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Abstract: In this research paper, an improved set of estimators for finding the finite population variance
of a study variable under a stratified two-phase sampling design is introduced. These estimators
rely on information about extreme values and the ranks of an auxiliary variable. We examined the
properties of these estimators using first-order approximation, focusing on biases and mean squared
errors (MSEs). Additionally, we conducted an extensive simulation study to evaluate their performance
and validate our theoretical insights. Furthermore, in the application section, we employed some
datasets to further assess the performances of our estimators as compared to other existing estimators.
The results demonstrated that S 2

Q2
was the best-performing estimator, and significantly outperforms

existing estimators, achieving a percent relative efficiency (PRE) in the exponential distribution as
high as 385.467. The percent relative efficiency values were continuously higher than 100 in a variety
of situations, with values as high as 353.129 in other distributions like the uniform and gamma.
The suggested estimators are superior to the conventional estimators, as demonstrated by empirical
assessments using datasets, where percent relative efficiency improvements ranged from 115.026
to 139.897. These results highlight the robustness and applicability of the proposed class of estimators
in real-world sampling.
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1. Introduction

It is standard procedure in sampling theory to include auxiliary variables with the study variable
in order to improve design and increase the efficiency of the estimator by utilizing their relationship.
Although information about auxiliary variables is sometimes unavailable in practical circumstances
prior to conducting a survey, in such instances, a two-phase sampling procedure is preferable. Two
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steps are used in two-phase sampling, sometimes referred to as double sampling, to choose a sample
from a population. Since two-phase sampling is an economical sampling strategy, it is frequently
employed in sample surveys when supplementary data is not available ahead of time. A brief summary
of two-phase sampling was initially introduced by [1]. Such works were not explored further after
that, until the works of [2]. Due to its low-cost variable screening qualities, two-phase sampling has
received a lot of interest in recent years. For estimation of finite population mean under two-phase
sampling schemes, different estimators proposed by [3–5]. In order to estimate the finite population
variance, different estimators suggested by [6–8]. For more information, see [9–11] and references
therein.

Since variation occurs naturally, estimating finite population variance is a serious problem. The
utilization of auxiliary information to estimate the population variance was initially introduced
by [12] and then expanded upon by [13]. Employing supplementary information in an informed
strategy can improve estimators performance. In order to determine the population variance, [14]
proposed exponential estimators based on ratios and products. By using the different
transformations, [15–17] introduced some new estimators to improve the variance estimation. Under
simple random sampling and stratified random sampling, different families of estimators obtained
by [18–20]. For more details about different estimators and methods for estimating the finite
population variances, we refer to [21–23].

In the sample survey data, there may be unusual observations. When the sample contains outlier
values, the results may be distorted. In this regard, several researchers have focused on outlier values
and presented various methods to estimate population characteristics. The researchers in [24] used a
linear transformation to obtain two estimators based on the auxiliary minimum and maximum
observations. After that, these works were not investigated until [25]. The researchers employed
numerous finite population mean estimators, as well as the concept of using extreme values in them.
For calculating the finite population mean, [26, 27] introduced different transformations methods to
handle the outliers. [28] used stratified random sampling to improve the estimate of the limited
population mean under extreme values. [29] provided effective estimators for estimating population
variance using extreme value transformations. The work [30] proposed novel estimators that use
extreme values to estimate population variance with the least mean squared errors (MSE). [31]
proposed double exponential ratio estimators that use extreme values of the auxiliary variable to
evaluate their effectiveness in estimating population variance. To improve estimator accuracy, [32]
developed efficient estimators that leverage auxiliary variables under simple random sampling. For
further information, readers can read [33, 34].

Several important considerations motivated the development of a new method to estimate the
finite population variance:

• Traditional estimators for finite population variance frequently neglect extreme values (outliers)
and rankings of auxiliary variables. Outliers are often considered challenging, resulting in skewed
conclusions or inflated MSE. The inefficiency of stratified two-phase sampling designs highlights
the need for a more efficient approach that addresses these problems.
• Existing estimators often struggle with stratified two-phase sampling due to its complicated data

structure. These issues emphasize the need for more robust and efficient estimators.
• In most cases, two-phase sampling is more economical than one-phase sample, particularly when
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dealing with large populations. It lowers total expenditures by enabling researchers to gather
preliminary data with a smaller sample before selecting a second sample.
• Two-phase sampling enables researchers to choose certain clusters or strata that reflect the whole

population, it helps guarantee that varied sub-populations are effectively represented.
• Two-phase sampling is a useful method in a variety of research situations because it offers more

accurate representation and control of variability along with cost savings, enhanced precision, and
flexibility.

In this article, our main objective is to properly utilize the information about the outlier values of
the auxiliary variable, which are used as supplementary information to increase the accuracy of the
proposed class of estimators. It is well known that outlier information is often removed from sample
data, and therefore classical estimators generally decrease its significance as MSE increases. When
there is a relationship between the two variables, the ranks of the auxiliary variable are linked to the
study variable. Consequently, these rankings provide a useful tool to improve the accuracy of the
estimators. We apply the transformations technique, motivated by [29–32], to provide a new class of
estimators using the ranks of the auxiliary variable and the known information on the outlier values to
estimate the finite population variance in two-phase stratified sampling. The new suggested method
is particularly useful in economic surveys, public health examinations, and environmental evaluations,
where similar sample strategies are often used. The new estimators are ideal for disciplines like market
research and agricultural surveys that frequently meet extreme values, as they can efficiently include
outlier information without distorting results.

This article is organized as follows: In Section 2, we introduce the foundational concepts and
notations. In Section 3, we discuss various established estimators. Our proposed class of estimators
is detailed in Section 4. A theoretical comparison is presented in Section 5. In Section 6, we conduct
simulations on six different artificial populations with varying probability distributions to evaluate the
theoretical results discussed in Section 5. This section also provides numerical examples to validate
our theoretical findings. Finally, in Section7, we offer a discussion of the results and suggestions for
future research.

2. Concepts and notations

Let us consider a finite population

ϕ = (ϕ1, ϕ2, . . . , ϕN)

of size N units. This population is divided into L strata, each of which is Nh(h = 1, 2, . . . , L), with the
property that

L∑
h=1

Nh = N.

Let yhi, xhi, and rhi be the values of the study variable (Y), the auxiliary variable (X), and the ranks of
the auxiliary variable R in the hth stratum of the ith(i = 1, 2, . . . ,Nh) unit, respectively. We define the
population variances for these variables in the hth stratum as

S 2
yh =

1
Nh − 1

Nh∑
i=1

(
Yhi − Ȳh

)2
,
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S 2
xh =

1
Nh − 1

Nh∑
i=1

(
Xhi − X̄h

)2
,

S 2
rh =

1
Nh − 1

Nh∑
i=1

(
Rhi − R̄h

)2
,

where

Ȳh =
1

Nh

Nh∑
i=1

Yhi,

X̄h =
1

Nh

Nh∑
i=1

Xhi

and

R̄h =
1

Nh

Nh∑
i=1

Rhi

denote the population means of the study variable (Y), auxiliary variable (X), and the ranks of the
auxiliary variable (R) in the hth stratum that corresponding to the population means

Ȳ =
1

Nh

L∑
h=1

WhȲh,

X̄ =
1

Nh

L∑
h=1

WhX̄h,

R̄ =
1

Nh

L∑
h=1

WhR̄h,

respectively, where Wh is the stratum weight and defined by

Wh =
Nh

N
.

The population coefficients of variations in the hth stratum, are defined as

Cyh =
S yh

Ȳh
,

Cxh =
S xh

X̄h

and
Crh =

S rh

R̄h

where S yh, S xh, and S rh are the population standard deviations of (Y, X,R) in the hth stratum,
respectively.
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Furthermore, define the population correlation coefficients between (Y, X), (Y,R), and (X,R) in the
hth stratum as follows:

ρyxh =
S yxh

S yhS xh
,

ρyrh =
S yrh

S yhS rh
,

ρxrh =
S xrh

S xhS rh
,

where

S yxh =
1

Nh − 1

Nh∑
i=1

(
Yhi − Ȳh

) (
Xhi − X̄h

)
,

S yrh =
1

Nh − 1

Nh∑
i=1

(
Yhi − Ȳh

) (
Rhi − R̄h

)
and

S xrh =
1

Nh − 1

Nh∑
i=1

(
xhi − X̄h

) (
Rhi − R̄h

)
,

are the population co-variances, respectively.
In this paper, we provide a set of estimators to estimate the finite population variance S 2

y of Y in the
presence of the auxiliary variable X. The definition of the two-phase sampling scheme is:

(1) A sample of size (ńh < Nh) from the first phase is chosen in order to estimate the population
variance S 2

xh.
(2) For the second phase, a sample size of (nh < ńh) is chosen in order to observe both y and x,

respectively.

We define the following concepts in order to calculate the biases and mean square errors for different
estimators:

ξ0h =

(
s2

yh−S 2
yh

S 2
yh

)
, ξ1h =

(
s2

xh−S 2
xh

S 2
xh

)
, ξ2h =

(
ś2

xh−S 2
xh

S 2
xh

)
, ξ3h =

(
s2

rh−S 2
rh

S 2
rh

)
, ξ4h =

(
ś2

rh−S 2
rh

S 2
rh

)
,

such that
E (ξih) = 0

for i = 0, 1, 2, 3, 4.

E
(
ξ2

0h

)
= ηh∆

∗
400h, E

(
ξ2

1h

)
= ηh∆

∗
040h, E

(
ξ2

2h

)
= η′h∆

∗
040h,

E
(
ξ2

3h

)
= ηh∆

∗
004h, E

(
ξ2

4h

)
= η′h∆

∗
004h, E (ξ0hξ1h) = ηh∆

∗
220h,

E (ξ0hξ2h) = η′h∆
∗
220h, E (ξ0hξ3h) = ηh∆

∗
202h, E (ξ0hξ4h) = η′h∆

∗
202h,

E (ξ1hξ2h) = η′h∆
∗
040h, E (ξ1hξ3h) = ηh∆

∗
022h, E (ξ1hξ4h) = η′h∆

∗
022h,

E (ξ2hξ3h) = η′h∆
∗
022h, E (ξ2hξ4h) = η′h∆

∗
022h, E (ξ3hξ4h) = η′h∆

∗
004h,
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where

∆∗400h = (∆400h − 1), ∆∗040h = (∆040h − 1), ∆∗004h = (∆004h − 1), ∆∗220h = (∆220h − 1),

∆∗202h = (∆202h − 1), ∆∗022h = (∆022h − 1), ηh =

(
1
nh
−

1
Nh

)
, η′h =

(
1
ńh
−

1
Nh

)
, η′′h =

(
1
nh
−

1
ńh

)
.

Also
∆lqsh =

φlqsh

φl/2
200hφ

q/2
020hφ

s/2
002h

,

where

φlqsh =

∑Nh
i=1

(
Yhi − Ȳh

)l (
Xhi − X̄h

)q (
Rhi − R̄h

)s

Nh − 1
.

Here,
∆400h = β2(yh), ∆040h = β2(xh), and ∆004h = β2(rh)

are the population coefficients of kurtosis.

3. Literature review

Next, we review the other estimators of the finite population variances while comparing them with
the estimators in our proposed class.

The variance of the usual estimator

ȳst =

L∑
h=1

Whȳh

in stratified random sampling is defined as follows:

Var(ȳst) =
L∑

h=1

ηhW2
h S 2

yh = S 2
yst.

The unbiased estimator Ŝ 2
T1

of S 2
yst, is defined as

Ŝ 2
T1
=

L∑
h=1

ηhW2
h s2

yh.

The usual variance estimator of Ŝ 2
T1

for population variance is given by

Var(Ŝ 2
T1

) =
L∑

h=1

η3
hW4

h S 4
yh∆
∗
400h. (3.1)

A ratio estimator for population variance Ŝ 2
T2
, proposed by [13], is given by

Ŝ 2
T2
=

L∑
h=1

ηhW2
h s2

yh

(
ś2

xh

s2
xh

)
. (3.2)
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The following equations represent the bias and MS E of Ŝ 2
T2

;

Bias
(
Ŝ 2

T2

)
�

L∑
h=1

η′′2h W2
h S 2

yh
(
∆∗040h − ∆

∗
220h

)
(3.3)

and

MS E
(
Ŝ 2

T2

)
�

L∑
h=1

W4
h S 4

yh

(
η3

h∆
∗
400h + η

′′3
h ∆

∗
040h − 2η′′3h ∆

∗
220h

)
. (3.4)

According to [35], the linear regression estimator Ŝ 2
T3
, is defined as

Ŝ 2
T3
=

L∑
h=1

ηhW2
h

[
s2

yh + b(s2
yh,s

2
xh)

(
ś2

xh − s2
xh

)]
, (3.5)

where

b(s2
yh,s

2
xh) =

s2
yh∆̂
∗
220h

s2
xh∆̂
∗
040h

is the sample regression coefficient.
The following equation represents a MSE of Ŝ 2

T3
;

MS E
(
Ŝ 2

T3

)
�

L∑
h=1

S 4
yhW4

h∆
∗
400h

(
η3

h − η
′′3
h ρ

∗2
yxh

)
, (3.6)

where

ρ∗yxh =
∆∗220h√

∆∗400h

√
∆∗040h

.

An exponential ratio type estimator Ŝ 2
T4
, presented by [14], is defined as follows

Ŝ 2
T4
=

L∑
h=1

ηhW2
h s2

yh exp
(

ś2
xh − s2

xh

ś2
xh + s2

xh

)
. (3.7)

The following equations represent the bias and MS E of Ŝ 2
T4

;

Bias
(
Ŝ 2

T4

)
�

1
2

L∑
h=1

η′′2h W2
h S 2

yh

(
3∆∗040h

4
− ∆∗220h

)
(3.8)

and

MS E
(
Ŝ 2

T4

)
�

L∑
h=1

W4
h S 4

yh

[
η3

h∆
∗
400h + η

′′3
h

(
∆∗040h

4
− ∆∗220h

)]
. (3.9)

By employing the kurtosis of an auxiliary variable, [15] proposed a ratio-type estimator Ŝ 2
T5
, is

defined as

Ŝ 2
T5
=

L∑
h=1

ηhW2
h s2

yh

(
ś2

xh + ∆040h

s2
xh + ∆040h

)
. (3.10)
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The following equations represent the bias and MSE of Ŝ 2
T5

;

Bias
(
Ŝ 2

T5

)
�

L∑
h=1

η′′2h ghW2
h S 2

yh
(
gh∆

∗
040h − ∆

∗
220h

)
(3.11)

and

MS E
(
Ŝ 2

T5

)
�

L∑
h=1

W4
h S 4

yh

[
η3

h∆
∗
400h + η

′′3
h

(
g2

h∆
∗
040h − 2gh∆

∗
220h

)]
, (3.12)

where

gh =
S 2

xh

S 2
xh + ∆040h

.

The classifications of some ratio estimators is given in [17], which are defined as

Ŝ 2
T6
=

L∑
h=1

ηhW2
h s2

yh

(
ś2

xh +Cxh

s2
xh +Cxh

)
, (3.13)

Ŝ 2
T7
=

L∑
h=1

ηhW2
h s2

yh

(
∆040h ś2

xh +Cxh

∆040hs2
xh +Cxh

)
(3.14)

and

Ŝ 2
T8
=

L∑
h=1

ηhW2
h s2

yh

(
Cxh ś2

xh + ∆040h

Cxhs2
xh + ∆040h

)
. (3.15)

The following equations represent the bias and MSE of Ŝ 2
Ti

;

Bias
(
Ŝ 2

Ti

)
�

L∑
h=1

η′′2h tihW2
h S 2

yh
(
tih∆

∗
040h − ∆

∗
220h

)
(3.16)

and

MS E
(
Ŝ 2

Ti

)
�

L∑
h=1

W4
h S 4

yh

[
η3

h∆
∗
400h + η

′′3
h

(
t2
ih∆
∗
040h − 2tih∆

∗
220h

)]
, (3.17)

where

t1h =
S 2

xh

S 2
xh +Cxh

, t2h =
∆040hS 2

xh

∆040hS 2
xh +Cxh

, and t3h =
CxhS 2

xh

CxhS 2
xh + ∆040h

.

4. Proposed class of estimators

In this section, we present an improved class of estimators inspired by prior works [29–32]. These
estimators employ minimum and maximum values of auxiliary variables, along with their ranks, in two-
phase sampling to estimate the variance of the finite population. The suggested estimator is defined
as

Ŝ 2
Q =

L∑
h=1

ηhW2
h s2

yh exp

θ1h

 γ1h

(
ś2

xh − s2
xh

)
γ1h

(
ś2

h + s2
xh

)
+ 2γ2h


 exp

θ2h

 γ3h

(
ś2

rh − s2
rh

)
γ3h

(
ś2

rh + s2
rh

)
+ 2γ4h


 , (4.1)
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where (θih, i = 1, 2) are known constants values either (1 or 2), and (γih, i = 1, 2, 3, 4) are the parameters
of the auxiliary variables. The minimum and maximum values (outliers) of the auxiliary variable are
denoted by (xmh, xMh), while the minimum and maximum values (outliers) of the ranks of the auxiliary
variable are denoted by (Rmh,RMh). The known values of γ1h, γ2h are given in Table 1,

γ3h = 1

and
γ4h = RM − Rm.

We can derive the various classes of the suggested estimator from (4.1), which are listed in Table 1.

Table 1. Some classes of the proposed estimator.

Subsets of the proposed estimator Ŝ 2
Q γ1h γ2h

Ŝ 2
Q1
=

∑L
h=1 ηhW2

h s2
yh exp

[
θ1h

{
−β2(xh)(ś2

xh−s2
xh)

−β2(xh)(ś2
xh+s2

xh)+2(xMh−xmh)

}]
exp [θ2hδh] −β2(xh) xMh − xmh

Ŝ 2
Q2
=

∑L
h=1 ηhW2

h s2
yh exp

[
θ1h

{
cxh(ś2

xh−s2
xh)

cxh(ś2
xh+s2

xh)+2(xMh−xmh)

}]
exp [θ2hδh] cxh xMh − xmh

Ŝ 2
Q3
=

∑L
h=1 ηhW2

h s2
yh exp

[
θ1h

{
(xMh−xmh)(ś2

xh−s2
xh)

(xMh−xmh)(ś2
xh+s2

xh)+2cxh

}]
exp [θ2hδh] xMh − xmh cxh

Ŝ 2
Q4
=

∑L
h=1 ηhW2

h s2
yh exp

[
θ1h

{
(xMh−xmh)(ś2

xh−s2
xh)

(xMh−xmh)(ś2
xh+s2

xh)−2cxh

}]
exp [θ2δh] xMh − xmh −cxh

Ŝ 2
Q5
=

∑L
h=1 ηhW2

h s2
yhexp

[
θ1h

{
(xMh−xmh)(ś2

xh−s2
xh)

(xMh−xmh)(ś2
xh+s2

xh)+2β2(xh)

}]
exp [θ2hδh] xMh − xmh β2(xh)

Ŝ 2
Q6
=

∑L
h=1 ηhW2

h s2
yh exp

[
θ1h

{
β2(xh)(ś2

xh−s2
xh)

β2(xh)(ś2
xh+s2

xh)+2(xMh−xmh)

}]
exp [θ2hδh] β2(xh) xMh − xmh

Ŝ 2
Q6
=

∑L
h=1 ηhW2

h s2
yh exp

[
θ1h

{
(xMh−xmh)(ś2

xh−s2
xh)

(xMh−xmh)(ś2
xh+s2

xh)−2β2(xh)

}]
exp [θ2δ] xMh − xmh −β2(xh)

Ŝ 2
Q8
=

∑L
h=1 ηhW2

h s2
yh exp

[
θ1h

{
−cxh(ś2

xh−s2
xh)

−cxh(ś2
xh+s2

xh)+2(xMh−xmh)

}]
exp [θ2hδh] −cxh xMh − xmh

where

δh =

(
ś2

rh − s2
rh

ś2
rh + s2

rh + 2(RMh − Rmh)

)
.

Now, we discuss the properties of the new proposed class of estimators, we rewrite (4.1) in terms of
errors to get the bias and the MS E of Ŝ 2

Q, i.e.,

Ŝ 2
Q =

L∑
h=1

ηhW2
h S 2

yh (1 + ξ0h) exp
b1h (ξ2h − ξ1h)

2

(
1 +

b1h

2
(ξ1h + ξ2h)

)−1
× exp

b2h (ξ4h − ξ3h)
2

(
1 +

b2h

2
(ξ3h + ξ4h)

)−1 ,
(4.2)

where

θ1h = θ2h = 1, b1h =
γ1hS 2

xh

γ1hS 2
xh + γ2h

, and b2h =
S 2

rh

S 2
rh + γ4h

.

AIMS Mathematics Volume 9, Issue 11, 33139–33160.



33148

Applying the Taylor series to the first approximation order, we obtain

Ŝ 2
Q −

∑L
h=1 ηhW2

h S 2
yh �

∑L
h=1 ηhW2

h S 2
yh

[
ξ0h −

b1h
2 (ξ1h − ξ2h) − b2h

2 (ξ3h − ξ4h) + 3b2
1h

8 ξ
2
1h

−
b2

1h
8 ξ

2
2h +

b2
2h
8 ξ

2
3h −

b2
2h
8 ξ

2
4h −

ξ1h
2 ξ0hξ1h +

b1h
2 ξ0hξ2h −

b2h
2 ξ0hξ3h

+b2h
2 ξ0hξ4h −

b2
1h
2 ξ1hξ2h +

b1hb2h
4 ξ1hξ3h −

b1hb2h
4 ξ1hξ4h −

b1hb2h
4 ξ2hξ3h

+b1hb2h
4 ξ2hξ4h −

b2
2h
2 ξ3hξ4h

]
.

(4.3)

Using (4.3), the bias of Ŝ 2
T is given by

Bias
(
Ŝ 2

Q

)
�

∑L
h=1 η

2
hW2

h S 2
yh

[
3b2

1h
8 ∆

∗
040h +

3b2
2h

8 ∆
∗
004h −

b1h
2 ∆

∗
220h −

b2h
2 ∆

∗
202h +

b1hb2h
2 ∆

∗
022h

]
−

∑L
h=1 η

′2
h W2

h S 2
yh

[
3b2

1h
8 ∆

∗
040h +

3b2
2h

8 ∆
∗
004h −

b1h
2 ∆

∗
220h −

b2h
2 ∆

∗
202h +

b1hb2h
2 λ

∗
022h

]
.

After the simple simplifications, we get

Bias
(
Ŝ 2

Q

)
�

L∑
h=1

η
′′2
h W2

h S 2
yh

[
3
8

(
b2

1h∆
∗
040h + b2

2h∆
∗
004h

)
−

1
2

(
b1h∆

∗
220h + b2h∆

∗
202h − b1hb2h∆

∗
022h

)]
, (4.4)

where
η
′′

h = ηh − η
′

h.

The Eq (4.3) is squared and the expected value is taken to obtain a first-order approximation of the
MSE, which is represented by the following equation

MS E
(
Ŝ 2

Q

)
�

∑L
h=1 η

3
hW4

h S 4
yh

[
∆∗400h +

b2
1h
4 ∆

∗
040h +

b2
2h
4 ∆

∗
004h − b1h∆

∗
220h − b2h∆

∗
202h +

b1hb2h
2 ∆

∗
022h

]
−

∑L
h=1 η

′′3
h W4

h S 4
yh

[
b2

1h
4 ∆

∗
040h +

b2
2h
4 ∆

∗
004h − b1h∆

∗
220h − b2h ∆

∗
202h +

b4hb5h
2 λ

∗
022h

]
.

After the simplification, we get

MS E
(
Ŝ 2

Q

)
�

L∑
h=1

W4
h S 4

yh

[
η3

h∆
∗
400h +

η′′3h

4

(
b2

1h∆
∗
040h + b2

2h∆
∗
004h − 4b1h∆

∗
220h − 4b2h∆

∗
202h + 2b1hb2h∆

∗
022h

)]
.

(4.5)

5. Mathematical comparison

The proposed class of estimators Ŝ 2
Q is compared in this section to other existing estimators,

including Ŝ 2
T1
, Ŝ 2

T2
, Ŝ 2

T3
, Ŝ 2

T4
, Ŝ 2

T5
, and Ŝ 2

Ti
.

Condition (i): By (3.1) and (4.5)

Var(Ŝ 2
T1

) > MS E
(
Ŝ 2

Q

)
,
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if
L∑

h=1

W4
h S 4

yh

(
η3

h − η
′3
h

) (
b2

1h∆
∗
040h + b2

2h∆
∗
004h − 4b1h∆

∗
220h − 4b2h∆

∗
202h + 2b1hb2∆

∗
022h

)
< 0.

For
η3

h − η
′3
h > 0,

that is,
η3

h > η
′3
h ,

L∑
h=1

W4
h S 4

yh

(
b2

1h∆
∗
040h + b2

2h∆
∗
004h − 4b1h∆

∗
220h − 4b2h∆

∗
202h + 2b1hb2h∆

∗
022h

)
< 0. (5.1)

Similarly
ηh − η

′
h < 0,

that is,
η < η′,

L∑
h=1

W4
h S 4

yh

(
b2

1h∆
∗
040h + b2

2h∆
∗
004h − 4b1h∆

∗
220h − 4b2h∆

∗
202h + 2b1hb2h∆

∗
022h

)
> 0. (5.2)

If condition (5.1) or (5.2) holds true, the suggested estimator Ŝ 2
Q demonstrates higher efficiency in

comparison to MS E(Ŝ 2
T1

).
Condition (ii): By (3.4) and (4.5)

MS E(Ŝ 2
T2

) > MS E
(
Ŝ 2

Q

)
,

if

L∑
h=1

W4
h S 4

yh

(
η3

h − η
′3
h

) [
(4 − b2

1h)∆∗040h − b2
2h∆

∗
004h + 4(b1h − 2)∆∗220h + 4b2h∆

∗
202h − 2b1hb2h∆

∗
022h

]
> 0.

For
η3

h − η
′3
h < 0,

that is,
η3

h < η
′3
h ,

L∑
h=1

W4
h S 4

yh

[
(4 − b2

1h)∆∗040h − b2
2h∆

∗
004h + 4(b1h − 2)∆∗220h + 4b2h∆

∗
202h − 2b1hb2h∆

∗
022h

]
> 0. (5.3)

Similarly,
η3

h − η
′3
h > 0,

that is,
η3

h > η
′3
h ,

L∑
h=1

W4
h S 4

yh

[
(4 − b2

1h)∆∗040h − b2
2h∆

∗
004h + 4(b1h − 2)∆∗220h + 4b2h∆

∗
202h − 2b1hb2h∆

∗
022h

]
< 0. (5.4)
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If condition (5.3) or (5.4) holds true, the suggested estimator Ŝ 2
Q demonstrates higher efficiency in

comparison to MS E(Ŝ 2
T2

).
Condition (iii): By (3.6) and (4.5)

MS E(Ŝ 2
T3

) > MS E
(
Ŝ 2

Q

)
,

if

L∑
h=1

W4
h S 4

yh

(
η3

h − η
′3
h

) [
ρ∗2yxh +

1
4

(
b2

1h∆
∗
040h + b2h

2 ∆
∗
004h − 4b1h∆

∗
220h − 4b2h∆

∗
202h + 2b1hb2h∆

∗
022h

)]
< 0.

For
η3

h − η
′3
h > 0,

that is,
η3

h > η
′3
h ,

L∑
h=1

W4
h S 4

yh

[
ρ∗2yxh +

1
4

(
b2

1h∆
∗
040h + b2

2h∆
∗
004h − 4b1h∆

∗
220h − 4b2h∆

∗
202h + 2b1hb2h∆

∗
022h

)]
< 0. (5.5)

Similarly,
η3

h − η
′3
h < 0,

that is,
η3

h < η
′3
h ,

L∑
h=1

W4
h S 4

yh

[
ρ∗2yxh +

1
4

(
b2

1h∆
∗
040h + b2

2h∆
∗
004h − 4b1h∆

∗
220h − 4b2h∆

∗
202h + 2b1hb2h∆

∗
022h

)]
> 0. (5.6)

If condition (5.5) or (5.6) holds true, the suggested estimator Ŝ 2
Q demonstrates higher efficiency in

comparison to MS E(Ŝ 2
T3

).
Condition (iv): By (3.9) and (4.5)

MS E(Ŝ 2
T4

) > MS E
(
Ŝ 2

Q

)
,

if

L∑
h=1

W4
h S 4

yh

(
η3

h − η
′3
h

) [
(b2

1h − 1)∆∗040h + b2
2h∆

∗
004h − 4(b1h − 1)∆∗220h − 4b2h∆

∗
202h + 2b1hb2h∆

∗
022h

]
< 0.

For
η3

h − η
′3
h > 0,

that is,
η3

h > η
′3
h ,

L∑
h=1

W4
h S 4

yh

[
(b2

1h − 1)∆∗040h + b2
2h∆

∗
004h − 4(b1h − 1)∆∗220h − 4b2h∆

∗
202h + 2b1hb2h∆

∗
022h

]
< 0. (5.7)
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Similarly,
η3

h − η
′3
h < 0,

that is,
η3

h < η
′3
h ,

L∑
h=1

W4
h S 4

yh

(
η3

h − η
′3
h

) [
(b2

1h − 1)∆∗040h + b2
2h∆

∗
004h − 4(b1h − 1)∆∗220h − 4b2h∆

∗
202h + 2b1hb2h∆

∗
022h

]
> 0.

(5.8)
If condition (5.7) or (5.8) holds true, the suggested estimator Ŝ 2

Q demonstrates higher efficiency in
comparison to MS E(Ŝ 2

T4
).

Condition (v): By (3.12) and (4.5)

MS E(Ŝ 2
T5

) > MS E
(
Ŝ 2

Q

)
,

if

L∑
h=1

W4
h S 4

yh

(
η3

h − η
′3
h

) [
(b2

1h − 4g2
h)∆∗040h + b2

2h∆
∗
004h − 4(b1h − gh)∆∗220h − 4b2h∆

∗
202h + 2b1hb2h∆

∗
022h

]
< 0.

For
η3

h − η
′3
h > 0,

that is,
η3

h > η
′3
h ,

L∑
h=1

W4
h S 4

yh

[
(b2

1h − 4g2
h)∆∗040h + b2

2h∆
∗
004h − 4(b1h − gh)∆∗220h − 4b2h∆

∗
202h + 2b1hb2h∆

∗
022h

]
< 0. (5.9)

Similarly,
η3

h − η
′3
h < 0,

that is,
η3

h < η
′3
h ,

L∑
h=1

W4
h S 4

yh

[
(b2

1h − 4g2
h)∆∗040h + b2

2h∆
∗
004h − 4(b1h − gh)∆∗220h − 4b2h∆

∗
202h + 2b1hb2h∆

∗
022h

]
> 0. (5.10)

If condition (5.9) or (5.10) holds true, the suggested estimator Ŝ 2
Q demonstrates higher efficiency in

comparison to MS E(Ŝ 2
T5

).
Condition (vi): By (3.17) and (4.5)

MS E(Ŝ 2
Ti

) > MS E
(
Ŝ 2

Q

)
,

if

L∑
h=1

W4
h S 4

yh

(
η3

h − η
′3
h

) [
(b2

1h − 4t2
ih)∆∗040h + b2

2h∆
∗
004h − 4(b1h − tih)∆∗220h − 4b2h∆

∗
202h + 2b1hb2h∆

∗
022h

]
< 0.
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For
η3

h − η
′3
h > 0,

that is,
η3

h > η
′3
h ,

L∑
h=1

W4
h S 4

yh

[
(b2

1h − 4t2
ih)∆∗040h + b2

2h∆
∗
004h − 4(b1h − tih)∆∗220h − 4b2h∆

∗
202h + 2b1hb2h∆

∗
022h

]
< 0. (5.11)

Similarly,
η3

h − η
′3
h < 0,

that is,
η3

h < η
′3
h ,

L∑
h=1

W4
h S 4

yh

[
(b2

1h − 4t2
ih)∆∗040h + b2

2h∆
∗
004h − 4(b1h − tih)∆∗220h − 4b2h∆

∗
202h + 2b1hb2h∆

∗
022h

]
> 0. (5.12)

If condition (5.11) or (5.12) holds true, the suggested estimator Ŝ 2
Q demonstrates higher efficiency

in comparison to MS E(Ŝ 2
Ti

).

6. Numerical comparison

In this part, we examine the performance of the proposed class of estimators as compared to other
estimators using percent relative efficiency (PREs). This examination is carried out using both
simulated and three separate real data sets.

6.1. Simulation study

To confirm the theoretical results reported in Section 5, we use the methods proposed by [30–32]
to undertake a simulation study. The goal is to evaluate the performance of the suggested class of
estimators using the known minimum and maximum values of the auxiliary variable, as well as its
ranks within the context of two-phase stratified sampling. The following probability distributions can
possibly be used to artificially produce six distinct populations for the auxiliary variable X:

• Population 1: X ∼ Exponential (1);
• Population 2: X ∼ Exponential (3);
• Population 3: X ∼ Uni f orm (1, 3);
• Population 4: X ∼ Uni f orm (1, 2);
• Population 5: X ∼ Gamma (1, 4);
• Population 6: X ∼ Gamma (2, 5).

The variable of interest, Y , is computed as

Y = ryx × X + e,

where
ryx = 0.80
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indicates the correlation coefficient between the study and the auxiliary variables, and e ∼ N(0, 1)
signifies the error term.

To compute the PREs, we used the following algorithms in R:
Step 1: We first use the various probability distributions mentioned above to generate a population of
size 2000. In order to compute distinct values for the existing and suggested class of estimators, this
population is split into two strata using stratified random sampling techniques.
Step 2: To collect a first phase sample of size ńh from a population of size Nh, use the simple random
sampling without replacement (SRSWOR) technique.
Step 3: Using the SRSWOR technique, obtain the second phase sample size nh from the first phase
sample.
Step 4: We calculate the population total and the extreme values of the auxiliary variables from the
above steps.
Step 5: For each population, we use SRSWOR approach to generate distinct sample sizes for each
stratum. The sample sizes are specified as 20%, 30%, and 40%.
Step 6: Obtained the PREs values for each sample size using all of the estimators presented in this
article. This step ensures that the relative efficiency of each estimator is evaluated across different
sample sizes.
Step 7: Steps 5 and 6 are then repeated 50,000 times to ensure the robustness of the results. The
outcomes for artificial populations are presented in Table 2, which provides a comprehensive analysis
of the estimators performance under simulated conditions.

Table 2. Percent relative efficiency (PRE) using the artificial populations.

Estimator Exp (1) Exp (3) Uni (1, 3) Uni (1, 2) Gam (1, 4) Gam (2, 5)

Ŝ 2
T1

100 100 100 100 100 100

Ŝ 2
T2

110.789 109.760 113.025 115.247 120.126 118.587

Ŝ 2
T3

120.970 123.638 115.188 120.315 122.505 120.765

Ŝ 2
T4

126.486 127.946 118.344 123.200 124.425 123.078

Ŝ 2
T5

128.145 128.108 122.670 126.526 128.772 127.589

Ŝ 2
T6

135.980 129.964 125.520 128.789 131.405 1131.164

Ŝ 2
T7

135.112 129.123 125.345 128.002 131.408 1131.664

Ŝ 2
T8

136.304 130.245 126.156 130.328 134.528 133.589

Ŝ 2
Q1

194.668 180.356 150.712 160.139 147. 547 153.329

Ŝ 2
Q2

353.129 385.467 320.225 333.167 296.724 280.289

Ŝ 2
Q3

259.189 256.578 270.667 259.369 220.949 214.345

Ŝ 2
Q4

162.707 168.689 180.576 165.508 157.333 142.148

Ŝ 2
Q5

142.837 148.790 160.031 143.625 140.495 140.279

Ŝ 2
Q6

190.456 202.098 200.321 178.353 182.132 162.399

Ŝ 2
Q7

170.065 192.987 190.401 150.323 152.369 158.950

Ŝ 2
Q8

1966.825 210.876 210.677 220.688 200. 712 192.952

Step 8: Furthermore, obtain the MSEs and PREs for each estimator over all replications using the

AIMS Mathematics Volume 9, Issue 11, 33139–33160.



33154

following formulas:

MS E(Ŝ 2
l )min =

∑50000
i=1

(
Ŝ 2

l − S 2
i

)2

50000

and

PRE =
V(Ŝ 2

T1
)

MS E(Ŝ 2
l )min

× 100,

where l is one of T1,T2,T3,T4,T5,T6,T7,T8,TQk(k = 1, 2, . . . , 8).

6.2. Numerical examples

To evaluate the effectiveness of the suggested estimators, we examine the PREs of several
estimators on three real data sets. The data sets descriptions are given below, while the summary
statistics are given in Tables 3–5.

Table 3. Summary statistics for data 1.

Descriptive statistics
N1 = 18 X̄1 = 415 Ȳ1 = 85572 R̄1 = 9.500 XM1 = 2055
Xm1 = 24 RM1 = 18 Rm1 = 1 S x1 = 52.675 S y1 = 248216
S r1 = 5.338 Cx1 = 1.258 Cy1 = 2.901 Cr1 = 0.562 ρyx1 = 0.337
ρyr1 = 0.304 ρxr1 = 0.709 ∆4001 = 3270 ∆0401 = 3345 ∆0041 = 1.692
∆2201 = 2398 ∆2021 = 1267 ∆0221 = 944 η′1 = 0.144 η′′1 = 0.056
N2 = 18 X̄2 = 257 Ȳ2 = 19293.610 R̄2 = 27.500 XM2 = 1674
Xm2 = 52 Rm2 = 19 RM2 = 36 S x2 = 365.696 S y2 = 37979
S r2 = 5.338 Cx2 = 1.423 Cy2 = 1.969 Cr2 = 0.194 ρyx2 = 0.976
ρyr2 = 0.565 ρxr2 = 0.786 ∆4002 = 2542 ∆0402 = 2388 ∆0042 = 1.622
∆2202 = 2246 ∆2022 = 739 ∆0222 = 988 η′2 = 0.144 η′′2 = 0.056

Table 4. Summary statistics for data 2.

Descriptive statistics
N1 = 18 X̄1 = 962 Ȳ1 = 162979 R̄1 = 9.500 XM1 = 1530
Xm1 = 388 RM1 = 36 Rm1 = 19 S x1 = 308 S y1 = 255887
S r1 = 5.338 Cx1 = 0.320 Cy1 = 1.571 Cr1 = 0.562 ρyx1 = 0.145
ρyr1 = 0.135 ρxr1 = 0.802 ∆4001 = 2625 ∆0401 = 3237 ∆0041 = 1.692
∆2201 = 1568 ∆2021 = 1548 ∆0221 = 1298 η′1 = 0.144 η′′1 = 0.056
N2 = 18 X̄2 = 1146 Ȳ2 = 134458 R̄2 = 27.500 XM2 = 2370
Xm2 = 58 Rm2 = 19 RM2 = 36 S x2 = 469.931 S y2 = 50236
S r2 = 5.338 Cx2 = 0.409 Cy2 = 0.374 Cr2 = 0.194 ρyx2 = 0.787
ρyr2 = 0.657 ρxr2 = 889 ∆4002 = 2240 ∆0402 = 2558 ∆0042 = 1.622
∆2202 = 1807 ∆2022 = 2049 ∆0222 = 1200 η′2 = 0.144 η′′2 = 0.056
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Table 5. Summary statistics for data 3.

Descriptive statistics

N1 = 18 X̄1 = 72.550 Ȳ1 = 27.490 R̄1 = 9.500 XM1 = 95

Xm1 = 28 RM1 = 18 Rm1 = 1 S x1 = 10.580 S y1 = 10.130

S r1 = 5.338 Cx1 = 0.155 Cy1 = 0.376 Cr1 = 0.562 ρyx1 = 0.337

ρyr1 = 0.284 ρxr1 = 0.557 ∆4001 = 2.550 ∆0401 = 2.845 ∆0041 = 1.692

∆2201 = 3.158 ∆2021 = 4.544 ∆0221 = 4.542 η′1 = 0.144 η′′1 = 0.056

N2 = 18 X̄2 = 60.870 Ȳ2 = 20.820 R̄2 = 27.500 XM2 = 75

Xm2 = 15 Rm2 = 19 RM2 = 36 S x2 = 8.980 S y2 = 12.750

S r2 = 5.338 Cx2 = 0.142 Cy2 = 0.269 Cr2 = 0.194 ρyx2 = 0.496

ρyr2 = 0.297 ρxr2 = 0.756 ∆4002 = 4.142 ∆0402 = 3.934 ∆0042 = 1.622

∆2202 = 1.384 ∆2022 = 1.239 ∆0222 = 2.488 η′2 = 0.144 η′′2 = 0.056

• Data 1. (Source: ([36, p.226]))
Y: The employment levels recorded by the different departments for 2012, which represents the
overall number of workers.
X: The total number of factories that these departments officially registered in 2012, which gives
information on industrial activity.
R: The rankings assigned to each department based on the total number of factories they registered
in 2012, offering a comparative view of industrial engagement across departments.
Two distinct groups have been created from the data-set:
Group 1: The Gujranwala, Rawalpindi, Sargodha, and Lahore divisions are included in this
group; they all contribute to the examination of employment and industrial registration.
Group 2: This group represents another aspect of the information for comparison analysis and is
made up of the divisions of Bahawalpur, Faisalabad, Multan, Sahiwal, and Khan.

• Data 2. (Source: [36, p.135])
Y: Represents the total number of students attended at educational institutions in 2012.
X: Represents the overall number of government-funded schools in 2012.
R: Represents the order of government-funded schools in 2012 according to the number of schools
they had in that year.
Two distinct groups have been generated from the data-set:
Group 1: The Gujranwala, Rawalpindi, Sargodha, and Lahore divisions are included in this
group; they all contribute to the examination of employment and industrial registration.
Group 2: This group represents another aspect of the information for comparison analysis and is
made up of the divisions of Bahawalpur, Faisalabad, Multan, Sahiwal, and Khan.

• Data 3. (Source: [37, p.24])
Y: The expenses incurred on food by the family, directly related to their employment.
X: The total weekly income earned by the family, reflecting their financial resources for that
period.
R: The ranking of families based on their weekly income, providing a comparative measure of
their earnings.
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For efficiency comparisons, we use the following formula:

PRE =
V(Ŝ 2

T1
)

MS E(Ŝ 2
l )
× 100,

where l is one of T1,T2,T3,T4,T5,T6,T7,T8,TQk(k = 1, 2, . . . , 8).
Additionally, Table 6 presents a summary of the findings for real data-sets.

Table 6. Percent relative efficiency using empirical data-sets.

Estimator Data 1 Data 2 Data 3

Ŝ 2
T1

100 100 100

Ŝ 2
T2

111.535 101.057 100.991

Ŝ 2
T3

113.964 109.260 109.302

Ŝ 2
T4

112.526 109.250 106.626

Ŝ 2
T5

111.735 102.009 102.023

Ŝ 2
T6

111.535 101.048 128.081

Ŝ 2
T7

111.535 101.047 128.089

Ŝ 2
T8

111.695 103.703 129.687

Ŝ 2
Q1

117.202 116.082 138.417

Ŝ 2
Q2

119.177 117.150 139.897

Ŝ 2
Q3

117.384 115.726 134.367

Ŝ 2
Q4

114.751 116.077 137.845

Ŝ 2
Q5

117.201 115.027 135.217

Ŝ 2
Q6

117.202 115.026 138.091

Ŝ 2
Q7

117.202 115.025 133.450

Ŝ 2
Q8

117.227 114.851 134.986

7. Conclusions

A class of efficient estimators for estimating the finite population variance was introduced in this
article. These estimators accounted for both the rankings and the auxiliary variable’s extreme values.
The theoretical prerequisites outlined in Section 5 show how the suggested class of estimators is more
efficient than others, allowing for a comparison with those that already exist. To verify these limits,
we conducted a simulation study and examined three empirical data sets. The outcomes, displayed in
Table 2, demonstrate that the suggested class of estimators consistently performs better in terms of
PREs than the other existing estimators. The theoretical results in Section 5 are further confirmed by
the empirical data shown in Table 6. We draw the conclusion that, in comparison to the other
estimators under consideration, the suggested class of estimators Ŝ 2

Qi
(i = 1, 2, 3, . . . , 8, ) exhibits

superior efficiency based on both simulation and empirical data. Because it has the lowest MS E of
these suggested estimators, Ŝ 2

Q2
is particularly preferable.

There are some advantages of this study in practical applications are given below:

• Improved accuracy and efficiency: Using extreme values and rankings of auxiliary variables,
the novel approach improves precision and efficiency when calculating population variance. The
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suggested estimators outperform previous approaches, achieving PRE values of up to 385.467 in
simulated experiments. This improved performance is especially valuable in real-world
applications where survey data may contain outliers.
• Applicability in stratified two-phase sampling: The suggested approach is especially designed

to support stratified two-phase sampling, which is usual in large-scale surveys when
supplementary information may be unavailable until later stages. This makes the approach
particularly useful in economic surveys, public health examinations, and environmental
evaluations, where similar sample strategies are often used.
• Handling of outliers in practical contexts: The new estimators are ideal for disciplines like

market research and agricultural surveys that frequently meet extreme values, as they can
efficiently include outlier information without distorting results.

Benchmark analysis

For this study, a thorough benchmark analysis was conducted using the procedures listed below:

Selection of competing methods:

• Find and choose the estimators that are employed in stratified two-phase sampling to estimate
the finite population variance. Regression-based estimators, exponential ratio estimators, and
conventional variance estimators like these are a few examples.
• For an extensive comparison basis, use the most widely utilized techniques from the review of the

literature, such as those put out by Isaki (1983) [13], Bahl and Tuteja (1991) [14], and Upadhyaya
and Singh (1999) [15].

Performance metrics:

• PRE, which shows the improvement in effectiveness over a standard approach, should be the main
tool used to assess how well various estimators perform.
• To examine estimators performance in entirety, take into account other measures, including bias,

adaptability to outliers, and MSE.
• Analyze the computational efficiency of the suggested and existing estimators, particularly for

large data sets.

Simulation study and real life data sets

• The research encompassed practical stratification situations and included a variety of artificial
populations with varying probability distributions, including exponential, uniform, and gamma.
Comparing the results using practical problems variables, such as industrial activity and
employment levels, provided valuable insights into practical application, while several
replications guaranteed statistical robustness.
• According to the findings, the suggested estimators continuously performed better than

conventional techniques in terms of PRE, with appreciable gains over a range of sample sizes
and distributions. The investigation was made more detailed by the use of statistical tests to
validate the significance of the according to efficiency increases. The advantages of the novel
methodology were established by this thorough study, which also supported its consideration by
proving its superiority over other methods.
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Moreover, we investigated the characteristics of the suggested efficient class of estimators using
a two-phase stratified sampling technique. It is also conceivable to propose some novel estimators
utilizing the non-response sampling approach, and our findings can be useful in determining the more
efficient estimators with the lowest MS Es. It is also an appropriate topic for future investigation.
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