator) will decrease (increase) and the stable region will increase. In addition, time delay will also affect the stability of the equilibrium point when the parameters satisfying the condition D. Specifically, when the time delay is small than the critical value τ, the prey and the predator will coexist and tend to the coexisting equilibrium. But when time delay is larger than the critical value τ, the prey and predator will exhibit oscillatory behavior. In addition, the spatial inhomogeneous periodic solutions may exist, but they are generally unstable.

    This research is supported by Fundamental Research Funds for the Central Universities (No. DL13BB17), Heilongjiang Provincial Natural Science Foundation (No. A2018001), Postdoctoral Science Foundation of China (No. 2019M651237) and National Nature Science Foundation of China (No. 11601070).

    The authors declare that they have no competing interests.



    [1] F. Yi, J. Wei, J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equations, 246 (2009), 1944–1977. https://doi.org/10.1016/j.jde.2008.10.024 doi: 10.1016/j.jde.2008.10.024
    [2] Y. Song, T. Zhang, Y. Peng, Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Commun. Nonlinear Sci. Numer. Simul., 33 (2016), 229–258. https://doi.org/10.1016/j.cnsns.2015.10.002 doi: 10.1016/j.cnsns.2015.10.002
    [3] S. Djilali, Pattern formation of a diffusive predator-prey model with herd behavior and nonlocal prey competition, Math. Methods Appl. Sci., 43 (2020), 2233–2250. https://doi.org/10.1002/mma.6036 doi: 10.1002/mma.6036
    [4] R. Yuan, W. Jiang, Y. Wang, Saddle-node-Hopf bifurcation in a modified Leslie-Gower predator-prey model with time-delay and prey harvesting, J. Math. Anal. Appl., 422 (2015), 1072–1090. https://doi.org/10.1016/j.jmaa.2014.09.037 doi: 10.1016/j.jmaa.2014.09.037
    [5] J. Wang, H. Cheng, Y. Li, X. Zhang, The geometrical analysis of a predator-prey model with multi-state dependent impulsive, J. Appl. Anal. Comput., 8 (2018), 427–442. https://doi.org/10.11948/2018.427 doi: 10.11948/2018.427
    [6] Y, Song, S. Wu, H. Wang, Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect, J. Differ. Equations, 267 (2019), 6316–6351. https://doi.org/10.1016/j.jde.2019.06.025 doi: 10.1016/j.jde.2019.06.025
    [7] P. H. Leslie, J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219–234. https://doi.org/10.1093/biomet/47.3-4.219 doi: 10.1093/biomet/47.3-4.219
    [8] H. I. Freedman, Deterministic mathematical models in population ecology, Biometrics, 22 (1980), 219–236. https://doi.org/10.2307/2530090 doi: 10.2307/2530090
    [9] Y. Kang, L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator, J. Math. Biol., 67 (2013), 1227–1259. https://doi.org/10.1007/s00285-012-0584-z doi: 10.1007/s00285-012-0584-z
    [10] S. Madec, J. Casas, G. Barles, C. Suppo, Bistability induced by generalist natural enemies can reverse pest invasions, J. Math. Biol., 75 (2017), 543–575. https://doi.org/10.1007/s00285-017-1093-x doi: 10.1007/s00285-017-1093-x
    [11] L. N. Guin, S. Acharya, Dynamic behaviour of a reaction-diffusion predator-prey model with both refuge and harvesting, Nonlinear Dynam., 88 (2017), 1501–1533. https://doi.org/10.1007/s11071-016-3326-8 doi: 10.1007/s11071-016-3326-8
    [12] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331–340. https://doi.org/10.2307/3866 doi: 10.2307/3866
    [13] T. Huang, H. Zhang, H. Yang, N. Wang, F. Zhang, Complex patterns in a space- and time-discrete predator-prey model with Beddington-DeAngelis functional response, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 182–199. https://doi.org/10.1016/j.cnsns.2016.07.004 doi: 10.1016/j.cnsns.2016.07.004
    [14] H. Li, Z. She, Dynamics of a non-autonomous density-dependent predator-prey model with Beddington-DeAngelis type, Commun. Nonlinear Sci. Numer. Simul., 09 (2016), 1650050. https://doi.org/10.1142/s1793524516500509 doi: 10.1142/s1793524516500509
    [15] A. Lahrouz, A. Settati, P. S. Mandal, Dynamics of a switching diffusion modified Leslie-Gower predator-prey system with Beddington-DeAngelis functional response, Nonlinear Dynam., 85 (2016), 853–870. https://doi.org/10.1007/s11071-016-2728-y doi: 10.1007/s11071-016-2728-y
    [16] Z. Jiang, L. Wang, Global Hopf bifurcation for a predator-prey system with three delays, Int. J. Bifurcat. Chaos, 27 (2017), 1750108. https://doi.org/10.1142/s0218127417501085 doi: 10.1142/s0218127417501085
    [17] Y. Song, Y. Peng, T. Zhang, The spatially inhomogeneous Hopf bifurcation induced by memory delay in a memory-based diffusion system, J. Differ. Equations, 300 (2021), 597–624. https://doi.org/10.1016/j.jde.2021.08.010 doi: 10.1016/j.jde.2021.08.010
    [18] X. Y. Meng, F. L. Meng, Bifurcation analysis of a special delayed predator-prey model with herd behavior and prey harvesting, AIMS Math., 6 (2021), 5695–5719. https://doi.org/10.3934/math.2021336 doi: 10.3934/math.2021336
    [19] J. Wu, Theory and applications of partial functional differential equations, Springer Berlin, 1996.
    [20] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of partial functional differential equations, Cambridge-New York: Cambridge University Press, 1981.
    [21] G. W. Harrison, Comparing predator-prey models to Luckinbill's experiment with Didinium and Paramecium, Ecology, 76 (1995), 357–374. https://doi.org/10.2307/1941195 doi: 10.2307/1941195
  • This article has been cited by:

    1. Xiaowen Zhang, Wufei Huang, Jiaxin Ma, Ruizhi Yang, Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and schooling behavior, 2022, 30, 2688-1594, 2510, 10.3934/era.2022128
    2. Liye Wang, Wenlong Wang, Ruizhi Yang, Stability switch and Hopf bifurcations for a diffusive plankton system with nonlocal competition and toxic effect, 2023, 8, 2473-6988, 9716, 10.3934/math.2023490
    3. Amina Hammoum, Tewfik Sari, Karim Yadi, The Rosenzweig–MacArthur Graphical Criterion for a Predator-Prey Model with Variable Mortality Rate, 2023, 22, 1575-5460, 10.1007/s12346-023-00739-6
    4. Biswajit Paul, Surajit Debnath, Prahlad Majumdar, Suman Sarkar, Uttam Ghosh, Effect of Environmental Fluctuation in the Dynamics of a Three-Species Food Chain Model with Sexually Reproductive Generalized Type Top Predator and Crowley-Martin Type Functional Response Between Predators, 2023, 53, 0103-9733, 10.1007/s13538-023-01262-4
    5. Kuldeep Singh, Mukesh Kumar, Ramu Dubey, Teekam Singh, Untangling role of cooperative hunting among predators and herd behavior in prey with a dynamical systems approach, 2022, 162, 09600779, 112420, 10.1016/j.chaos.2022.112420
    6. Wenqi Zhang, Dan Jin, Ruizhi Yang, Hopf Bifurcation in a Predator–Prey Model with Memory Effect in Predator and Anti-Predator Behaviour in Prey, 2023, 11, 2227-7390, 556, 10.3390/math11030556
    7. Figen Kangalgil, Seval Isșık, Effect of immigration in a predator-prey system: Stability, bifurcation and chaos, 2022, 7, 2473-6988, 14354, 10.3934/math.2022791
    8. Dipankar Kumar, Md. Mehedi Hasan, Gour Chandra Paul, Dipok Debnath, Nayan Mondal, Omar Faruk, Revisiting the spatiotemporal dynamics of a diffusive predator-prey system: An analytical approach, 2023, 44, 22113797, 106122, 10.1016/j.rinp.2022.106122
    9. Xubin Jiao, Xiaodi Li, Youping Yang, Dynamics and bifurcations of a Filippov Leslie-Gower predator-prey model with group defense and time delay, 2022, 162, 09600779, 112436, 10.1016/j.chaos.2022.112436
    10. Yanfeng Li, A diffusive plankton system with time delay and habitat complexity effects under Neumann boundary condition, 2022, 2022, 1687-2770, 10.1186/s13661-022-01617-x
    11. Chenxuan Nie, Dan Jin, Ruizhi Yang, Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and generalist predator, 2022, 7, 2473-6988, 13344, 10.3934/math.2022737
    12. Yujia Xiang, Yuqi Jiao, Xin Wang, Ruizhi Yang, Dynamics of a delayed diffusive predator-prey model with Allee effect and nonlocal competition in prey and hunting cooperation in predator, 2023, 31, 2688-1594, 2120, 10.3934/era.2023109
    13. Ting Gao, Xinyou Meng, Stability and Hopf bifurcation of a delayed diffusive phytoplankton-zooplankton-fish model with refuge and two functional responses, 2023, 8, 2473-6988, 8867, 10.3934/math.2023445
    14. Fatao Wang, Ruizhi Yang, Yining Xie, Jing Zhao, Hopf bifurcation in a delayed reaction diffusion predator-prey model with weak Allee effect on prey and fear effect on predator, 2023, 8, 2473-6988, 17719, 10.3934/math.2023905
    15. Samir Biswas, Lakpa Thendup Bhutia, Tapan Kumar Kar, Bidhan Bhunia, Esita Das, Spatiotemporal analysis of a modified Leslie–Gower model with cross-diffusion and harvesting, 2024, 470, 01672789, 134381, 10.1016/j.physd.2024.134381
    16. Haisu Zhang, Haokun Qi, Hopf Bifurcation Analysis of a Predator–Prey Model with Prey Refuge and Fear Effect Under Non-diffusion and Diffusion, 2023, 22, 1575-5460, 10.1007/s12346-023-00837-5
    17. Yining Xie, Jing Zhao, Ruizhi Yang, Stability Analysis and Hopf Bifurcation of a Delayed Diffusive Predator–Prey Model with a Strong Allee Effect on the Prey and the Effect of Fear on the Predator, 2023, 11, 2227-7390, 1996, 10.3390/math11091996
    18. Miao Peng, Rui Lin, Zhengdi Zhang, Lei Huang, The dynamics of a delayed predator-prey model with square root functional response and stage structure, 2024, 32, 2688-1594, 3275, 10.3934/era.2024150
    19. Nursanti Anggriani, Hasan S. Panigoro, Emli Rahmi, Olumuyiwa James Peter, Sayooj Aby Jose, A predator–prey model with additive Allee effect and intraspecific competition on predator involving Atangana–Baleanu–Caputo derivative, 2023, 49, 22113797, 106489, 10.1016/j.rinp.2023.106489
    20. Muhammad Aqib Abbasi, Maria Samreen, Analyzing multi-parameter bifurcation on a prey–predator model with the Allee effect and fear effect, 2024, 180, 09600779, 114498, 10.1016/j.chaos.2024.114498
    21. Muhammad Aqib Abbasi, Periodic behavior and dynamical analysis of a prey–predator model incorporating the Allee effect and fear effect, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-04909-6
    22. Heping Jiang, Complex dynamics induced by harvesting rate and delay in a diffusive Leslie-Gower predator-prey model, 2023, 8, 2473-6988, 20718, 10.3934/math.20231056
    23. Christian Cortés García, Jasmidt Vera Cuenca, Impact of alternative food on predator diet in a Leslie-Gower model with prey refuge and Holling Ⅱ functional response, 2023, 20, 1551-0018, 13681, 10.3934/mbe.2023610
    24. Dan Jin, Ruizhi Yang, HOPF BIFURCATION IN A PREDATOR-PREY MODEL WITH MEMORY EFFECT AND INTRA-SPECIES COMPETITION IN PREDATOR, 2023, 13, 2156-907X, 1321, 10.11948/20220127
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2633) PDF downloads(146) Cited by(24)

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog