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Abstract: In this work, we have studied an eco-epidemic model using the Crowley-Martin functional
response that includes disease in prey and gestation delay in the predator population. The model
possesses three equilibria, namely the disease-free, Predator-free, and the interior equilibrium point.
In addition, we examined the stability of the equilibrium points varying the infection rate and time
delay parameter. Detailed analysis of Hopf bifurcation of the interior equilibrium point contains
two situations: with delay and without delay. Moreover, we have studied the direction of the Hopf
bifurcation and the stability of periodic solutions utilizing normal form theory and the center manifold
theorem. It is emphasized that Hopf bifurcation occurs when the time delay exceeds the critical value
and that the critical value of the delay is strongly impacted by the infection rate in prey. A detailed
numerical simulation is provided to verify the analytical results.
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1. Introduction

Predator-prey interactions are among the most important interaction types in ecology and
mathematical modeling because they are so prevalent in daily life [1]. These types of interaction
models exhibit complicated dynamics and are highly elusive. Many diseases harm ecological groups,
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and these infections often significantly affect population size [2]. Ecologists and mathematicians have
taken an interest in these communities in recent years due to their mathematical analysis. This led
to the development of numerous mathematical models illustrating disease in species, which are today
essential resources for investigating the relationships between diverse populations, especially those
involving prey and predator [3].

Since Lotka [4] and Volterra [5] first presented and assessed the basic predator-prey model, which is
still being expanded upon every year, a great deal of work has been done. Anderson and May conducted
the initial research on how epidemics affect predation [6]. A variation of the Lotka-Volterra prey-
predator model that showed increased predation and no reproduction on infected prey was analyzed.
These days, as disease spreads through population communication, it is imperative to examine the eco-
epidemiological model from both an ecological and mathematical perspective. Many years have passed
since the basic predator-prey model was first described and assessed by Lotka [4] and Volterra [5].

A true scenario in ecological species is the presence of disease in either the predator or prey
populations or both, and it has been noted that infections by parasitic- or viral diseases are the primary
cause of this kind of occurrence. While some studies examined diseases that only affected the prey
population [7–11], others examined diseases that affected the predator population [12–15]. Still, others
examined cases in which the infection affected both the prey and predator populations. One way to
include the reciprocal interaction between predators is by altering the predators’ operational reactions
to predation. We add a functional reaction to the Crowley-Martin type response in our model, which
offers a more realistic account of prey-predator interactions. A considerable amount of research on the
Crowley-Martin functional response has been conducted recently [16–18]. Much research has been
conducted on the Beddington-DeAngelis functional response, as well as the Holling type functional
response [19–23].

Considering delays in time happen under almost all natural circumstances, time-delay models are
significantly more realistic. It makes more sense to assume that the time required for the predator
to complete the gestation period will cause its reproduction to be delayed rather than occurring
immediately after its victim is consumed. By including temporal delays, these kinds of mathematical
models display more intricate dynamics and adopt a more useful strategy for understanding the
interactions between predator and prey. Consequently, throughout time, investigations have been
conducted on more realistic models of interacting populations by introducing time delays into the
biological models [24–27]. A large number of scholars established and analyzed delay induced
predator-prey ecoepidemic models [12, 28–31]. In [12], a predator-prey model with infection in
predator was studied with gestation delay. In [17], a mathematical model for a predator-prey
type system with a Crowley-Martin functional response was presented and Hopf bifurcation of the
coexisting equilibrium point has been analyzed. A time-delay predator-prey system with a Crowley-
Martin functional response was developed and examined in [18].

Predator-prey models with infection in prey and gestation delay in predator were studied in [32,
33]. In [32], authors considered nonlinear infection rates and type-II functional responses for both
infected and susceptible pray. In [33], Crowley-Martin type functional response function is assumed
for both susceptible and infected pray. Here, we have assumed here Crowley-Martin type functional
response for susceptible prey and a Beddington-DeAngelis (ratio-dependent) type functional response
for infected prey. Moreover, in our predator-prey model, we assume a time delay in predator population
due to its gestation period. In addition, we have provided the analysis for the occurrence, stability, and
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direction of Hopf bifurcation of the interior equilibrium point of the proposed delay model.
The current study is structured using the following parts: We formulate the delay model using useful

assumptions in the next section. Section 3 addresses the existence and viability of the equilibria as well
as the positive invariance and boundedness of the solutions. Section 4 discusses the existence of Hopf
bifurcation around the interior equilibrium point. The stability and direction of the Hopf bifurcation
are discussed in Section 5. To demonstrate our theoretical findings, we provide a number of numerical
simulations in Section 6. The conclusions are finally provided in Section 7.

2. The mathematical model

In this section, we derived the model consisting of three species: the vulnerable prey, the diseased
prey, and the predator population. Now, to formulate the model, we make the following assumptions:

H1: We presume that infection only influence the prey populations. The whole prey population is
split into two different groups when there is disease: the susceptible prey population, x(t), and the
infected population, y(t), at any time (t), and z(t) is the size of predator population at any time t.

H2: When infection and predation are absent, the population of vulnerable prey increases logistically
at an inherent growth rate r and carrying capacity K. Since the infected prey populations are
unable to procreate, it is hypothesized that they compete with the susceptible individuals for
resources like food and space rather than developing immunity.

H3: A basic mass action β is used to determine the rate of infection. The illness only spreads within the
prey population, and the vulnerable prey population contracts it through contact with the diseased
prey.

H4: The disease-related deaths of the infected prey population eliminate the infected prey population,
and let ν represent the infected prey population mortality rate.

H5: The predator population consumes the susceptible prey population with a Crowley-Martin
functional response for the predation with maximum attack rate n. Here, a denotes the handling
time, and b denotes magnitude of interference among predator.

H6: The predator population consumes the infected prey population with a ratio-dependent
(Beddington-DeAngelis type) functional response for the predation with half capturing saturation
constant c and maximum attack rate n [34, 35].

H7: Assume that h is the harvesting rate of the susceptible predator population, and e1 and e2 are the
conversion efficiency of susceptible predator, and infected predator, respectively.

H8: We also assume that τ as the gestation time delay of the predator.

We have the following mathematical model based on the previously stated assumptions:

dx
dt
= rx

(
1 −

x + y
K

)
−

βxy
α + y

−
mxz

(a + x) (b + z)
dy
dt
=

βxy
α + y

−
nyz

cz + y
− νy, (1)

dz
dt
=

e1mx(t − τ)z(t − τ)
(a + x(t − τ)) (b + z(t − τ))

+
e2ny(t − τ)z(t − τ)
cz(t − τ) + y(t − τ)

− hz,
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Let ϕ : [−τ, 0]→ R3 be equipped with the sup-norm,

∥ϕ∥ = sup
−τ≤γ≤0

{|ϕ1(γ)|, |ϕ2(γ)|, |ϕ3(γ)|},

where, ϕ = (ϕ1, ϕ2, ϕ3) ∈ C([−τ, 0],R3). The Banach space of continuous functions is indicated by
C. Since populations usually have non-negative values due to biological causes, the following are the
assumed initial functions for the delay model (1):

x(γ) = ϕ1(γ), y(γ) = ϕ2(γ), z(γ) = ϕ3(γ)
with ϕi(γ) ≥ 0, γ ∈ [−τ, 0), ϕi(0) > 0, i = 1, 2, 3. (2)

3. Basic properties of the model

The basic characteristics, including non-negativity and boundedness of the solutions, and the
existence of equilibria of the delayed system (1), are demonstrated in this section.

3.1. Positive invariance

Lemma 1. Under the given initial conditions in (2), all solutions of the delay model (1) are non-
negative and bounded on [0,+∞).

Proof. The first equation of (1) can be put in the following form:

dx
dt
− xg(x, y, z) = 0, where, g(x, y, z) = r

(
1 −

x + y
K

)
−

βxy
α + y

−
mz

(a + x) (b + z)
,

⇒

[
dx
dt
− xg(x, y, z)

]
exp

(
−

∫ t

0
g(x(ζ), y(ζ), z(ζ))dζ

)
= 0,

⇒
d
dt

[
x exp

(
−

∫ t

0
g(x(ζ), y(ζ), z(ζ))dζ

)]
= 0,

⇒ x(t) = x(0) exp
(∫ t

0
g(x(ζ), y(ζ), z(ζ))dζ

)
.

Using initial conditions (2), x(0) = ϕ1(0) > 0, and thus x(t) > 0 for t ≥ 0.
Thus the non-negativity of x(t) is established. Now, using the method of steps [36,37], we establish

the non-negativity of the variables, y(t) and z(t).
From the second and the third equations of model (1), we can write

y′(t) ≥ −νy(t) and z′(t) ≥ −hz(t). (3)

This holds for all t ∈ (0,T ], where T is a positive constant. Applying the standard comparison principle
on (3), we have y(t) ≥ 0 and z(t) ≥ 0, for all t ∈ (0,T ].

The non-negativity of y and z on the interval t ∈ (T, 2T ] is established by repeatedly applying the
previous reasoning, and in the same way, for each subsequent interval t ∈ (nT, (n + 1)T ], n = 2, 3, . . . ,
to include all positive times.

Thus non-negativity of solutions of the system (1) is established. Now we show the boundedness of
the solutions of the same system.
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Let w = e1x(t − τ) + e2y(t − τ) + z. For any η > 0, we have

dw
dt
+ ηw = re1x(t − τ)

(
1 −

x(t − τ) + y(t − τ)
K

)
−

(e1 − e2) βx(t − τ)y(t − τ)
α + y(t − τ)

− e2νy(t − τ),

− hz + η
[
e1x(t − τ) + e2y(t − τ) + z

]
,

≤ e1x(t − τ)
(
r + η −

x(t − τ)
K

)
+ e2 (η − ν) y(t − τ) + (η − h)z.

Choosing sufficiently small η such that η < ν η < h, η < ν, and η < δ we get
dw
dt
+ ηw ≤ M

(
=

K(η + r)e1

4

)
.

By use of Gronwall’s inequality [38],we get

0 ≤ w(t) ≤
M
η

(
1 − e−ηt) + w1(0)e−ηt.

Consequently, as t → ∞ =⇒ 0 < w(t) <
M
η
.

This suggests that any solution for the systems represented by (1) is bounded.

□

3.2. Existence of equilibria

There exist three equilibrium points in the prey-predator model (1) that have biological significance.

1. The predator-free equilibrium point E2(x2, y2, 0) with x2 =
ν(α+y2)

β
, where y2 is the positive root of

the cubic equation given by,

ψ(y) = l0y3 + l1y2 + l1y + l3 = 0, (4)

where,

l0 = r (αβ + ν) , l1 = 2α (αβ + ν) + r (αν − β) , l2 = rα2 (αβ + ν) + 2αr (να − β) + β2K,

l3 = rα2 (να − β) .

If cubic (4) has at least one positive root, the predator free equilibrium point E2(x2, y2, 0) is
feasible. The maximum number of positive roots of the cubic (4) in x2 are listed in Table 1.

One can observe from equation (4) and Table 1 that for να − β > 0, Case-IV is applicable, which
means there will be no root of (4). But, if να − β < 0, i.e. for β > να, any of the first three cases
can occur, indicating that at least one positive root of (4) exists.
Using the above results, we establish the following proposition.

Proposition 1. For β > να, the predator-free equilibrium E2 is feasible.

2. The disease-free equilibrium point E3(x3, 0, y3) with x3 =
ah(b+z3)z3

e1m−h(b+z3)z3
and z3 =

√
re1 x(K−x)

hK . Here,
disease does not exist between the predator and the prey. It is possible to attain the equilibrium
point E3 if x3 < K and h (b + z3) z3 < e1m.
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Table 1. Different cases for the existence of multiple positive roots of (4).

Cases sign of l0 sign of l1 sign of l2 sign of l3 no. of positive roots
I + − + − 3
II + + − − 1
III + − − − 1
IV + + + + 0

3. The interior equilibrium point E∗ (x∗, y∗, z∗) with

x∗ =
(
α + y∗

β

) (
ν +

nz∗

cz∗ + y∗

)
y∗ =

(
cz∗ + y∗

e2n

) [
h −

e1mx∗

(a + x∗) (b + z∗)

]
z∗ =

(b + z∗) (a + x∗)
m

[
r
(
1 −

x∗ + y∗

K

)
−

iy∗

α + y∗

]
The equilibrium point E∗ is feasible if it satisfies the conditions h (a + x∗) (b + z∗) > e1mx∗

and r (K − x∗ − y∗) (α + y∗) > Kβy∗. When there is no specific formulation for the equilibrium
points and more complexity in the system, doing the local stability analysis of the coexisting
equilibrium point becomes difficult. However, a numerical integration of system (2) offers
important information.

4. Local stability analysis and Hopf bifurcations

In this part, the local stability of each of the system’s five potential equilibrium points, both with
and without delay, is investigated. Additionally, we note how the parameter τ affects system (1). First,
we compute the Jacobian matrix of system (1), which is provided by

JE =


c11 c12 c13

c21 c22 c23

d31e−λτ d32e−λτ c33 + d33e−λτ


,

where

c11 = r
(
1 −

2x + y
K

)
−

βy
α + y

−
maz

(a + x)2 (b + z)
, c12 = −

x
K
−

βαx
(α + y)2 ,

c13 = −
mbx

(a + x) (b + z)2 , c21 =
βy
α + y

, c22 =
βαx

(α + y)2 −
ncz2

(cz + y)2 − ν, c23 = −
ny2

(cz + y)2 ,

d31 =
e1maz

(a + x)2 (b + z)
, d32 =

e2ncz2

(cz + y)2 , c33 = −h, d33 =
e1mbx

(a + x) (b + z)2 +
e2ny2

(cz + y)2 ,

and the characteristic value is obtained by linearizing the delayed system.

AIMS Mathematics Volume 9, Issue 10, 27930–27954.



27936

Theorem 1. If A1 < h, A2 > 0, and A3 > 0, then the predator-free equilibrium point E2 of system (2)
is asymptotically stable in the absence of the time delay (i.e. when τ = 0). For h < A1, A2 > 0, and
A3 > 0, E2 experiences a Hopf bifurcation, where, A1, A2, and A3 are given in the proof.

Proof. The Jacobian matrix JE2 , at E2, has an eigenvalue −h + A1e−λ2,1τ and the remaining two
eigenvalues satisfy

λ2 + A2λ + A3 = 0, (5)

where A1 = e2n +
e1mx2

b (a + x2)
,

A2 = −r
(
1 −

2x2 + y2

K

)
+

βy2

α + y2
−

βαx2

(α + y)2 − ν,

A3 = r
(
1 −

2x2 + y2

K

) (
βαx2

(α + y2)2 − ν

)
−

βνy2

α + y2
+

βx2y2

K (α + y2)
.

Now, two cases may be raised.

Case I (τ = 0):
For τ = 0, the Jacobian matrix JE2 has one eigenvalue −h + A1 and the remaining eigenvalues are

the roots of λ2 + A2λ + A3 = 0. Thus, E2 is stable if A1 < h, A2 > 0, and A3 > 0.

Case II (τ > 0):
We are now attempting to identify the critical values of τ at which the real components of the roots

of the characteristic equation change from negative to positive.
Finding a purely imaginary root iω2, ω2 ∈ R is our first step. After splitting the real and imaginary

components of λ2,1 = iω2 in (5), we may eliminate τ. This gives us

ω2
2 = A2

1 − h2. (6)

If A1 > h, then ω2 ∈ R, and this suggests that adding a delay to the model may result in a Hopf
bifurcation. □

Theorem 2. The equilibrium E3 of system (1) is asymptotically stable when there is no time delay for
βcx3 < α (n + νc) , B1 + B3 > 0, and B2 + B4 > 0. It can undergo a Hopf-bifurcation when the time
delay (τ) crosses a critical value if βcx3 < α (n + νc) and B2

2 − B2
4 < 0, where B1, B2, B3, and B4 are

shown below.

Proof. At E3(x3, 0, z3), the eigenvalues of JE3 are

λ3,1 =
βx3

α
−

n
c
− ν, (7)

and other the two eigenvalues λ3,2 and λ3,3 are the roots of the following equation

λ2 + B1λ + B2 + (B3λ + B4) e−λτ = 0, (8)
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where B1 = h − r
(
1 −

2x3 + y3

K

)
+

maz3

(a + x3)2 (b + z3)
,

B2 = −h
[
r
(
1 −

2x3 + y3

K

)
−

maz3

(a + x3)2 (b + z3)

]
,

B3 = −
e1mbx3

(a + x3) (b + z3)2

B4 == r
(
1 −

2x3 + y3

K

) [
e1mbx3

(a + x3) (b + z3)2

]
Case I (τ = 0):
One eigenvalue of JE3 is βx3

α
− n

c − ν, and the remaining two eigenvalues satisfy

λ2 + (B1 + B3) λ + B2 + B4 = 0.

Thus, for τ = 0, E3 will be asymptotically stable if B1 + B3 > 0, B2 + B4 > 0 and icx3 < α (n + νc),
otherwise it is unstable.

Case II (τ > 0):
We now study the Hopf bifurcation taking τ as the bifurcation parameter to find out how the time

delay τ affects the stability. To get a purely imaginary root iω3, ω3 ∈ R, we start by examining (7).
Subtracting τ from it and breaking it down into its real and imaginary parts yields

ω4
3 +

(
B2

1 − B2
3 − 2B2

)
ω2

3 + B2
2 − B2

4 = 0. (9)

Let p = ω2
3. Then, (8) becomes

P(p) = p2 +
(
B2

1 − B2
3 − 2B2

)
p + B2

2 − B2
4 = 0 (10)

B2
1 − B2

3 − 2B2 = h2 +

[
r
(
1 −

2x3 + y3

K

)
+

maz3

(a + x3)2 (b + z3)

]2

+

(
e1mbx3

(a + x3) (b + z3)2

)2

B2
2 − B2

4 = h2
[
r
(
1 −

2x3 + y3

K

)
−

maz3

(a + x3)2 (b + z3)

]2

−

[
r
(
1 −

2x3 + y3

K

) (
e1mbx3

(a + x3) (b + z3)2

)]2

.

It can be noted that if B2
2 − B2

4 < 0, then P(p) has a positive real root. Consequently, we can get a pair
of purely imaginary roots. We will use MATLAB simulation to show how time delay results in a Hopf
bifurcation. □

Here, our main aim is to investigate how, in the presence of prey, predator, and disease, time delay
influences the dynamic behavior of system (1) at the interior equilibrium point E∗ (x∗, y∗, z∗).

The following characteristic equation of the system at E∗ (x∗, y∗, z∗) is given by

λ3 + s1λ
2 + s2λ + s3 +

(
s4λ

2 + s5λ + s6

)
e−λτ = 0, (11)

where

s1 = h + ν − r
(
1 −

2x∗ + y∗

K

)
+

iy∗

α + y∗
−

maz∗

(a + x∗)2 (b + z∗)
−

βαx∗

(α + y∗)2 +
ncz∗2

(cz∗ + y∗)2 ,
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s2 =

[
r
(
1 −

2x∗ + y∗

K

)
−

βy∗

α + y∗
−

maz∗

(a + x∗)2 (b + z∗)

] [
βαx∗

(α + y∗)2 −
ncz∗2

(cz∗ + y∗)2 − ν − h
]

− h
[

βαx∗

(α + y∗)2 −
ncz∗2

(cz∗ + y∗)2 − ν

]
+

βy∗

α + y∗

(
x∗

K
+

βαx∗

(α + y∗)2

)
,

s3 = h
[
r
(
1 −

2x∗ + y∗

K

)
−

βy∗

α + y∗
−

maz∗

(a + x∗)2 (b + z∗)

] [
βαx∗

(α + y∗)2 −
ncz∗2

(cz∗ + y∗)2 − ν

]
− h

βy∗

α + y∗

(
x∗

K
+

βαx∗

(α + y∗)2

)
s4 = −

e1mbx∗

(a + x∗) (b + z∗)2 +
e2ny∗2

(cz∗ + y∗)2 ,

s5 =

(
e1mbx∗

(a + x∗) (b + z∗)2 +
e2ny∗2

(cz∗ + y∗)2

) [
r
(
1 −

2x∗ + y∗

K

)
−

βy∗

α + y∗
−

maz∗

(a + x∗)2 (b + z∗)

]
+

(
e1mbx∗

(a + x∗) (b + z∗)2 +
e2ny∗2

(cz∗ + y∗)2

) (
βαx∗

(α + y∗)2 −
ncz∗2

(cz∗ + y∗)2 − ν

)
−

e1m2abx∗2

(a + x∗)3 (b + z∗)3

+
e2cn2y∗2z∗2

(cz∗ + y∗)4 ,

s6 =

[
he2ncz∗2

(cz∗ + y∗)2 +

(
e1mbx∗

(a + x∗) (b + z∗)2 +
e2ny∗2

(cz∗ + y∗)2

) (
βαx∗

(α + y∗)2 −
ncz∗2

(cz∗ + y∗)2 − ν

)]
×

[
−r

(
1 −

2x∗ + y∗

K

)
+

βy∗

α + y∗
+

maz∗

(a + x∗)2 (b + z∗)

]
−

(
βy∗

α + y∗

) (
x∗

K
−

βαx∗

(α + y∗)2

) [
e1mbx∗

(a + x∗) (b + z∗)2 +
e2ny∗2

(cz∗ + y∗)2

]
+

(
x∗

K
−

βαx∗

(α + y∗)2

) (
e1maz∗

(a + x∗)2 (b + z∗)

) (
ny∗2

(cz∗ + y∗)2

)
−

(
mbx∗

(a + x∗) (b + z∗)2

)
×

[(
βy∗

α + y∗

) (
e2ncz∗2

(cz∗ + y∗)2

)
−

(
ny∗2

(cz∗ + y∗)2

) (
e1mbx∗

(a + x∗) (b + z∗)2 +
e2ny∗2

(cz∗ + y∗)2

)]
Case I (τ = 0):
When τ = 0, that is, there is no time delay, the characteristic equation becomes

λ3 + S 1λ
2 + S 2λ + S 3 = 0, (12)

where,
S 1 = (s1 + s4), S 2 = s3 + s6 > 0, S 3 = (s3 + s6).

The Routh-Hurwitz criterion gives the conditions for the asymptotic stability of E∗ as

S 1 > 0, S 2 > 0, S 1S 2 − S 3 > 0. (13)

We now examine the local Hopf bifurcation taking the infection rate β as the main parameter.
Consequently, the following theorem is derived for the occurrence of local Hopf bifurcation.
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Theorem 3. At the interior equilibrium E∗, system (1) experiences a Hopf bifurcation when β = β∗ is
included in ΓHB, where

ΓHB =
{
β ∈ R+ : S 1(β∗)S 2(β∗) − S 3(β∗) = 0, with S 2 > 0, Ṡ 3 − (Ṡ 1S 2+S 1Ṡ 2) , 0

}
(14)

Proof. For S 1S 2 − S 3 = 0, the characteristic equation (12) takes the following form:

(ρ2 + S 2)(ρ + S 1) = 0. (15)

The three roots of the above equation are ρ1 = +i
√

S 2, ρ2 = −i
√

S 2, and ρ3 = −S 1. For S 1S 2 − S 3 = 0,
we thus have two purely imaginary eigenvalues. Verification of the transversality condition is necessary
to validate the Hopf bifurcation. To do this, we differentiate characteristic equation (12), with respect
to the bifurcation parameter β:

dρ
dβ
=
ρ2Ṡ 1 + ρṠ 2 + Ṡ 3

3ρ2 + 2ρS 1 + S 2
|ρ=i
√

S 2

=
Ṡ 3 − (Ṡ 1S 2+S 1Ṡ 2)

2(S 2
1 + S 2)

+ i
[ √S 2(S 1Ṡ 3 + S 2Ṡ 2 − S 1Ṡ 1S 2)

2S 2(S 2
1 + S 2)

]
.

This gives the following result:

dRe ρ
dβ
|β=β∗ =

Ṡ 3 − (Ṡ 1S 2 + S 1Ṡ 2)
2(S 2

1 + S 2)
, 0⇔ Ṡ 3 − (Ṡ 1S 2+S 1Ṡ 2) , 0. (16)

Thus, the transversality condition is verified, and the occurrence of Hopf bifurcation at β = β∗ is
ensured. □

Case II (τ > 0):
We now investigate how time delay τ affects the stability of interior equilibrium. Actually, the aim

here is to find a biologically meaningful periodic orbit. The existence of Hopf bifurcation is established
using the following theorem.

Theorem 4. Suppose that for system (1), the coexisting equilibrium point E∗ (x∗, y∗, z∗) is locally
asymptotically stable when τ ∈ [0, τ∗) for for τ < τ∗, and unstable for for τ > τ∗. Hopf bifurcation
occurs at τ = τ∗ when the transversality condition P1P3 + P2P4 > 0 is satisfied.

Proof. To obtain the periodic solution of (1) (i.e. occurrence of Hopf bifurcation), we need a pair of
purely imaginary roots of the characteristic equation (11).

Let us assume λ = iω(ω > 0) is a purely imaginary root of (11). The following equations can be
obtained by equating the real and imaginary portions:

(s6 − s4ω
2) cos(ωτ) + s5ω sin(ωτ) = s1ω

2 − s3 (17)
(s6 − s4ω

2) sin(ωτ) − s5ω cos(ωτ) = s2ω − ω
3 (18)

which gives

sin(ωτ) =
ω

[
s4ω

4 + (s1s5 − s6 − s4s2)ω2 + s6s2 − s5s3

]
s2

4ω
4 +

(
s2

5 − 2s6s2
4

)
ω2 + s2

6

. (19)
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cos(στ) =
(s5 − s1s4)ω4 + (s1s6 − s2s5 + s4s3)ω2 − s6s3

s2
4ω

4 +
(
s2

5 − 2s6s2
4

)
ω2 + s2

6

. (20)

Squaring and then adding both sides of (19) and (20), we finally obtain

ω6 + t1ω
4 + t2ω

2 + t0 = 0, (21)
t2 = s2

1 − s2 − s2
4,

t1 = s2
2 − 2s1s3 − 2s6s4,

t0 = s2
3 − s2

6 − s2
5.

Let ω∗ be the root of the equation (21). After solving (19) and (20), we obtain

τk =
1
ω∗

arctan

ω∗
[
s4ω

4
∗ + (s1s5 − s6 − s4s2)ω2

∗ + s6s2 − s5s3

]
(s5 − s1s4)ω4

∗ + (s1s6 − s2s5 + s4s3)ω2
∗ − s6s3

 + 2kπ
ω∗

, k = 0, 1, 2, 3...

We will now investigate the transversality condition of the Hopf bifurcation. When (11) is differentiated
with respect to τ, it yields(

dλ
dτ

)−1

=

(
3λ2 + 2s1λ + s2

)
eλτ + 2s4λ + s5

λ
(
s4λ2 + s5λ + s6

) −
τ

λ
.

Following easy but conventional computations, we obtain

ℜ

[
dλ
dτ

]−1

λ=iω∗,τ=τ∗

=
P1P3 + P2P4

P2
3 + P2

4

,

where P1 =
(
s2 − 3ω2

∗

)
cos(ω∗τ∗) − 2s1ω∗ sin(ω∗τ∗) + s5,

P2 =
(
s2 − 3ω2

∗

)
sin(ω∗τ∗) + 2s1ω∗ cos(ω∗τ∗) + 2s4,

P3 = −s5ω
2
∗

P4 = s4ω
3
∗ − s6ω∗

But the sign of
[

d(ℜ(λ))
dτ

]
λ=iω∗,τ=τ∗

is same as the sign of ℜ
[

dλ
dτ

]
λ=iω∗,τ=τ∗

. Therefore, the transversality

conditionℜ
[

dλ
dτ

]
λ=iω∗,τ=τ∗

> 0 holds as if (H3) : P1P3 + P2P4 > 0, and consequently the occurrence of
Hopf bifurcation is established. □

5. Direction and stability of Hopf bifurcation

The following theorem states the results.

Theorem 5. For the model system (1), if n1 > 0 (n1 < 0), then the Hopf bifurcation is supercritical
(sub-critical). If n2 < 0 (n2 > 0), then the bifurcating periodic solutions are stable (unstable). If
T2 > 0 (T2 < 0), then the bifurcating periodic solutions are increasing (decreasing). The parameters
are given below and derived in the proof:

B1(0) =
i

2τ∗σ∗

(
g11g20 − 2|g11|

2 −
|g02|

2

3

)
+

g21

2
,
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n1 = −
ℜ {B1(0)}
ℜ {λ′(τ∗)}

,

n2 = 2ℜ (B1(0)) ,

T2 = −
ℑ {B1(0)} + η1ℑ(λ

′

(τ∗))
τ∗σ∗

.

Proof. The center manifold theorem and normal form theory have been applied in accordance with
Hassard’s concept [39] to examine the direction of the Hopf bifurcation and stability of bifurcated
periodic solutions.

Let τ = τ∗ + µ, µ ∈ R. Then µ = 0 is the Hopf bifurcation value of system (1). Re-scaling the time
delay t → ( t

τ
), then system (1) is then re-written as

ẇ(t) = Lµwt + f (µ,wt) (22)
where w(t) = (w1(t),w2(t),w3(t))T

∈ R3,wt(θ) = w(t + θ) and Lw : C → R3,

f : R ×C → R3 are given, respectively, by

Lµ(ϕ) = (τ∗ + µ)




c11 c12 c13

c21 c22 c23

0 0 c33




w1t(0)
w2t(0)
w3t(0)

 +


0 0 0
0 0 0

d31 d32 d33




w1t(−1)
w2t(−1)
w3t(−1)


 (23)

and F(µ,wt) = (τ∗ + µ) (F1, F2, F3)T (24)
The nonlinear terms F1, F2, and F3 are given by
F1 = b110w1t(0)w2t(0) + b101w1t(0)w3t(0) + b120w1t(0)w2

2t(0) + b200u2
1t(0)

+ b210w2
1t(0)w2t(0) + b201w2

1t(0)w3t(0) + b300w3
1t(0) + b020e2

2t(0) + b030w3
2t(0) + . . .

F2 = c110w1t(0)w2t(0) + c101w1t(0)w3t(0) + c120w1t(0)w2
2t(0) + c200u2

1t(0)
+ c210w2

1t(0)w2t(0) + c201w2
1t(0)w3t(0) + c300w3

1t(0) + c020w2
2t(0) + c030w3

2t(0) + . . .
F3 = d200w2

1t(−1) + d300w3
1t(−1) + d101w1t(−1)w3t(−1) + d201w2

1t(−1)w3t(−1)
+ d002w2

3t(−1) + d003w3
3t(−1) + d011w2t(0)w3t(−1) + d012w2t(0)w2

3t(−1) + . . .

where

b110 = −
r
K
−

βα

(α + y∗)2 , b101 = −
abm

(a + x∗)2 (b + z∗)2 , b120 =
βα

(α + y∗)3

b102 =
abm

(a + x∗)2 (b + z∗)3 , b200 = −
r
K
+

amz∗

(a + x∗)3 (b + z∗)
, b300 =

amz∗

(a + x∗)3 (b + z∗)

b201 =
abm

(a + x∗)3 (b + z∗)2 , b020 =
βαx∗

(α + y∗)3 , b030 = −
βαx

(α + y∗)4 ,

b002 =
abmx∗

(a + x∗) (b + z∗)3 , b003 = −
abmx∗

(a + x∗) (b + z∗)4

c110 =
βα

(α + y∗)2 , c120 = −
βα

(α + y∗)3 , c020 = −
βαx∗

(α + y)3 +
nz∗2

(cz∗ + y∗)3

c030 =
βαx∗

(α + y)4 +
ncz∗2

(z∗ + y∗)4 , c011 =
ncy∗z∗

(cz∗ + y∗)3 ,
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c021 =
nz∗(y − cz∗)
(cz∗ + y∗)3 , c012 =

cny (2cz∗ − y∗)
(cz∗ + y∗)4 , c002 =

cny∗2

(cz∗ + y∗)3 , c003 = −
c2nz∗2

(cz∗ + y∗)4 ,

d200 = −
e1amz∗

(a + x∗)3 (b + z∗)
, d300 =

e1amz∗

(a + x∗)4 (b + z∗)
, d101 = −

e1abm
(a + x∗)2 (b + z∗)2 ,

d201 = −
e1abm

(a + x∗)3 (b + z∗)2 , d102 = −
e1abm

(a + x∗)2 (b + z∗)3 , d011 =
e2ncy∗z∗

(cz∗ + y∗)3 ,

d020 = −
e2nz∗2

(cz∗ + y∗)3 , d030 =
e2nz∗2

(cz∗ + y∗)4 , d002 = −
ce2ny∗2

(cz∗ + y∗)3 , d003 =
c2e2nz∗2

(cz∗ + y∗)4 ,

d021 = −
e2nz (y − cz∗)

(cz∗ + y∗)4 , d012 = −
ce2ny (2cz∗ − y∗)

(cz∗ + y∗)4

The Riesz representation theorem [40] provides the existence of a 3 × 3 matrix η(θ, µ), θ ∈ [−1, 0],
whose elements are a function of bounded variation functions, such that

Lµϕ =
∫ 0

−1
dη(θ, µ)ϕ(θ), for ϕ ∈ C = C([−1, 0],R3). (25)

In fact, we can choose

η(θ, µ) = (τ∗ + µ)


c11 c12 c13

c21 c22 c23

0 0 c33

 δ(θ) + (τ∗ + µ)


0 0 0
0 0 0

d31 d32 d33

 δ(θ + 1), (26)

where δ is the Dirac delta function.
For ϕ ∈ C([−1, 0],R3), we define

D1(µ)ϕ =

 dϕ(θ)
dθ , − 1 ≤ θ < 0∫ 0

−1
dη(θ, µ)ϕ(θ), θ = 0

(27)

D2(µ)ϕ =

0 − 1 ≤ θ < 0,
f (µ, ϕ) θ = 0.

Then, (1) is equivalent to the following abstract differential equation:

ẇ(t) = D1µwt + D2(µ)wt, where wt(θ) = w(t + θ), θ ∈ [−1, 0] (28)

For ψ ∈ C1([0, 1], (R3)∗), define

D∗1ψ(s) =

−dψ(s)
ds 0 < s ≤ 1,∫ 0

−1
dηT (s, 0)ψ(−s) s = 0.

(29)

For ϕ ∈ C([0, 1],R3) and ψ ∈ C1([0, 1], (R3)∗), define a bilinear inner product

< ψ, ϕ >= ψ̄(0)ϕ(0) −
∫ 0

−1

∫ θ

ζ=0
ψT (ζ − θ)dη(θ)ϕ(ζ)dζ, (30)
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where η(θ) = η(θ, 0) and D1 = D1(0) and D∗1 are adjoint operators.
Since ±iω∗τ∗ are D1(0)’s eigenvalues, we may infer that they are also D∗1’s eigenvalues. Also the

vectors q(θ) = (1, γ1, δ1)T eiω∗τ∗θ (θ ∈ [−1, 0]) and q∗(s) = 1
D (1, γ∗1, δ

∗
1)T eiω∗τ∗s (s ∈ [−1, 0]) are the

eigenvectors of D1(0) and D∗1 corresponding to the eigenvalues iω∗τ∗ and −iω∗τ∗, respectively. Then,
D1(0)q(θ) = iτ∗ω∗q(θ).

Based on the definition of D1(0) in 28, 26, and 28, we have

γ1 =
c13c21 + c23 (iω∗ − c11)
c12c23 + c13 (iω∗ − c22)

,

δ1 =
(iω∗ − c11) (iω∗ − c22) − c12c21

c12c23 + c13 (iω∗ − c22)
.

In a similar way, the following can determined:

γ∗1 =
c12d31eiω∗τ∗ − d32 (iω∗ + c11) eiω∗τ∗

c21d32 − d31 (iω∗ + c22) eiω∗τ∗ ,

δ∗1 =
(iω∗ + c11) (iω∗ + c22) − c12c21

c21d32 − d31 (iω∗ + c22) eiω∗τ∗ .

We must ascertain the value of D in order to guarantee that < q∗(s), q(θ) >= 1 and < q∗(s), q̄(θ) >= 0.
Thus, we get < q∗(s), q(θ) >= 1. Hence, from < q∗(s), q(θ) >= 1, we have

D̄ = 1 + γ1γ̄
∗
1 + δ1δ̄

∗
1 + τ

∗e−iω∗τ∗ δ̄∗1 (d31 + d32γ1 + d33δ1) .

The features of Hopf bifurcation are obtained by using the procedure given in Hassard [39], and
computationally, via a method similar to Song and Wei [41], as follows

g20 =
τ∗

D̄

[
b200 + b020γ

2
1 + b002δ

2
1 + b110γ + b101δ + γ̄

∗
1

(
δ2

1c002 + γ
2
1c020 + c110γ + c011γδ

)
+ δ̄∗1

(
d200e−2iω∗τ∗ + d101δ1e−2iω∗τ∗ + d011γ1δ1e−2iω∗τ∗ + d002γ

2
1e−2iω∗τ∗

)]
,

g11 =
τ∗

D̄

[
2b200 +

(
b101 + γ̄

∗
1c110

)
(γ1 + γ̄1) + b101(δ1 + δ̄1) + 2γ1γ̄1

(
b020 + γ̄

∗
1c020

)
+ 2δ1δ̄1

(
b002 + γ̄

∗
1c002

)
+ γ̄∗1

(
γ1δ̄1 + γ̄1δ1

)
c011

+ δ̄∗1

(
2d200 + d101(δ1 + δ̄1) + d011(γ̄1δ1 + γδ̄1) + 2d002δ1δ̄1 + 2d020γ1γ̄1

)]
,

g02 =
τ∗

D̄

[
b200 +

(
b020 + barγ∗1c020

)
γ̄1

2 +
(
b002 + barδ∗1c002

)
δ̄1

2
+

(
b110 + barγ∗1c110

)
γ̄1

+
(
b101 + γ̄

∗
1γ̄1c011

)
δ̄1 + δ̄

∗
1e2iω∗τ∗

(
d200 + d101δ̄1 + d011γ̄1δ̄1 + d002δ̄1

2
+ d020γ̄1

2
)]
,

g21 =
τ∗

D̄

[
b201

(
2δ1 + δ̄1

)
+

(
b120 + γ̄

∗
1c120

)
(γ2

1 + 2γ1γ̄1) + b210 (2γ1 + γ̄1) + 3b300

+
(
b110 + γ̄

∗
1c110

) (
W (2)

11 (0) +
1
2

W (2)
20 (0) +

1
2
γ̄1W (1)

20 (0) + γ1W (1)
11 (0)

)
γ2

1γ̄1

+b101

(
W (3)

11 (0) +
1
2

W (3)
20 (0) +

1
2
δ̄1W (1)

20 (0) + δ1W (1)
11 (0)

)
+ b200

(
2W (1)

11 (0) +W (1)
20 (0)

)
+

(
b020 + γ̄

∗
1c020

) (
γ̄1W (2)

20 (0) + 2γ1W (2)
11 (0)

)
+ 3

(
b030 + γ̄

∗
1c030

)
+ b102(δ2

1 + 2δ1δ̄1)
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+
(
b002 + γ̄

∗
1c002

) (
δ̄1W (3)

20 (0) + 2δ1W (3)
11 (0)

)
+ 3

(
b003 + γ̄

∗
1c003

)
δ2

1δ̄1

+c011γ̄
∗
1

(
γ1W (3)

11 (0) + γ̄1
1
2

W (3)
20 (0) +

1
2
δ̄1W (2)

20 (0) + δ1W (2)
11 (0)

)
+ c012γ̄

∗
1(δ2

1γ̄1 + 2γ1δ1δ̄1)

+c021γ̄
∗
1

(
γ2

1δ̄1 + γ1γ̄1δ1

)
+ d003δ̄

∗
1

(
W (3)

20 (−1)eiω∗τ∗ δ̄1 + 2W (3)
11 (−1)e−iω∗τ∗δ1

)
+3d300δ̄

∗
1e−iω∗τ∗ + 3d030δ̄

∗
1γ

2
1γ̄1e−iω∗τ∗ + d200δ̄

∗
1

(
W (1)

20 (−1)eiω∗τ∗ + 2W (1)
11 (−1)e−iω∗τ∗

)
+3d003δ̄

∗
1δ

2
1δ̄1e−iω∗τ∗ + d020δ̄

∗
1

(
W (2)

20 (−1)eiω∗τ∗ γ̄1 + 2W (2)
11 (−1)e−iω∗τ∗γ1

)
+d101δ̄

∗
1

((
W (3)

11 (−1) + δ1W (1)
11 (−1)

)
e−iω∗τ∗ +

1
2

(
W (3)

20 (−1) + δ̄1W (1)
20 (−1)

)
eiω∗τ∗

)
+d011δ̄

∗
1

(
γ1W (3)

11 (0) + γ̄1
1
2

W (3)
20 (0) +

1
2
δ̄1W (2)

20 (0) + δ1W (2)
11 (0)

)
+d011δ̄

∗
1

((
γ1W (3)

11 (−1) + δ1W (1)
11 (−1)

)
e−iω∗τ∗ +

1
2

(
γ̄1W (3)

20 (−1) + δ̄1W (1)
20 (−1)

)
eiω∗τ∗

)
+d012δ̄

∗
1

(
γ̄1δ

2
1 + 2γ̄1δ1δ̄1

)
e−iω∗τ∗ + d021δ̄

∗
1

(
δ̄1γ

2
1 + 2δ̄1γ1γ̄1

)
e−iω∗τ∗

+d102δ̄
∗
1

(
δ2

1 + 2δ1δ̄1

)
e−iω∗τ∗ + d201δ̄

∗
1

(
δ̄1 + 2δ̄1

)
e−iω∗τ∗

]
,

where W20(θ) =
ig20

σ∗τ∗
q(0)eiθσ∗τ∗ +

iḡ02

3σ∗τ∗
q̄(0)e−iθσ∗τ∗ + E1e2iθσ∗τ∗ ,

W11(θ) = −
ig11

σ∗τ∗
q(0)eiθσ∗τ∗ +

iḡ11

σ∗τ∗
q̄(0)e−iθσ∗τ∗ + E2,

and E1 = (E1
1, E

2
1, E

3
1)T , and E2 = (E1

2, E
2
2, E

3
2)T are both constant vectors in R3. After calculation, we

get E1 = 2G−1
1 G2 and E2 = 2G−1

3 G4 with

G1 =


2iω∗ − c11 −c12 −c13

−c21 2iω∗ − c22 −c23

−d31e−2iω∗τ∗ −d32e−2iω∗τ∗ 2iσ∗ − c33 − d33e−ω∗τ∗

 ,
G2 =


b200 + b020γ

2
1 + b002δ

2
1 + b110γ + b101δ

δ2
1c002 + γ

2
1c020 + c110γ + c011γδ

d200e−2iω∗τ∗ + d101δ1e−2iω∗τ∗ + d011γ1δ1e−2iω∗τ∗ + d002γ
2
1e−2iω∗τ∗

 ,
G3 =


−c11 −c12 −c13

−c21 −c22 −c23

−d31 −d32 −c33 − d33

 ,
G4 =


2b200 + b101(γ1 + γ̄1) + b101(δ1 + δ̄1) + 2γ1γ̄1b020 + 2δ1δ̄1b002

(γ1 + γ̄1) c110 + 2γ1γ̄1c020 +
(
γ1δ̄1 + γ̄1δ1

)
c011

2d200 + d101(δ1 + δ̄1) + d011(γ̄1δ1 + γδ̄1) + 2d002δ1δ̄1 + 2d020γ1γ̄1

 .
The parameters and delay may thus be used to express each gi j. Thus, we calculate the subsequent
values.

B1(0) =
i

2τ∗σ∗

(
g11g20 − 2|g11|

2 −
|g02|

2

3

)
+

g21

2
,
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n1 = −
ℜ {B1(0)}
ℜ {λ′(τ∗)}

,

n2 = 2ℜ (B1(0)) ,

T2 = −
ℑ {B1(0)} + η1ℑ(λ

′

(τ∗))
τ∗σ∗

.

□

6. Numerical simulation

This section provides the dynamic behavior of the proposed model studied analytically in the
previous sections. The dde23 solver was used to solve the model numerically using MATLAB. Due
to the lack of real values of all parameters of model (7), we assumed the values of the parameters are
given below for numerical simulations:

r = 0.1, a = 0.5, b = 0.5, c = 0.5, n = 0.03m = 0.05, e1 = 0.8, e2 = 0.8 (31)
ν = 0.1, h = 0.01, k = 10, α = 0.5

First, we study the system without delay, and then we observe the dynamics of the system with delay.

6.1. Simulation of the system without delay

We have checked that the gestation delay does not affect the existence of the equilibria; rather, it
significantly depends on the infection rate β and also the rest of the parameters, but we focus on the
infection rate due to the direction of this research. Delay τ has an impact on the stability of equilibrium
points. We have discussed the facts below in detail.

In Figure 1, we have plotted the numerical solution of model (1) for lower infection rate β = 0.0015.
The system is converged to the steady state E3(99.5, 0, 0.5). We have also determined that for the set
of parameters mentioned above and for β ∈ (0, 0.00165), E3(x3, 0, z3) exists and is stable (according
to Theorem 2). It loses its stability for β > 0.00165 (approx.), and consequently the predator-free
equilibrium E2(x2, y2, 0) exists and is stable when β < 0.09495) (according to Theorem 1), and the
endemic equilibrium E∗(x∗, y∗, z∗) exists via a forward transcritical bifurcation (see Figure 2).

The interior equilibrium E∗ is stable for β < 0.1495 (approx.) (Figure 3). Periodic oscillation occurs
for infections higher than this value. A Hopf bifurcation diagram takes β as the bifurcation parameter
(Figure 4). Additionally, the maximum and minimum value of the periodic solution is plotted in the
figure. From this figure, we conclude that the Hopf bifurcation occurs at β = β∗ (according to the
Theorem 3).
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Figure 1. Numerical solution of model (1) for τ = 0 is plotted for β = 0.0015. Other
parameters are given in (31).
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Figure 2. Steady state values of z(t) plotted, taking parameters varying the infection rate β.
Other parameters are given in (31).
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Figure 3. Numerical solutions of model (1) for τ = 0 plotted for (i) β = 0.152 (red lines),
and (ii) β = 0.45 (black lines). Other parameter values are the same as taken in Figure 2.
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Figure 4. Hopf bifurcation taking β as the main parameter, keeping the same parameter set
as in Figure 3.
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6.2. Simulation of the system with delay

We have varied the delay parameter τ to study its impact on the stability of the coexisting stable
state. In Figure 5, the numerical solution of the delayed system is plotted. We observed that delay
causes oscillations in the solutions. Oscillations increase as the delay is enhanced.

We found from Figure 6 that the stable situation becomes unstable via a periodic solution when the
delay τ crosses the threshold value τ∗ = 4.25 days (verifying Theorem 4). It is interesting to see that
the threshold value τ∗ of the delay τ depends on the values of the infection rate β. Figure 7 confirms
that the coexisting equilibrium exists and is asymptotically stable for β = 0.12, and remains stable for
large values of delay (τ = 50).

Figure 8 shows that the initial conditions (initial population size) affect the limit cycle’s stability.
However, the system remains stable whenever we change the initial values of the populations. We
found that n2 < 0 and T2 > 0, which indicates that the Hopf bifurcating periodic solutions are stable
and the bifurcation is of the supercritical type (verifying Theorem 5).
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Figure 5. Numerical solutions are plotted for different values of time delay τ taking β =

0.152 < β∗ (i.e. system without delay is stable) and the rest of the parameters are the same
as Figure 3. Here, the red lines correspond to τ = 1 and the blue lines are for τ = 4.2.
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Figure 6. Hopf bifurcation taking τ as the bifurcation parameter, keeping the same
parameters values as in Figure 3.
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Figure 7. Numerical solutions are plotted for different values of time delay when β = 0.12.
The blue lines are used for τ = 0 and the red lines are used for τ = 50.
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Figure 8. Phase portraits plotted in the (x − y) plane with different initial conditions for
τ = 4.2 with the parameters values as in Figure 5.

7. Discussion and Conclusions

Eco-epidemic models with delay are mathematical frameworks used to study the interactions
between ecological and epidemiological processes. These models incorporate incubation or gestation
delays to account for the non-instantaneous effects of various biological interactions. Analysis of
the models includes the determination of the equilibrium points and analysis of their stability using
characteristic equations derived from the linearization of the delay models around the equilibrium
points. Numerical simulations of these models include complex dynamics such as periodic oscillations
or chaos.

In this paper, we have derived a predator-prey model including a time delay due to the gestation
period of the predator. We have also considered an infection in the prey population modeled using
a nonlinear term. Thus, the total prey population is divided into two sub-populations, namely the
susceptible prey and the infected prey. Consumption of susceptible prey by predators is modeled using
a Crowley-Martin type functional response, and consumption of infected prey using a Beddington-
DeAngelis (ratio-dependent) type density dependent functional response. We have discussed the
existence of all possible equilibrium points of the proposed model, and the local stability analysis
around these equilibrium points has been studied for two cases: with delay and without delay. Hopf
bifurcation analysis for both delay and non-delay model is also provided analytically and numerically.

From the existence analysis of equilibria, we have found that the proposed model has three
equilibrium points, namely the infection-free, predator-free, and interior equilibrium points. We have
provided the existence criteria of the equilibrium points. Via stability analysis, we have provided
stability criteria of all the equilibria for two cases: with delay and without delay. Hopf bifurcation of
the interior equilibrium point is presented for both cases.

Numerical results confirm that the proposed predator-prey model (1) has a stable disease-free
equilibrium E2(x, 0, z) for infection rate belonging to a lower range (β ∈ (0.01495, 0.1452)). From the
local stability analysis, it is found that the disease-free equilibrium point E3 exists when the infection
rate is greater than a threshold value. From the numerical stability analysis, we found that the interior
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equilibrium is asymptotically stable when the conditions of Theorem 3 are satisfied. Then, Hopf
bifurcation diagrams are plotted for both delay and non-delay cases. When the infection crosses the
value β∗ = 1.525, Hopf bifurcation occurs. Again, when the delay τ > τ∗ = 4.252, Hopf bifurcation
occurs via periodic oscillations (Figure 4 and 6). At a lower infection rate, the stable system remains
stable, though the gestation delay is large (τ = 50 days) (Figure 7).

In a nutshell, the proposed eco-epidemic model with Crowley-Martin type functional response
for susceptible prey and Beddington-DeAngelis (ratio dependent) type response for infected prey is
functional and can be applied to real-world phenomena.
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