Research article

Estimation techniques utilizing dual auxiliary variables in stratified two-phase sampling

  • Received: 17 August 2024 Revised: 30 October 2024 Accepted: 01 November 2024 Published: 21 November 2024
  • MSC : 62D

  • In this research paper, an improved set of estimators for finding the finite population variance of a study variable under a stratified two-phase sampling design is introduced. These estimators rely on information about extreme values and the ranks of an auxiliary variable. We examined the properties of these estimators using first-order approximation, focusing on biases and mean squared errors (MSEs). Additionally, we conducted an extensive simulation study to evaluate their performance and validate our theoretical insights. Furthermore, in the application section, we employed some datasets to further assess the performances of our estimators as compared to other existing estimators. The results demonstrated that $ S^2_{Q_2} $ was the best-performing estimator, and significantly outperforms existing estimators, achieving a percent relative efficiency $ (PRE) $ in the exponential distribution as high as 385.467. The percent relative efficiency values were continuously higher than 100 in a variety of situations, with values as high as 353.129 in other distributions like the uniform and gamma. The suggested estimators are superior to the conventional estimators, as demonstrated by empirical assessments using datasets, where percent relative efficiency improvements ranged from 115.026 to 139.897. These results highlight the robustness and applicability of the proposed class of estimators in real-world sampling.

    Citation: Olayan Albalawi. Estimation techniques utilizing dual auxiliary variables in stratified two-phase sampling[J]. AIMS Mathematics, 2024, 9(11): 33139-33160. doi: 10.3934/math.20241582

    Related Papers:

  • In this research paper, an improved set of estimators for finding the finite population variance of a study variable under a stratified two-phase sampling design is introduced. These estimators rely on information about extreme values and the ranks of an auxiliary variable. We examined the properties of these estimators using first-order approximation, focusing on biases and mean squared errors (MSEs). Additionally, we conducted an extensive simulation study to evaluate their performance and validate our theoretical insights. Furthermore, in the application section, we employed some datasets to further assess the performances of our estimators as compared to other existing estimators. The results demonstrated that $ S^2_{Q_2} $ was the best-performing estimator, and significantly outperforms existing estimators, achieving a percent relative efficiency $ (PRE) $ in the exponential distribution as high as 385.467. The percent relative efficiency values were continuously higher than 100 in a variety of situations, with values as high as 353.129 in other distributions like the uniform and gamma. The suggested estimators are superior to the conventional estimators, as demonstrated by empirical assessments using datasets, where percent relative efficiency improvements ranged from 115.026 to 139.897. These results highlight the robustness and applicability of the proposed class of estimators in real-world sampling.



    加载中


    [1] J. Neyman, Contribution to the theory of sampling human population. J. Amer. Stat. Assoc., 33 (1938), 101–116. https://doi.org/10.2307/2279117 doi: 10.2307/2279117
    [2] B. V. Sukhatme, Some ratio-type estimators in two-phase sampling, J. Amer. Stat. Assoc., 57 (1962), 628–632. https://doi.org/10.2307/2282400 doi: 10.2307/2282400
    [3] G. K. Vishwakarma, S. M. Zeeshan, Generalized ratio-cum-product estimator for finite population mean under two-phase sampling scheme, J. Mod. Appl. Stat. Meth., 19 (2021), 2–16. https://doi.org/10.22237/jmasm/1608553320 doi: 10.22237/jmasm/1608553320
    [4] T. Zaman, C. Kadilar, New class of exponential estimators for finite population mean in two-phase sampling, Commun. Stat., 50 (2021), 874–889. https://doi.org/10.1080/03610926.2019.1643480 doi: 10.1080/03610926.2019.1643480
    [5] A. Y.Erinola, R. V. K. Singh, A. Audu, T. James, Modified class of estimator for finite population mean under two-phase sampling using regression estimation approach, Asian. J. Prob. Stat., 4 (2021), 52–64. https://doi.org/10.9734/ajpas/2021/v14i430338 doi: 10.9734/ajpas/2021/v14i430338
    [6] M. N. Qureshi, M. U. Tariq, M. Hanif, Memory-type ratio and product estimators for population variance using exponentially weighted moving averages for time-scaled surveys, Commun. Stat. Simul. Comput., 53 (2024), 1484–1493. https://doi.org/10.1080/03610918.2022.2050390 doi: 10.1080/03610918.2022.2050390
    [7] A. Sanaullah, M. Hanif, A. Asghar, Generalized exponential estimators for population variance under two-phase sampling, Int. J. Appl. Comput. Math., 2 (2016), 75–84. https://doi.org/10.1007/s40819-015-0047-5 doi: 10.1007/s40819-015-0047-5
    [8] H. P. Singh, S. Singh, J. M. Kim, Efficient use of auxiliary variables in estimating finite population variance in two-phase sampling, Commun. Korean Stat. Soc., 17 (2010), 165–181. https://doi.org/10.5351/CKSS.2010.17.2.165 doi: 10.5351/CKSS.2010.17.2.165
    [9] M. A. Alomair, U. Daraz, Dual transformation of auxiliary variables by using outliers in stratified random sampling, Mathematics, 12 (2024), 2839. https://doi.org/10.3390/math12182839 doi: 10.3390/math12182839
    [10] U. Daraz, M. A. Alomair, O. Albalawi, A. S. Al Naim, New techniques for estimating finite population variance using ranks of auxiliary variable in two-stage sampling, Mathematics, 12 (2024), 2741. https://doi.org/10.3390/math12172741 doi: 10.3390/math12172741
    [11] M. Jabbar, Z. Javid, A. Zaheer, R. Zainab, Ratio type exponential estimator for the estimation of finite population variance under two-stage sampling, Res. J. Appl. Sci. Eng. Technol., 7 (2024), 4095–4099. https://doi.org/10.19026/rjaset.7.772 doi: 10.19026/rjaset.7.772
    [12] A. K. Das, T. P. Tripathi, Use of auxiliary information in estimating the finite population variance, Sankhya, 40 (1978), 39–148.
    [13] C. T. Isaki, Variance estimation using auxiliary information, J. Am. Stat. Assoc., 78 (1983), 117–123. https://doi.org/10.2307/2287117 doi: 10.2307/2287117
    [14] S. Bahl, R. Tuteja, Ratio and product type exponential estimators, J. Inf. Optim. Sci., 12 (1991), 159–164. https://doi.org/10.1080/02522667.1991.10699058 doi: 10.1080/02522667.1991.10699058
    [15] L. Upadhyaya, H. Singh, An estimator for population variance that utilizes the kurtosis of an auxiliary variable in sample surveys, Vikram Math. J., 19 (1999), 14–17.
    [16] V. Dubey, H. Sharma, On estimating population variance using auxiliary information, Stat. Transit. New Ser., 9 (2008), 7–18.
    [17] C. Kadilar, H. Cingi, Ratio estimators for the population variance in simple and stratified random sampling, Appl. Math. Comput., 173 (2006), 1047–1059. https://doi.org/10.1016/j.amc.2005.04.032 doi: 10.1016/j.amc.2005.04.032
    [18] H. Singh, P. Chandra, An alternative to ratio estimator of the population variance in sample surveys, J. Transp. Stat., 9 (2008), 89–103.
    [19] J. Shabbir, S. Gupta, Some estimators of finite population variance of stratified sample mean, Commun. Stat., 39 (2010), 3001–3008. https://doi.org/10.1080/03610920903170384 doi: 10.1080/03610920903170384
    [20] H. P. Singh, R. S. Solanki, A new procedure for variance estimation in simple random sampling using auxiliary information, Stat. Papers, 54 (2013), 479–497. https://doi.org/10.1007/s00362-012-0445-2 doi: 10.1007/s00362-012-0445-2
    [21] S. K. Yadav, C. Kadilar, J. Shabbir, S. Gupta, Improved family of estimators of population variance in simple random sampling, J. Stat. Theory Practice, 9 (2015), 219–226. https://doi.org/10.1080/15598608.2013.856359 doi: 10.1080/15598608.2013.856359
    [22] J. Shabbir, S. Gupta, Using rank of the auxiliary variable in estimating variance of the stratified sample mean, Int. J. Comput. Theor. Stat., 6 (2019), 171–181. http://doi.org/10.12785/IJCTS/060207 doi: 10.12785/IJCTS/060207
    [23] T. Zaman, H. Bulut, An efficient family of robust-type estimators for the population variance in simple and stratified random sampling, Commun. Stat., 52 (2023), 2610–2624. https://doi.org/10.1080/03610926.2021.1955388 doi: 10.1080/03610926.2021.1955388
    [24] S. Mohanty, J. Sahoo, A note on improving the ratio method of estimation through linear transformation using certain known population parameters, Sankhyā Indian J. Stat., 57 (1995), 93–102.
    [25] M. Khan, J. Shabbir, Some improved ratio, product, and regression estimators of finite population mean when using minimum and maximum values, Sci. World J., 2013 (2013), 431868. https://doi.org/10.1155/2013/431868 doi: 10.1155/2013/431868
    [26] G. S. Walia, H. Kaur, M. Sharma, Ratio type estimator of population mean through efficient linear transformation, Amer. J. Math. Stat., 5 (2015), 144–149. https://doi.org/10.5923/j.ajms.20150503.06 doi: 10.5923/j.ajms.20150503.06
    [27] M. Khan, Improvement in estimating the finite population mean under maximum and minimum values in double sampling scheme, J. Stat. Appl. Probab. Lett., 2 (2015), 115–121. https://doi.org/10.12785/jsapl/020203 doi: 10.12785/jsapl/020203
    [28] U. Daraz, J. Shabbir, H. Khan, Estimation of finite population mean by using minimum and maximum values in stratified random sampling, J. Mod. Appl. Stat. Methods, 17 (2018), 20. https://doi.org/10.22237/jmasm/1532007537 doi: 10.22237/jmasm/1532007537
    [29] U. Daraz, M. Khan, Estimation of variance of the difference-cum-ratio-type exponential estimator in simple random sampling, Res. Math. Stat., 8 (2021), 1899402. https://doi.org/10.1080/27658449.2021.1899402 doi: 10.1080/27658449.2021.1899402
    [30] U. Daraz, J. Wu, O. Albalawi, Double exponential ratio estimator of a finite population variance under extreme values in simple random sampling, Mathematics, 12 (2024), 1737. https://doi.org/10.3390/math12111737 doi: 10.3390/math12111737
    [31] U. Daraz, J. Wu, M. A. Alomair, L. A. Aldoghan, New classes of difference cum-ratio-type exponential estimators for a finite population variance in stratified random sampling, Heliyon, 10 (2024), e33402. https://doi.org/10.1016/j.heliyon.2024.e33402 doi: 10.1016/j.heliyon.2024.e33402
    [32] U. Daraz, M. A. Alomair, O. Albalawi, Variance estimation under some transformation for both symmetric and asymmetric data, Symmetry, 16 (2024), 957. https://doi.org/10.3390/sym16080957 doi: 10.3390/sym16080957
    [33] H. O. Cekim, H. Cingi, Some estimator types for population mean using linear transformation with the help of the minimum and maximum values of the auxiliary variable, Hacet. J. Math. Stat., 46 (2017), 685–694. https://doi.org/10.15672/hjms.201510114186 doi: 10.15672/hjms.201510114186
    [34] S. Chatterjee, A. S. Hadi, Regression analysis by example, John Wiley & Sons, Inc., 2013. https://doi.org/10.1002/0470055464
    [35] D. J. Watson, The estimation of leaf area in field crops, J. Agric. Sci., 27 (1937), 474–483. https://doi.org/10.1017/S002185960005173X doi: 10.1017/S002185960005173X
    [36] Bureau of Statistics, Punjab development statistics government of the Punjab, Lahore, Pakistan, 2013.
    [37] W. B. Cochran, Sampling techniques, John Wiley & Sons, Inc., 1963.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(63) PDF downloads(17) Cited by(0)

Article outline

Figures and Tables

Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog