Research article Special Issues

Direction and stability of Hopf bifurcation in an eco-epidemic model with disease in prey and predator gestation delay using Crowley-Martin functional response

  • Received: 19 July 2024 Revised: 07 September 2024 Accepted: 19 September 2024 Published: 27 September 2024
  • MSC : 92D25, 92D30, 34C23, 34C25, 37G15

  • In this work, we have studied an eco-epidemic model using the Crowley-Martin functional response that includes disease in prey and gestation delay in the predator population. The model possesses three equilibria, namely the disease-free, Predator-free, and the interior equilibrium point. In addition, we examined the stability of the equilibrium points varying the infection rate and time delay parameter. Detailed analysis of Hopf bifurcation of the interior equilibrium point contains two situations: with delay and without delay. Moreover, we have studied the direction of the Hopf bifurcation and the stability of periodic solutions utilizing normal form theory and the center manifold theorem. It is emphasized that Hopf bifurcation occurs when the time delay exceeds the critical value and that the critical value of the delay is strongly impacted by the infection rate in prey. A detailed numerical simulation is provided to verify the analytical results.

    Citation: Sahabuddin Sarwardi, Hasanur Mollah, Aeshah A. Raezah, Fahad Al Basir. Direction and stability of Hopf bifurcation in an eco-epidemic model with disease in prey and predator gestation delay using Crowley-Martin functional response[J]. AIMS Mathematics, 2024, 9(10): 27930-27954. doi: 10.3934/math.20241356

    Related Papers:

  • In this work, we have studied an eco-epidemic model using the Crowley-Martin functional response that includes disease in prey and gestation delay in the predator population. The model possesses three equilibria, namely the disease-free, Predator-free, and the interior equilibrium point. In addition, we examined the stability of the equilibrium points varying the infection rate and time delay parameter. Detailed analysis of Hopf bifurcation of the interior equilibrium point contains two situations: with delay and without delay. Moreover, we have studied the direction of the Hopf bifurcation and the stability of periodic solutions utilizing normal form theory and the center manifold theorem. It is emphasized that Hopf bifurcation occurs when the time delay exceeds the critical value and that the critical value of the delay is strongly impacted by the infection rate in prey. A detailed numerical simulation is provided to verify the analytical results.



    加载中


    [1] C. Jeffries, Mathematical modeling in ecology: a workbook for students, Springer Science & Business Media, (2012).
    [2] P. Chesson, Predator-prey theory and variability, Annual Rev. Ecol. Syst., 9 (1978), 323–347.
    [3] M. S. Boyce, Modeling predator–prey dynamics, In: Research techniques in animal ecology, Columbia University Press, New York, USA, (2000), 253–87.
    [4] A. J. Lotka, Elements of physical biology, Nature, 116 (1925). https://doi.org/10.1038/116461b0
    [5] Volterra, V. Variations and fluctuations of a number of individuals in animal species living together, ICES J. Marine Sci., 3 (1928), 3–51. https://doi.org/10.1093/icesjms/3.1.3 doi: 10.1093/icesjms/3.1.3
    [6] R. M. May, R. M.Anderson, Population biology of infectious diseases: part II, Nature, 280 (1979), 455–461. https://doi.org/10.1038/280455a0 doi: 10.1038/280455a0
    [7] Y. Xiao, L. Chen, Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171 (2001), 59–82. https://doi.org/10.1016/S0025-5564(01)00049-9 doi: 10.1016/S0025-5564(01)00049-9
    [8] G. P. Hu, X. L. Li, Stability and Hopf bifurcation for a delayed predator–prey model with disease in the prey, Chaos Soli. Fract., 45 (2012), 229–237. https://doi.org/10.1016/j.chaos.2011.11.011 doi: 10.1016/j.chaos.2011.11.011
    [9] X. Zhou, J. Cui, X. Shi, X. Song, A modified Leslie-Gower predator-prey model with prey infection, J. Appl. Math. Comput., 33 (2010), 471–487. https://doi.org/10.1007/s12190-009-0298-6 doi: 10.1007/s12190-009-0298-6
    [10] X. Zhou, X. Shi, X. Song, The dynamics of an eco-epidemiological model with distributed delay, Nonl. Anal. Hybrid Sys., 3 (2009), 685–699. https://doi.org/10.1016/j.nahs.2009.06.005 doi: 10.1016/j.nahs.2009.06.005
    [11] Z. Zhang, H. Yang, Hopf bifurcation control in a delayed predator-prey system with prey infection and modified Leslie-Gower scheme, Abst. Appl. Anal., 2013 (2013), 1–11. https://doi.org/10.1155/2013/704320 doi: 10.1155/2013/704320
    [12] M. Haque, S. Sarwardi, S. Preston, E. Venturino, Effect of delay in a Lotka–Volterra type predator–prey model with a transmissible disease in the predator species, Math. Biosci., 234 (2011), 47–57. https://doi.org/10.1016/j.mbs.2011.06.009 doi: 10.1016/j.mbs.2011.06.009
    [13] E. Venturino, Epidemics in predator-prey models: disease in the predators, IMA J. Math. Appl. Med. Biol., 19 (2002), 185–205. https://doi.org/10.1093/imammb/19.3.185 doi: 10.1093/imammb/19.3.185
    [14] Y. P. Zhang, M. J. Ma, P. Zuo, X. Liang, Analysis of a eco-epidemiological model with disease in the predator, Appl. Mech. Material., 536 (2014), 861–864. https://doi.org/10.4028/www.scientific.net/AMM.536-537.861 doi: 10.4028/www.scientific.net/AMM.536-537.861
    [15] Y. P. Zhang, M. J. Ma, P. Zuo, X. Liang, Analysis of a eco-epidemiological model with disease in the predator, Appl. Mech. Material., 536 (2014), 861–864.
    [16] Q. Dong, W. Ma, W. M. Sun, The asymptotic behavior of a Chemostat model with Crowley–Martin type functional response and time delays, J. Math. Chem., 51 (2013), 1231–1248. https://doi.org/10.1007/s10910-012-0138-z doi: 10.1007/s10910-012-0138-z
    [17] A. P. Maiti, B. Dubey, Stability and bifurcation of a fishery model with Crowley-Martin functional response, Int. J. Bifur. Chaos., 27 (2017), 1750174.
    [18] J. P. Tripathi, S. Tyagi, S. Abbas, Global analysis of a delayed density dependent predator-prey model with Crowley-Martin functional response, Commun. Nonl. Sci. Numer. Simul., 30 (2016), 45–69. https://doi.org/10.1016/j.cnsns.2015.06.008 doi: 10.1016/j.cnsns.2015.06.008
    [19] F. Wei, Q. Fu, Hopf bifurcation and stability for predator-prey system with Beddington-DeAngelis type functional response and stage structure for prey incorpting refuge, Appl. Math. Model., 40 (2016), 126–134. https://doi.org/10.1016/j.apm.2015.04.042 doi: 10.1016/j.apm.2015.04.042
    [20] S. Sarwardi, M. Haque, S. Hossain, Analysis of Bogdanov–takens bifurcations in a spatiotemporal harvested-predator and prey system with Beddington–DeAngelis-type response function, Nonlinear Dyn., 100 (2020), 1755–1778. https://doi.org/10.1007/s11071-020-05549-y doi: 10.1007/s11071-020-05549-y
    [21] M. S. Rahman, M. S. Islam, S. Sarwardi, Effects of prey refuge with Holling type IV functional response dependent prey predator model, Int. J. Model. Simul., (2023), 1–19. https://doi.org/10.1080/02286203.2023.2178066
    [22] S. Sarwardi, M. Haque, E. Venturino, Global stability and persistence in LG–Holling type II diseased predator ecosystems, J. Biol. Phys., 37 (2011), 91–106. https://doi.org/10.1007/s10867-010-9201-9 doi: 10.1007/s10867-010-9201-9
    [23] J. Huang, Y. Gong, J. Chen, Multiple bifurcations in a predator-prey system of Holling and Leslie type with constant-yield prey harvesting, Int. J. Bifurc. Chaos., 23 (2013), 50164. https://doi.org/10.1142/S0218127413501642 doi: 10.1142/S0218127413501642
    [24] N. Bairagi, D. Jana, On the stability and Hopf bifurcation of a delay-induced predator-prey system with habitat complexity, Appl. Math. Model., 35 (2011), 3255–3267. https://doi.org/10.1016/j.apm.2011.01.025 doi: 10.1016/j.apm.2011.01.025
    [25] G. Liu, J. Yan, Existence of positive periodic solutions for neutral delay Gause-type predator–prey system, Appl. Math. Model., 35 (2011), 5741–5750. https://doi.org/10.1016/j.apm.2011.05.006 doi: 10.1016/j.apm.2011.05.006
    [26] Z. Du, Y. Lv, Permanence and almost periodic solution of a model with mutual interference and time delays, Appl. Math. Model., 37 (2013), 1054–1068. https://doi.org/10.1016/j.apm.2012.03.022 doi: 10.1016/j.apm.2012.03.022
    [27] L. Deng, X. Wang, M. Peng, Hopf bifurcation analysis for a ratio-dependent predator-prey system with two delays and stage structure for the predator, Appl. Math. Comput., 231 (2014), 214–230. http://dx.doi.org/10.1016/j.amc.2014.01.025 doi: 10.1016/j.amc.2014.01.025
    [28] P. Sen, S. Samanta, M. Y. Khan, S. Mandal, P. K. Tiwari, A seasonally forced eco-epidemic model with disease in predator and incubation delay, J. Biol. Syst., 31 (2023), 921–962. https://doi.org/10.1142/S0218339023500328 doi: 10.1142/S0218339023500328
    [29] A. A. Shaikh, H. Das, N. Ali, Study of LG-Holling type III predator–prey model with disease in predator, J. Appl. Math. Comput., 58 (2017), 235–255. https://doi.org/10.1007/s12190-017-1142-z doi: 10.1007/s12190-017-1142-z
    [30] L. Wang, R. Xu, G. Feng, Modelling and analysis of an eco-epidemiological model with time delay and stage structure, J. Appl. Math. Comput., 50 (2015), 175–197. https://doi.org/10.1007/s12190-014-0865-3 doi: 10.1007/s12190-014-0865-3
    [31] S. Kant, V. Kumar, Stability analysis of predator–prey system with migrating prey and disease infection in both species, Appl. Math. Model., 42 (2016), 509–539. https://doi.org/10.1016/j.apm.2016.10.003 doi: 10.1016/j.apm.2016.10.003
    [32] F. A. Basir, M. H. Noor, A model for pest control using integrated approach: impact of latent and gestation delays, Nonlinear Dyn., 108 (2022), 1805–1820. https://doi.org/10.1007/s11071-022-07251-7 doi: 10.1007/s11071-022-07251-7
    [33] S. G. Mortoja, P. Panja, S. K. Mondal, Dynamics of a predator-prey model with nonlinear incidence rate, Crowley-Martin type functional response and disease in prey population, Ecol. Gen. Genom., 10 (2019), 100035. https://doi.org/10.1016/j.egg.2018.100035 doi: 10.1016/j.egg.2018.100035
    [34] L. Zha, J. A. Cui, X. Zhou, Ratio-dependent predator–prey model with stage structure and time delay, Int. J. Biomath., 5 (2012), 1250014. https://doi.org/10.1142/S1793524511001556 doi: 10.1142/S1793524511001556
    [35] R. Xu, Z. Ma, Stability and Hopf bifurcation in a ratio-dependent predator–prey system with stage structure, Chaos Soli. Fract., 38 (2008), 669–684. https://doi.org/10.1016/j.chaos.2007.01.019 doi: 10.1016/j.chaos.2007.01.019
    [36] F. A. Basir, Y. Takeuchi, S. Ray, Dynamics of a delayed plant disease model with Beddington-DeAngelis disease transmission, Math. Biosci. Eng., 18 (2021), 583–599. https://doi.org/10.3934/mbe.2021032 doi: 10.3934/mbe.2021032
    [37] R. J. Bauer, G. Mo, W. Krzyzanski, Solving delay differential equations in S-ADAPT by method of steps, Comput. Methods Programs Biomed., 111 (2013), 715–734. https://doi.org/10.1016/j.cmpb.2013.05.026 doi: 10.1016/j.cmpb.2013.05.026
    [38] G. Birkhoff, G. C. Rota, Ordinary Differential Equations, Ginn Boston, (1982).
    [39] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of Hopf bifurcation, Cambridge University Press Cambridge, (1981).
    [40] J. K. Hale, S. M. Verduyn, Introduction to Functional Differential Equations, Springer-Verlag, (1993).
    [41] Y. Song, J. Wei, Bifurcation analysis for Chen's system with delayed feedback and its application to control of chaos, Chaos Soli. Fract., 22 (2004), 75–91. https://doi.org/10.1016/j.chaos.2003.12.075 doi: 10.1016/j.chaos.2003.12.075
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(142) PDF downloads(18) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog