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Abstract: Unbiased estimators are valuable when no auxiliary information is available beyond the 
primary study variables. However, once auxiliary information is accessible, biased estimators with 
smaller Mean Square Error (MSE) often outperform unbiased estimators that have large variances. We 
sought to develop new estimators that incorporate a single auxiliary variable in stratified random 
sampling. This study contributes to the field by introducing two distinct families of estimators 
designed to estimate the finite population mean. We conducted a theoretical evaluation of the 
estimators' performance by examining bias and MSE derived under first-order approximation. 
Additionally, we established the theoretical conditions necessary for the proposed estimator families to 
exhibit superior performance compared with existing alternatives. Empirical and simulation-based 
studies demonstrated significant improvements in estimators over competing estimators for 
finite-population parameter estimation. 
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1. Introduction  

The selection of biased and unbiased estimators has drawn considerable attention from researchers in 
the field of statistical estimation. However, researchers frequently employ biased estimators in scenarios 
with modest variations, ensuring their estimates closely resemble the underlying population parameter on 
average. These approaches typically result in greater variety, which reduces their usefulness in most cases. 
As more information becomes available, the estimation of scenario changes favors biased estimators with 
a lower mean square error (MSE), not with standing their bias. This feature increased the precision of the 
estimator. Using supplementary data with a strong relationship to the variable under study is a standard 
procedure in the field of survey sampling. This methodology frequently enhances the accuracy and 
dependability of the estimators during both the design and estimation phases. Selecting pertinent additional 
data with care can significantly reduce the mean square error (MSE) of the estimators used to estimate the 
population parameters. As ratio estimators may leverage the current link between the study and auxiliary 
variables, they have become popular in support of this goal. Ratio estimators are useful tools for increasing 
the accuracy of estimates when calculating the population total or average. Significant progress has been 
made in this sector as a result of numerous academics that have created a range of ratio and 
regression-based estimators, each based on a different transformation [1], significantly increasing the 
amount of knowledge in this field. Within the SSRS framework, some studies have presented estimators 
based on mixed ratio-type techniques. Koyuncu et al. [2] Examined the estimators developed by [1] 
within the context of SSRS. Moreover, Koyuncu et al. [3] provided a combined version of the SSRS 
estimator that had been put forth by [5]. Singh et al. [6] Proposed an extensive set of estimators that 
utilize supplemental data in the SSRS. Singh et al. [7] generated an extraordinarily effective set of 
estimators using the same SSRS architecture. Together with the references included in these publications, 
the [8] provided a thorough assessment.  

Stratified sampling with auxiliary variables has diverse applications in physics, engineering, and 
environmental sciences. In physics, it enhances the particle density estimates in high-energy collisions, 
cosmological parameter estimates, and material property predictions. Engineering applications include 
reliability analysis, signal processing, and network-traffic estimation. Specific examples have revealed 
their utility in estimating ocean currents, predicting structural failures, and optimizing energy systems. 
These applications underscore the flexibility and potential of stratified sampling in improving the 
estimation accuracy and efficiency [9]. 

Our primary goal of this study, in the context of stratified random sampling, is to develop and 
evaluate efficient estimators that utilize only one additional variable. Furthermore, we describe and 
assess two novel groups of mean estimators for a finite population. Our investigation includes a 
thorough examination of their bias and MSE up to the first level of approximation, which yields useful 
insights into their performance. 

Researchers constantly strive for progress in their respective domains. The proposed estimator 
is a significant improvement in the field of sampling methodology. The adoption of this strategy 
enhances the development of statistical methods, leading to a constant enhancement in the precision 
and reliability of estimating population parameters. The suggested estimator is specifically developed 
to offer improved accuracy in calculating the mean of a finite population. By strategically including a 
single auxiliary variable in each stratum, it optimizes the use of available information, leading to 
more precise estimations in comparison to current approaches. 

In stratified random sampling, precise estimation of the finite population mean is crucial. 
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Estimators, such as the traditional stratified sampling estimator, ratio estimator, and regression 
estimator, often rely on simplistic assumptions or fail to effectively hitch the correlation between the 
study and auxiliary variable. Recently developed estimators, such as the generalized regression 
estimator and the exponential ratio estimator, offer enhancements, but still have limitations. To 
address these gaps, we introduce new estimators that incorporate a single auxiliary variable into 
stratified random sampling. These novel estimators aim to enhance the estimation accuracy and 
efficiency by better capturing the complex relationships between variables. The proposed estimators 
are significant, as they provide more reliable and precise estimates, especially in scenarios with 
non-linear relationships or non-normal distributions, thereby filling an important methodological gap 
in the survey sampling literature. Simulation studies and empirical evaluations demonstrate the 
superiority of the proposed estimators over existing ones, making them valuable tools for 
practitioners and researchers seeking improved estimation strategies. 

2. Methodology  

Let us take population of size N that comprises L strata (a group of homogenous units) such that 

1

L

h
h

N N


  where Nh shows the hth stratum size (h=1, 2,...,L). Let each stratum sampled nh units 

through simple random sample without replacement (SRSWOR) scheme, such that, 
1

L

h
h

n n


 . Let 

us suppose that the ith pair of the sample (yhi, xhi) represent the values of y (study variable) and x 
(auxiliary variable) on the ith unit of the hth stratum, where i=1, 2, 3, ... Nh. 

To obtain the expressions for the Bias and MSE of the estimators, we supposed the various 
properties listed below to be true. 
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and auxiliary variables obtained through a stratified random sample, respectively. Thus the relative 
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3. Summary of some estimators  

Several estimators have been devised to evaluate the finite population mean in the context of 
stratified random sampling with a single auxiliary variable. Researchers and statisticians have 
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studied several approaches, each designed to utilize information contained in the auxiliary variable to 
improve the accuracy of the population parameters estimates. The estimators in this context are 
designed to address the complexities of finite population sampling, considering the stratified 
structure and the utilization of a single auxiliary variable as a valuable tool for more robust and 
reliable mean estimation [4]. The conventional estimator for the population mean in the context of 
stratified random sampling is an unbiased estimator and is defined as follows: 

1

L

st h h
h

T w y


 .          (3.1) 

The formula for the variance of the conventional unbiased estimator is provided as: 

2

20( )stM SE T Y V .         (3.2) 

Though the usual estimator is unbiased, its variance is large. Therefore, when auxiliary information 
Xi about the study variable Yi is available, then the researchers in [10] suggest the traditional ratio 
estimator as  

r st
st

X
T y

x
 .           (3.3) 

The bias of Cochran’s ratio estimator along with its MSE is given as:  

02 11( ) ( )rBias T Y V V  ,         (3.4) 

2

20 02 11( ) ( 2 )rMSE T Y V V V   .        (3.5) 

Bahl et al. [11] suggested an exponential ratio-type estimator. The functional form, Bias, and MSE of 
Bahl and Tuteja’s estimators are as follows: 

exp
st

BT st
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X x
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X x

 
  

 
         (3.6) 
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2
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20 11( ) ( 2 )
4BT

V
MSE T Y V V   .        (3.8) 

Based on the work of [12,13] a ratio estimator is introduced where the population coefficient of 
variation is known. 
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.          (3.9) 

The estimator's first-order bias and MSE are discussed as follows: 
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2
0 2 1 1( ) ( )K CB ia s T Y V V          (3.10) 

2 2
2 0 0 2 1 1( ) ( 2 )K CM S E T Y V V V    .      (3.11) 
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 . 

Upadhyaya et al. [14] suggested a modified version of [15] by multiplying the coefficient of kurtosis 
by the mean of the auxiliary variable: 
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The MSE and Bias of this estimator are: 

02 11( ) ( )USBias T Y V V          (3.13) 

2 2
20 02 11( ) ( 2 )USMSE T Y V V V    .       (3.14) 
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. 

A general family of estimators of the population mean was proposed by [16] in response to the work 
of [17]. 

( ) (1 )( )ch st
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.      (3.15) 

Substituting different values of the constants a, b, τ (=0, 1, -1), and α, we obtain several estimators. 
The bias and MSE of the estimator are:  
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 and  

based on [18,19], introduced a class of exponential estimators for the population mean in the 
SRSWOR scheme is introduced.  
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The estimator’s MSE is obtained as,   
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where, 
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Motivated by [20,21], proposed a ratio cum exponential type estimator is proposed, as follows: 

2
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Here,    
1 1
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     , and h ha and b are functions of the 

known parameters like coefficient of Kurtosis, coefficient of variations etc. of the auxiliary variable. 
The Bias and MSE of the above estimator are: 
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the optimum MSE converges to Regression estimator as, 

   2
20 1G cMSE T Y V   .        (3.23) 

The factor ρc represents the aggregate correlation coefficient over all strata and is defined as, 
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Motivated by [22,23] the following difference exponential ratio estimator are proposed: 

 
 1 2 exp

2
st stst

NK st

st st st

A x Xx
T k y k

X A x X B

          
        

.     (3.24) 

Here, stA , stB , and  are the generalizing constants, and 1k and 2k  are the minimizing constants. 

The Koyuncu estimator’s first order of approximated Bias and MSE are given as: 
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Tiwari et al. [24] proposed the following difference cum ratio exponential estimator as  
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.    (3.28) 

Here, sta , stb , stc , and std  are either known parameters or some functions of the parameters of X, 

3 , and   which are the generalizing constants that can take values like (1, 0, -1) etc, and 3k and 

4k are the minimizing constants. The estimator’s bias and MSE are provided:  
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, the lowest possible MSE is calculated as: 
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Here,  
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Javed et al. [25] proposed the following family of estimator estimators, 
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. (3.32) 

Here, the constants a, b are generalizing elements. The bias of the proposed estimator is given as, 
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Here, 2
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, 2 11 02D V V   and 

2 11 022E V V  . 

4. Proposed estimator 

The estimators suggested in this study represent significant improvements in the field of finite 
population estimation. In contrast to conventional unbiased estimators, which are appropriate when only 
the primary study variable is accessible, these innovative estimators designed to exploit the potential of 
supplementary information. By carefully including only one auxiliary variable in the estimation process, 
we achieved sophisticated equilibrium between bias and precision. 

Two discrete estimator families were carefully designed and assessed using stratified random 
sampling. The aforementioned estimators were specifically designed to address the inherent 
difficulties associated with estimating the average of a determinate population. Consequently, they 
provided a novel approach for enhancing the accuracy of the estimation. 

4.1. First proposed estimator  

Muneer et al. [26] proposed the following regression-exponential-Ratio type estimator 

   1 2 2 exp 1 expS

z Z Z z
T w y w x X

z Z z Z
 
                           .   (4.1.a) 

Here, 1w and 2w are minimizing constants and  takes values either 1 or 0 to have ratio exponential or 

product exponential estimators, respectively. Similarly, Shabbir et al. [28] proposed the below estimator 

   
 3 4 exp

2SGO

u X x
T w y w

u X x v

 
   

   
.       (4.1.b) 

Here, 3w and 4w  are the generalizing constants and u, v are some known suitably chosen 

parameters of the auxiliary variable or some real valued constants. 
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In light of the work of [26,28], we propose the following estimator: 

   
     

 1 1 2 2 exp 1 exp
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st stst st st st st st st st

u x X u X xX x
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l l .  (4.1.1) 

Here, S1 and S2 are optimizing constants, whose values are obtained so that the MSE is minimum, l  
can take values from 0 to 1 and the generalizing constants u and v are to be replaced by the values of 
the population parameters or some function of the parameters of the supplementary variable.  
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. (4.1.2) 

After simplification and application of different series, the proposed estimator is converted to the 
following form: 
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Now, subtracting stY from both sides, we have: 
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When we apply expectation to both sides of the previous equation, we get the following bias 
expression: 

     1 1 1 11 2 02 2 2 021 1pro st stBias T S Y V V S V Y        .   (4.1.6) 

To obtain the MSE expression, we take the square of both sides of the equation  
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After taking expectation the MSE expression obtained as, 
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  (4.1.8) 
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Here,  2
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2 021prD V   and  2
1 2 02 1 111 2 2prE V V      . 

Now, let differentiate the MSE equation to obtain the values of S1 and S2 to have minimum MSE. 
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. So, we obtain: 

2 2
1 2 0st pr st pr st prS Y A S Y E Y C         (4.1.10) 

1 2 0st pr pr st prS Y E S B Y D   .       (4.1.11) 
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. With these values, the minimum MSE adopts the below form: 
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4.2. Second proposed estimator 

Taking some insights from the work of [26–28], we propose the following class of estimators. 

     
 1 2 1 exp

2
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st st st st st st

u X xX x
T T y T
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l l .  (4.2.1) 

The values of optimizing constants 1T  and 2T  are obtained so that the MSE is minimum. The 

difference equation up-to first order of approximation of the proposed estimator in terms of errors is 
expressed as  

     2 2
2 1 1 0 1 1 2 1 1 0 1 2 1 1 2 11 1pro st st stT Y T Y TY T                       .  (4.2.2) 

After taking the expectation the bias of the suggested estimator is given as, 
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Squaring both sides of the above (4.2.2) difference equation and using first order of approximation, 
we have,  
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or 
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least possible value of the MSE up to the first order of approximation is shown as 
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5. Efficiency comparison 

In this section, we define the conditions that must be met for the suggested estimators to 
outperform the currently used estimating methods in terms of efficiency. 

5.1. Conditions for the first proposed estimator 

Condition (i) 

By comparing (3.2) and (4.1.12),    1pro stMSE T MSE T if  

 20 11 0V      .       (5.1.1) 

Here, 

2 2

1 2

2pr pr pr pr pr pr pr

pr pr pr

A D B C C D E

A B E

 
 

  

Condition (ii) 

By comparing (3.5) and (4.1.12),    1pro rMSE T MSE T if  

 20 02 11 12 1 0V V V     .       (5.1.2) 

Condition (iii) 

By comparing (3.8) and (4.1.12),    1pro SDMSE T MSE T if  

20 02 11 1

1
1 0

4
V V V
      
 

.      (5.1.3) 
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Condition (iv) 

By comparing (3.11) and (4.1.12),    1pro BTMSE T MSE T if  

 2
20 02 11 12 1 0V V V      .      (5.1.4) 

Condition (v) 

By comparing (3.14) and (4.1.12),    1pro USMSE T MSE T if  

 2
20 02 11 12 1 0V V V      .      (5.1.5) 

Condition (vi) 

By comparing (3.17) and (4.1.12),    1pro ChMSE T MSE T if  

 2 2 2
20 02 11 12 1 0V g V g V        .      (5.1.6) 

Condition (vii) 

By comparing (3.20) and (4.1.12),    1pro OMSE T MSE T if  

 
2

200 22 12
1

00 22 12

1 0
2

V V V
Y
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.      (5.1.7) 

Condition (viii) 

By comparing (3.24) and (4.1.12),    1pro GMSE T MSE T if 

 20 11 1 0stV       .       (5.1.8) 

Condition (ix) 

By comparing (3.28) and (4.1.12),    1pro NKMSE T MSE T if 

2 2

1 2
0

4

AD BC CDE

AB E

 
  


.       (5.1.9) 

Condition (x) 

By comparing (3.32) and (4.1.12),    1pro TSSMSE T MSE T if 
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.      (5.1.10) 

Condition (xi) 

By comparing (3.35) and (4.1.12)    1pro MJMSE T MSE T if 

   
2 2

2 2 2 2 2 2 2 2
20 02 11 1 2

2 2 2

4 4
2 0
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A B E
 

  
     

  
.    (5.1.11) 
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5.2. Conditions for the second proposed estimator 

Condition (i) 

By comparing (3.2) and (4.2.7),    2pro stMSE T MSE T if  

  2
20

3

1 0V
 

    
.       (5.2.1) 

Where, 
2 2 2

2 2 2 2p p p p p p p p p p p p pA B B C C D E B B C D D E         and 
2

3 p p p pA B E B     

Condition (ii) 

By comparing (3.5) and (4.2.7),    2pro rMSE T MSE T if  

2
20 02 11

3

2 1 0V V V
 

      
.     (5.2.2) 

Condition (iii) 

By comparing (3.8) and (4.2.7),    2pro SDMSE T MSE T if  

2
20 02 11

3

1
1 0

4
V V V

        
.      (5.2.3) 

Condition (iv) 

By comparing (3.11) and (4.2.7),    2pro BTMSE T MSE T if  

 2 2
20 02 11

3

2 1 0V V V  
    


.      (5.2.4) 

Condition (v) 

By comparing (3.14) and (4.2.7),    2pro USMSE T MSE T if  

 2 2
20 02 11

3

2 1 0V V V  
    


.      (5.2.5) 

Condition (vi) 

By comparing (3.17) and (4.2.7),    2pro ChMSE T MSE T if  

 2 2 2 2
20 02 11

3

2 1 0V g V g V    
    


.     (5.2.6) 

Condition (vii) 

By comparing (3.20) and (4.2.7),    2pro OMSE T MSE T if  

2
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Condition (viii) 

By comparing (3.24) and (4.2.7),    2pro GMSE T MSE T if 

  2
20

3

1 1 0stV 
 

     
.      (5.2.8) 

Condition (ix) 

By comparing (3.28) and (4.2.7),    2pro NKMSE T MSE T if 

2 2
2

2
3

0
4

AD BC CDE

AB E

  
 

 
.      (5.2.9) 

Condition (x) 

By comparing (3.32) and (4.2.7),    2pro TSSMSE T MSE T if 
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Condition (xi) 

By comparing (3.35) and (4.2.7),    2pro MJMSE T MSE T if 

   
2 2

2 2 2 2 2 2 2 2 2
20 02 11 2

3 2 2 2
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.   (5.2.11) 

The above theorems are important for the development of conditions under which the novel 
estimators outperform the suggested estimators. If these conditions hold, then the novelty of the 
estimators is guaranteed. In other words, these assumptions are related to the efficiency of the 
proposed estimator. 

6. Numerical comparison  

To check the performance of the proposed estimator relative to the classical estimator, the 
following data sets were considered (see Table 1).  
Data I: (source: [29]) 
(The two strata are Stratum 1: Rawalpindi, Lahore, Sargodha and Gujranwala. Stratum 2: Sahiwal, 
Faisalabad, D.G Khan, Multan and Bahawalpur) 
Y: In 2012 division’s wise employment level. 
X: in 2012 division’s wise quantity of registered factories. 
Data II: (source: [29]) 
Y:  in 2012 division’s wise enrollment of students. 
X: in 2012 divisions wise the count of Govt schools. 
Data III: (source: [17]). The dataset has information on the apple production amount (Y) and the 
number of apple trees (X) in 854 villages in Turkey in the year 1999. The data is categorized into 
strata based on the region of Turkey. 
Data IV: (source: [2]) The study contains the number of instructors as study variable and the number of 
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students as supplementary variable in schools for 923 districts in six regions in Turkey in 2007. (1: 
Aegean 2: Black Sea 3: Central Anatolia 4: East and Southeast Anatolia 5: Marmara 6: Mediterranean)  
Data V: (source: [30]). The main variable pertains to the number of wet days, whereas the auxiliary 
variable refers to the total number of sunshine hours. 

Table 1. Summary statistics of all the data sets. 

Data Stratum Nh nh 𝑌ത 𝑋ത Syh Sxh ρyxh Cyh Cxh 
I 1 18 8 85572.11 414.5556 248216 521.68 0.3473 2.9007 1.2584 

2 18 8 19293.61 257 37979.33 365.70 0.9796 1.9685 1.423 
II 1 18 8 162979.3 962.0556 255887.7 307.95 0.1447 1.5701 0.3202 

2 18 8 134458 1146.722 50235.82 469.93 0.787 0.3736 0.4098 
III 1 10 4 149.7  1630  102.17  13.470  -0.779 0.063  0.09  

2 10 4 102.6 2036  103.26 12.610  -0.503 0.050 0.122  
IV 1 127 31 703.74 20804.59 883.835 30486.75 0.937 1.256 1.465 

2 117 21 413 9211.79 644.922 15180.77 0.996 1.562 1.648 
3 103 29 573.17 14309.3 1033.467 27549.70 0.291 1.803 1.925 
4 170 38 424.66 9478.85 810.585 18218.93 0.983 1.909 1.922 
5 205 22 267.03 5569.95 403.654 8497.776 0.989 1.512 1.526 
6 201 39 393.84 12997.59 711.723 23094.14 0.965 1.807 1.777 

V 1 106 9 1536 127 49189 6425 0.82 4.18 2.02 
2 106 17 2212 117 57461 11552 0.86 5.22 2.1 
3 94 38 9384 103 160757 29907 0.9 3.19 2.22 
4 171 67 5588 170 285603 28643 0.99 5.13 3.84 
5 204 7 967 205 45403 2390 0.71 2.47 1.75 
6 173 2 404 201 18794 946 0.89 2.34 1.91 

Table 2 shows the MSE of all the estimators selected from the [25], along with the proposed 
estimators under stratified random sampling with a single supplementary variable. The first, second, 
and third populations consisted of two strata, each with summary information mentioned. The fourth 
and fifth populations consisted of six strata each. MSE results were obtained for the proposed 
estimators for three different values of the generalizing constants u and v. In the first estimator, u=1 
and v=0, and no transformation is applied. In the second estimator, u=1 and v=Cx, while the third 
value had the proposed estimators u=ρyx and v=Cx. Furthermore, in the first three populations, the 
value of the generalizing constant α was 0.5, while in the fourth population, it was α=0.65. In the fifth 
population, α=0.40, and the suggested estimators were compared. It was apparent that the MSEs of the 
proposed estimators (Tpor1 and Tpro2) were less than those of all competing estimators in this study. 
In addition, the use of transformation further decreased the MSE values of the suggested estimator. 
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Table 2. MSEs of the estimators of finite population means in real data. 

Estimators Data-I Data-II Data-III Data-IV Data-V 

0T  1094699971 1180635530 8.877803 2229.266 674045.7 

RT  951308503 1137894915 18.79581 727.6426 159151.3 

BTT  969403894 1134267624 13.08039 934.847 341011.7 

GT  951118894 1137875148 18.79535 727.5525 159165.3 

NKT  951118894 1137875148 18.79535 727.6346 159151.7 

Re gT  3788003666 4524594622 1295.744 24760.6 9975257 

ChT  941649845 1129698712 4.945649 403.8754 107055.4 

SDT  945428869 1129700285 4.952633 675.4922 121796.6 

OT  51053306 22296777 0.170545 457.1203 38205.42 

TSST  843775561 1086123241 4.944853 403.2811 106561.4 

MJT  855382199 1086209302 4.944776 403.5506 106547.6 
0.5
1,0 1proT  38240012 16382473 0.358289 112.3608 8942.898 
0.5

1, 1xC proT  38009353 16371323 0.358265 112.3313 8941.515 
0.5
, 1xC proT  37582179 16325464 0.358324 112.2752 8941.243 

0.5
1,0 2proT  42105942 16465112 0.358323 110.2066 8459.403 
0.5

1, 2xC proT  41844854 16453885 0.358299 110.1783 8458.088 
0.5
, 2xC proT  41353334 16407580 0.358359 110.1219 8457.812 

The entries in Table 3 and Figure 1 represent the PREs of the estimators for the population mean 
in the stratified random sampling WOR scheme, in the presence of an auxiliary variable. PREs were 
obtained relative to the classical estimator of the mean. In all five populations, the efficiencies of the 
proposed estimators were higher than those of all the listed estimators. In addition, the use of 
transformation (by applying different parameter values for u and v) further enhanced the efficiency of 
the estimator. As in the given case, Tproi(1) did not undergo transformations. In Tproi(2), u=1 and 
v=Cx, and in Tproi(3), u=rho and v=Cx (i=1,2). A visual display of the PREs relative to each dataset is 
shown in Figure 1. Each of the five lines compare the PREs of the estimators in different datasets. It is 
obvious that among the five lines, the height of the graph was maximum for the last six entries 
(Tpro1(1) to Tpor2(3), proposed estimators) compared to the rest of the existing estimators. Hence, the 
graphical display of PREs supports the claim that the proposed estimators are significantly more 
efficient than the existing estimators of the finite population mean in stratified random sampling with 
single auxiliary information. 
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Table 3. PREs of the estimators relative to usual estimator for real data. 

Estimators  Data-I Data-II Data-III Data-IV Data-V 

0T  100  100  100 100 100 

RT  115.0731 103.7561 47.2329 306.3683 423.5251 

BTT  112.9251 104.0879 67.87107 238.4632 197.6606 

GT  115.096 103.7579 47.23404 306.4062 423.4879 

NKT  115.096 103.7579 47.23404 306.3717 423.5241 

Re gT  28.89913 26.09373 0.685151 9.00328 6.757176 

ChT  116.2534 104.5089 179.5073 551.9688 629.623 

SDT  115.7887 104.5087 179.2542 330.021 553.4193 

OT  2144.229 5295.095 5205.549 487.6761 1764.267 

TSST  129.7383 108.7018 179.5362 552.7822 632.5421 

MJT  127.9779 108.6932 179.539 552.4131 632.6243 
0.5
1,0 1proT  2862.708 7206.699 2477.835 1984.024 7537.217 
0.5

1, 1xC proT  2880.081 7211.607 2478.002 1984.545 7538.383 
0.5
, 1xC proT  2912.817 7231.865 2477.591 1985.537 7538.612 

0.5
1,0 2proT  2599.871 7170.529 2477.597 2022.807 7968.005 
0.5

1, 2xC proT  2616.092 7175.421 2477.763 2023.326 7969.244 
0.5
, 2xC proT  2647.187 7195.671 2477.352 2024.363 7969.504 

 

Figure 1. PREs of the estimators in real data. 
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7. Simulation study 

In the section, we conducted a simulation study of both the established and newly introduced 
estimators to assess the stability of these estimators across random samples. We began with a stratified 
population of N=1000 units, from which a sample of n=100 pairs of values (y, x) were selected. This 
population comprised two strata with sizes N1=600 and N2=400. By employing proportional allocation, 
we extracted samples of size n1=60% and n2=40% of the total sample size (n) from these respective 
strata. The mean vectors and covariance matrices are expressed as follows (see Table 4): 

Table 4. Strata summary statistics. 

Stratum N n     

1 600 60%  3 8  

5 4

4 4

 
 
 

 

2 400 40%  6 2  

3 2

2 1.5

 
 
 

 

Here, MSE and PRE values for the estimators were carried out using the following steps in R software. 
Step-1: Simple random samples without replacement (SRSWOR) of different sizes n=10, 20, 50, 100, 
200. were drawn from the target population. For each sample size, a loop of 10,000 times was caried 
out and allowed R-studio to compute the estimator values at each iteration. 
Step-2: For each sample, the values of the existing and suggested estimators were calculated 
separately by taking the average of all iterations.  
Step-3: Using the values obtained in Step-2 the MSE of the estimators is obtained. 
Step-4: PRE of the estimators is obtained using the following formula: 

 
 

0( ) 100i
i

Var T
pre T

MSE T
   Where, iT  replaces different estimators. 

Table 5 presents the simulation results for the MSEs of the estimators with respect to the usual 
estimators for various sample sizes. By exploring the table, we can see that the MSEs of the suggested 
estimators are smaller than those of other estimators. Furthermore, our estimator is stable with respect 
to sample size, and as the sample size increases, the MSE of the estimator also decreases. Hence, our 
suggested estimators are the best among all competing estimators under study.  
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Table 5. MSEs of the estimators of population mean through simulations. 

Estimator 
Sample Size (n) 

10 20 50 100 200 

0T  0.57167885 0.23228891 0.097460 0.04408674 0.02228120 

RT  0.2800072 0.10384171 0.03535013 0.01578904 0.00729696 

PT  3.46848296 1.42177894 0.59069627 0.26428811 0.13505578 

BTT  0.07554437 0.02890564 0.01200708 0.00584716 0.00253814 

SDT  0.16541336 0.06573896 0.0225091 0.01076952 0.00461603 

UST  0.23223990 0.08851816 0.02989319 0.01389308 0.00621069 

CHT  0.28000722 0.10384171 0.03535013 0.01578904 0.00729696 

OT  0.02673456 0.01189527 0.00481989 0.00252548 0.00098261 

KT  0.06359180 0.02652505 0.01157819 0.00575902 0.00251554 

TSST  0.16076453 0.02538855 0.00588480 0.00266663 0.00101421 

MJT  0.07674410 0.02874377 0.01196348 0.00584770 0.00253646 
0.5
1,0 1proT

 0.013249273 0.00518138 0.00217518 0.00100506 0.00033924 
0.5

1, 1xC proT  0.013210254 0.00507809 0.00215045 0.00083683 0.00033277 
0.5
, 1xC proT  0.013109884 0.00503650 0.00211079 0.00078796 0.00033036 

0.5
1,0 2proT  0.0138653 0.00547664 0.00243563 0.00108857 0.00036112 
0.5

1, 2xC proT  0.0132086 0.00539962 0.0023895 0.0009051 0.00035744 
0.5
, 2xC proT  0.0130670 0.00526565 0.00235865 0.00086015 0.00034784 

Table 6 shows the simulation results of the different estimators with respect to the usual 
estimators for the various sample sizes. By exploring the table, we can see that the PREs of the 
suggested estimators are higher than those of all rival estimators. Furthermore, the suggested 
estimators are stable with respect to sample size, and as the size of the sample increases, efficiency also 
increases. Hence, our proposed estimator is superior to all the competing estimators under study. The 
visual display of the PREs is shown in Figure 2, where each line shows the PREs distribution with a 
different sample size. Upon examination of the graph, we decided that in each of the samples, the 
height of the line was the maximum for the last six values (Tpro1(1) to Tpro2(3), the proposed 
estimators). Hence, the graphical display of the simulation results supports the superiority of the 
proposed estimators. 
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Table 6. PREs of the estimators of population mean relative to usual estimator in simulated data. 

Estimator 
Sample Size (n) 

10 20 50 100 200 

0T  100 100.00 100.00 100 100.000 

RT  204.1658 223.6952 275.6999 287.3062 305.3491 

PT  16.4821 16.33791 16.49922 16.68181 16.49777 

BTT  756.7458 803.6109 811.6894 773.0501 877.8541 

SDT  345.6062 353.3505 432.9804 424.0894 482.6918 

UST  246.1588 262.4195 326.0283 326.8191 358.7558 

CHT  204.1658 223.6952 275.6999 287.3062 305.3491 

OT  2138.351 1952.783 2022.043 1735.336 2267.554 

KT  898.982 875.7341 841.7566 785.2975 885.7426 

TSST  355.6001 914.9358 1656.135 1626.34 2196.898 

MJT  744.9157 808.1366 814.6483 773.5519 878.4379 
0.5
1,0 1proT

 4314.7941 4483.149 4480.539 4386.484 6631.513 
0.5

1, 1xC proT
 4432.0027 4574.340 4532.065 5304.581 6692.862 

0.5
, 1xC proT  4656.5601 4612.107 4617.214 5718.092 6744.618 

0.5
1,0 2proT  4123.084 4241.449 4001.426 4049.964 6229.81 
0.5

1, 2xC proT  4237.098 4301.946 4078.654 4904.424 6324.287 
0.5
, 2xC proT  4405.5421 4411.404 4132.013 5238.144 6405.531 

 

Figure 2. PREs of the estimators in simulated data. 
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8. Discussion  

We provide two new families of estimators in the context of stratified random sampling that are 
intended to enhance population mean estimation by utilizing a single auxiliary variable. Eq (4.1.1) 
formalizes the study in [26,28], which has a major effect on the construction of the first family of 
estimators. Equation (4.2.1) provides the mathematical representation of the second family of 
estimators, which is also developed based on the findings published in [28,31]. Expressions for the 
bias and mean squared error (MSE) of both estimator families were derived by a comprehensive 
theoretical study that took into account their first-order approximations. The statistical features of 
these formulations are explained in depth in Eqs (4.1.6), (4.1.12), (4.2.3), and (4.2.7). 

To determine the relative efficiency of our proposed estimators compared to existing methods, we 
established performance criteria based on MSE minimization and precision improvement. Specifically, 
Eqs (5.1.1)–(5.1.11) delineated the necessary conditions under which the first estimator family 
achieved superior performance relative to conventional estimators. Likewise, a corresponding set of 
conditions was identified for the second estimator family, ensuring its enhanced efficiency over 
competing methods. These are those situations that are necessary for the proposed estimators to be 
efficient relative to the estimators mentioned under study. 

Both real and simulated datasets were used to thoroughly assess the suggested estimators’ 
effectiveness. The MSE and percentage relative efficiency (PRE) values calculated for real-world data 
are shown in Tables 2 and 3, which also show how the estimator performs differently for varying 
values of auxiliary variables, represented by u and v. Among these tables, one can observe that the 
MSE values of the last six estimators, the proposed one, have small values relative to all the other 
estimators shown in the table. Similarly, the PRE values for the proposed last six estimators are larger 
than all the competing estimators for the population mean given in the tables. The findings support the 
suggested estimators' statistical superiority by showing a constant trend of producing lower MSEs and 
higher PREs than traditional estimators for the five data sets. The observed patterns indicate that the 
suggested methodologies provide more accurate estimates of the population mean, thereby reducing 
estimation errors and enhancing efficiency. 

Furthermore, the robustness of these findings was confirmed through extensive simulation 
studies, with Tables 5 and 6 summarizing the outcomes. The performance of the estimators was tested 
under five sample sizes: 10, 20, 50, 100, and 200. In all sample sizes used in the simulation studies, 
both families of estimators exhibited small mean squared errors (MSEs) and large values of percent 
relative efficiencies (PREs) compared to all competing estimators for the population mean. 
Furthermore, the tables confirm that the proposed estimators are less variable across sample sizes in 
terms of MSEs and PREs. These simulated results align closely with the empirical observations, 
further validating the performance advantages of our proposed estimator families. Notably, the trends 
in simulated data mirror those observed in real-world datasets, suggesting the generalizability of our 
approach across population structures. 

Visual representations of the PRE values are provided in Figures 1 and 2, which illustrate the 
efficiency comparisons between our estimators and existing alternatives. Each line in Figure 1 
represents a distinct population, while each line in Figure 2 corresponds to a different sample size. In 
both figures, the graph lines for the proposed families reach the highest points, indicating superior 
percent relative efficiencies (PREs). A consistent upward trend is evident, demonstrating that the 
proposed families consistently achieve higher PRE values across scenarios. This graphical evidence 
strongly supports our conclusion that the new estimator families outperform traditional approaches in 
terms of precision and reliability. 
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By analyzing the summary statistics in Table 1 and the percent relative efficiencies (PREs) in 
Table 3, we observe the following patterns: In the first three datasets, the correlation coefficients for all 
strata are comparatively smaller than those in the last two datasets. Additionally, the PRE values for 
the first estimator are higher in the first three datasets compared to the second estimator. Conversely, 
the PREs for the second estimator are higher than those of the first estimator in the last two datasets. 

Based on these findings, we conclude that the first family of estimators performs more efficiently 
when the correlation coefficients for all or some of the datasets are relatively small. On the other hand, 
the second family of estimators performs more efficiently when all or most strata have larger 
correlation coefficients. 

Overall, our research offers a substantial contribution to the field of sampling methodology by 
introducing efficient estimators that optimize the use of an auxiliary variable in stratified random 
sampling. The proposed approaches not only enhance estimation accuracy but also provide a more 
reliable alternative to existing techniques. Researcher can extend this work by exploring the 
application of these estimators in more complex sampling frameworks or integrating additional 
auxiliary variables to further refine precision levels. The methodological advancements presented in 
this study pave the way for improved sampling strategies in statistical analysis, benefiting empirical 
research and practical data collection applications. 

9. Conclusions 

We introduced two new exponential estimators that can be used to calculate the population mean 
when stratified random sampling is applied with a single auxiliary variable. We also found formulas for the 
first-order bias and the MSE of the new estimators. Furthermore, a demanding criterion was established to 
identify the circumstances in which the proposed estimators outperformed traditional and existing 
alternatives. We performed a thorough comparison of the MSEs and PREs of our newly designed 
estimators with those of other approaches. We conducted a comprehensive review, including both 
simulated experiments and real-world datasets, to improve the robustness and usefulness of our findings. 
The empirical findings from this investigation consistently confirm the superiority and effectiveness of the 
proposed estimator families when compared to all the other estimators examined in this study.  

We emphasize the significant advancements made by our cutting-edge exponential-type 
estimators and highlight their improved performance and efficacy in the difficult field of stratified 
random sampling using a single auxiliary variable. 

The proposed estimators account for the nonlinear relationships between the study and auxiliary 
variables, in contrast to traditional estimators. Additionally, the proposed estimators are a hybrid of 
regression, ratio, product, and exponential functions to obtain more accurate results. Furthermore, the 
proposed estimators can adapt to multiple distributions, making them more versatile.  

The first limitation of the suggested estimators is that although they can handle nonlinear 
relations, they assume specific functional forms between the variables. Violation of this assumption 
may affect the performance of the estimator. Adding more parameters to the suggested estimators 
increases complexity and computational requirements. 

In conclusion, researchers can develop more effective variables in light of the suggested 
estimators to cope with nonresponse problems. Researchers can extend the proposed estimators to 
scenarios of multiple auxiliaries and examine the proposed estimators in other sampling designs and 
population scenarios. 
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Appendix A 

a. Development of the Bias and MSE of the first family of estimators 

Rewriting the first family of estimators 

   
     

 1 1 2 2 exp 1 exp
2 2

st st st st st stst st
pro st

st stst st st st st st st st

u x X u X xX x
T S y S

x Xu X x v u X x v

                                      
l l .  (4.1.1) 

In terms of error, the estimator could be written as 

    
  
         

  
1 11

1 1 0 2
1 1 1

1 11
1 2 exp 1 exp

1 1 2 1 2
st st st st st ststst

pro st
st stst st st st st st st st

u X X u X XXX
T S Y S

X Xu X X v u X X v

 


  

                                            
l l

            
1 1 1

1 1 0 2 1 1

1 1

1 1 2 exp 1 1 exp
2 2 2 2

st st st st
pro st

st st st st st st st st

u X u X
T S Y S

u X X v u X X v

   
 


                  

             
l l  

       
1 1

1 1 1 1 1
1 1 0 2 1 11 1 2 exp 1 1 1 exp 1

2 2 2 2pro stT S Y S
     

 


                           
             

l l . 

Expanding the above Taylor series up to first order of approximation, we have 

         
2 2 2 2

1 1 1 1 1 1 1
1 1 0 2 1 11 1 2 exp 1 ... 1 1 exp 1 ...

2 2 4 2 2 4pro stT S Y S
                                        

          
l l  

        
2 2 2 2

1 1 1 1 1
1 1 0 2 1 11 1 2 exp ... 1 1 exp ...

2 4 2 4pro stT S Y S
                              

       
l l . 

After applying the exponential series, we obtain the below expression 

        
2 2 2 2

2 1 1 1 1
1 1 0 2 1 1 1

3
1 1 ... 2 1 ... 1 1 1 ...

2 8 2 8pro stT S Y S
        

                          
       

l l  

        
2 2 2 2

2 1 1 1 1
1 1 0 2 1 1 1

3
1 1 ... 1 ... 1 1 1 ...

2 8 2 8pro stT S Y S
        

    
                  

    
l l  

    
2 2 2 2 2 2

21 1 1 1 1 1
1 1 0 2 1 1 1

3
1 1 1 1

2 2 8 2 2 8pro stT S Y S
          

    
                 

    
l l  

    
2

2
1 1 0 2 1 1

1
1 1 1 2 3 2

2 2 8pro stT S Y S
    

                    
     

l l l l  

   2
1 1 0 2 1 1 2 11 1pro stT S Y S          . 
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By subtracting stY  from both sides, we have 

   2 2
1 1 0 1 1 1 0 1 2 1 2 1 1 2 11 1pro st st stT Y S Y S Y                  . 

When we apply expectation to both sides of the previous equation, we get the following bias expression: 

     1 1 1 11 2 02 2 2 021 1pro st stBias T S Y V V S V Y        .     (4.1.6) 

To obtain the MSE expression, we take the square of both sides of the equation, 

        
   

2 22 2 2 2 2 2 2 2 2
1 1 0 1 1 1 0 1 2 1 2 1 1 2 1 1 2 0 1 1 1 0 1 2 1 1 1 2 1

2 2 2
1 0 1 1 1 0 1 2 1 2 1 1 2 1

1 1 2 1 1

2 1 2 1

pro st st st st

st st

T Y S Y S Y S S Y

S Y S Y

                 

        

                

       
 

     
 

   

2 2 2 2 2 2 2 2 2 2 2 2
1 1 0 1 1 0 1 1 1 0 1 2 1 1 0 1 2 1 1 1 1 2 1

2 2 2 2
1 2 0 1 1 1 0 1 2 1 1 1 1 0 1 1 1 2 1

2 2 2
1 0 1 1 1 0 1 2 1 2 1 1 2 1

1 2 2 2 2 2 1 2 2

2 1

2 1 2 1

pro st st st

st

st st

T Y S Y S Y

S S Y

S Y S Y

               

            

        

             

        

       

 

       
   

  

2 2 2 2 2 2 2 2 2
1 1 0 1 1 0 1 2 1 1 0 1 2 1 1 1 2 1

2 2 2 2
1 0 1 1 2 1 1 0 1 2 1 1 2 1

2 2
1 2 0 1 1 1 2 1 1 0 1

1 2 2 2 4 1 2 2

2 1 2 1

2 1 2 2 2

pro st st

st st st

st

T Y S Y S

Y S Y S Y

S S Y

              

           

        

           

        

     

 . (4.1.7) 

After taking expectation, the MSE expression is obtained as: 

       
   
  

2 2 2 2 2
1 1 20 1 2 02 1 11 2 1 2 02

2 2
1 2 02 1 11 2 2 02

2
1 2 1 2 02 1 11

1 2 4 1 2

2 1 2 1

2 1 2 2

pro st

st st st

st

MSE T S Y V V V S V

Y S Y V V S Y V

S S Y V V

    

  

  

       

     

   

.  (4.1.8) 

Or  

  2 2 2 2 2
1 1 2 1 2 1 22 2 2pro st pr pr st st pr st pr st prMSE T S Y A S B Y S Y C S Y D S S Y E      .   (4.1.9) 

Here,  2
20 1 2 02 1 111 2 4prA V V V       ,  2

1 2 021 2prB V    , 2 02 1 111prC V V    , 

2 021prD V   and  2
1 2 02 1 111 2 2prE V V      . 

Now, let us differentiate the MSE equation to obtain the values of S1 and S2 to have minimum MSE. 

 1 2 2
1 2

1

0 2 2 2 0
pro

st pr st pr st pr

MSE T
S Y A S Y E Y C

S


    


 

2 2
1 2 0st pr st pr st prS Y A S Y E Y C          (4.1.10) 

 1

2 1
2

0 2 2 2 0
pro

pr st pr st pr

MSE T
S B S Y E Y D

S


    


 

1 2 0st pr pr st prS Y E S B Y D   .        (4.1.11) 

Solving Eq (4.1.10) for S1, we have  
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2
2

1 2

st pr st pr

st pr

S Y E Y C
S

Y A

 
 .         (4.1.1a) 

Solving Eq (4.1.11) for S2 , we have  

1
2

st pr st pr

pr

Y D S Y E
S

B


 .          (4.1.2a) 

By putting Eq (4.1.2a) in Eq (4.1.1a) we have 

  2
1

1 2

st pr st pr st pr st pr pr

st pr pr

Y D S Y E Y E Y B C
S

Y A B

  
  

2 2 2 2
1

1 2

st pr st pr pr st pr pr

st pr pr

S Y E Y D E Y B C
S

Y A B

 
  

2
1

1
pr pr pr pr pr

pr pr

S E B C D E
S

A B

 
  

2
1

1
pr pr pr pr pr

pr pr pr pr

S E B C D E
S

A B A B


   

 2
1 pr pr pr pr pr pr pr

pr pr pr pr

S A B E B C D E

A B A B

 
  

1 2

pr pr pr pr

pr pr pr

B C D E
S

A B E





.        (4.1.3a) 

Now, to obtain a value for S2, we put the value from Eq (4.1.3a) in (4.1.2a)  

2

2

pr pr pr pr
st pr st pr

pr pr pr

pr

B C D E
Y D Y E

A B E
S

B

 
      

 
2 2

2 2

st pr pr pr st pr pr st pr pr pr st pr pr

pr pr pr pr

Y A B D Y D E Y B C E Y D E
S

B A B E

  



 

 
2 2

st pr pr pr pr

pr pr pr

Y A D C E
S

A B E





.       (4.1.4a) 

With these values from Eqs (4.1.3a) and (4.1.4a),  the minimum MSE adopts the below form, 

   

 

22

2 2 2
1 2 2 2

2

2

2 2

st pr pr pr prpr pr pr pr pr pr pr pr
pro st pr pr st st pr

pr pr pr pr pr pr pr pr pr

st pr pr pr pr pr pr pr pr
st pr

pr pr pr pr pr

Y A D C EB C D E B C D E
MSE T Y A B Y Y C

A B E A B E A B E

Y A D C E B C D E
Y D

A B E A B

     
                 

  
  
   

 
2 2

st pr pr pr pr

st pr
pr pr pr pr

Y A D C E
Y E

E A B E
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1 22
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2 2 2
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1 22
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A B E A D B C C D E
MSE T Y
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2 2

2
1 2min

2
1 pr pr pr pr pr pr pr

pro st
pr pr pr

A D B C C D E
MSE T Y

A B E

       
.           (4.1.12) 

b. Development of the Bias and MSE of the second family of estimators 

Rewriting the Eq (4.2.1), we have, 

     
 ( ) 1 2 1 exp

2
st st stst st

st Pro st
st st st st st st

u X xX x
T T y T

x X u X x v

     
                  

l l .  (4.2.1) 

In terms of errors,  the above equation could be written as: 

           
  

11
2 1 0 2

1 1

11
1 1 exp

1 1 2
st st ststst

pro st
st st st st st st

u X XXX
T TY T

X X u X X v




 

       
                     

l l

          
1 1

2 1 0 2 1 1

1

1 1 1 1 exp
2 2

st st
pro st

st st st st

u X
T TY T

u X X v

  


                
l l  

       
1

1 1 1
2 1 0 2 1 11 1 1 1 exp 1

2 2pro stT T Y T
   


                   

l l  .     (4.2.1b) 

Expanding the above Taylor series up to first order of approximation, we have: 

        
2 2

1 1 1 1
2 1 0 2 1 11 1 1 1 exp 1 ...

2 2 4pro stT TY T
                         

l l  

        
2 2

1 1 1
2 1 0 2 1 11 1 1 1 exp ...

2 4pro stT TY T
                    

l l  .        (4.2.2b) 

After applying exponential series, we obtain the below expression: 

       
2 2

2 1 1
2 1 0 2 1 1 1

3
1 1 ... 1 1 1 ...

2 8pro stT TY T
     

                
l l  
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2 2

2 1 1
2 1 0 2 1 1 1

3
1 1 2 1 ...

2 8pro stT TY T
     

 
           

 
l l

  
2 2 2

2 21 1 1
2 1 0 2 1 1 1 1

3
1 1 2

2 2 8pro stT TY T
        

 
          

 
l l l  

 

 

   2 2
2 1 1 0 1 1 2 1 1 0 1 2 1 1 2 11pro st stT TY TY T                     .      (4.2.3b) 

The difference equation up-to first order of approximation of the proposed estimator in terms of 
errors is expressed as  

     2 2
2 1 1 0 1 1 2 1 1 0 1 2 1 1 2 11 1pro st st stT Y T Y TY T                       .  (4.2.2) 

After taking the expectation, the bias of the suggested estimator is given as: 

 2 1 1 2 02 1 11 2 2 02( 1) ( ) (1 )pro st stBias T T Y TY V V T V            (4.2.3) 

where 1

1
2 1

2
   l  and   2

2

1 3
2 1

2 8
     l l . 

Squaring both sides of the above (49) difference equation and using first order of approximation, we 
have,  

 
     

       
  

2 22 2 2 2 2 2 2
1 1 0 1 1 2 1 1 0 1 2 1 1 2 1

2 2 2 2
2 1 1 0 1 1 2 1 1 0 1 2 1 1 1 2 1

2 2
1 2 0 1 1 2 1 1 0 1 1 1 2 1

1 1

2 1 2 1 1

2 1

st st

pro st st st

st

T Y T Y T

T Y T T Y T T Y

TT Y

           

           

           

        
 
           
 
        

 
   

     
     

2 2 2 2 2 2 2
1 1 0 1 1 1 0 1

2 2 2 2 2 2 2 2
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2 2 2 2
1 2 2 1 1 2 1 1 2 0 1 1 2 1 1 0 1 1 0 1 1 1

1 2

1 2 2 2

2 1 2

st st

pro st st

st st

T Y T Y
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TT T Y TT Y
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2 2 1 1 1 1 2 1 1 0 1 1 2 1 1 0 1
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st st
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T Y T Y

T Y T TY
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2 2 2 2 2 2 2
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2 2 1 1 1 2 1 1 0 1 1 2 1 1 0 1

2 2 2
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1 2 2 2 4

1 2 2 2
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st st
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T Y T Y
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T Y TT Y

         

            

            

       
 
           
           

 (4.2.4b) 

    
2

2
2 1 0 2 1 1

3
1 1 2 1 2 1
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2 2 2 2 2
1 1 20 1 2 02 1 11

2 2 2 2
2 1 2 02 1 2 02 1 11

2
2 2 02 1 2 1 2 02 1 11

1 2 4

1 2 2

2 1 2 1 2 2

st st

pro st st
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T Y T Y V V V
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   (4.2.4) 

or 

 
    

    

    

2 2 2 2 2
1 1 20 1 2 02 1 11

2 2 2
2 2 1 2 02 1 2 02 1 11

2
2 2 02 1 2 1 2 02 1 11

1 2 4
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st st

pro st

st st

T Y T Y V V V

M SE T T V T Y V V
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   (4.2.5) 

or 

   2 2 2 2 2 2
2 1 1 2 1 2 1 21 2 2 2pro st st p p st p st p st pMSE T T Y T Y A T B T Y C T Y D T T Y E        

  (4.2.6) 

where   2
20 1 2 02 1 112 4pA V V V      ,   2

1 2 021 2pB V    ,  2 02 1 11pC V V   , 

 2 021pD V   and   2
1 2 02 1 111 2 2pE V V      . 

To obtain the values of T1 and T2, we differentiate the Eq (4.2.6) w.r.t as below: 

1

0
MSE

T


 


   2 2 2

1 1 2 22 1 2 2 2 0st st p p st pT Y TY A Y C T Y E      

2

0
MSE

T


 


 2 12 2 2 0p st p st pT B Y D T Y E    

 1 1 21 0st st p st p pT Y TY A Y C T E      

2 1 0p st p st pT B Y D T Y E    

 
2

1
1

st st p p

p st

Y Y C T E
T

A Y

 



       (4.2.5b) 

1
2

st p st p

p

Y D T Y E
T

B


 .        (4.2.6b) 

Putting Eq (4.2.6b) in (4.2.5b), we have, 
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1
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1 2

p p p p p

p p p p

B C D E B
T
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.        (4.2.7b) 

With this value of T1, Eq (4.2.6b) adopts the following form 

2

2

p p p p p
st p st p

p p p p

p

B C D E B
Y D Y E

A B E B
T

B

  
       

 
 

2 2

2 2
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.      (4.2.8b) 

The least possible value of the MSE is obtained by utilizing Eqs (4.2.7b) and (4.2.8b)  
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Appendix B 

Section 5.1 

 1 min
( )pro stM SE T M SE T  
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 20 11 0V    .

       Eq (5.1.1) 
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       Eq (5.1.2) 
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.
      Eq (5.1.3) 
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     Eq (5.1.4) 
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 2
20 02 11 12 1 0V V V      .

      Eq (5.1.5) 
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    Eq (5.1.6) 
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.
     Eq (5.1.7) 
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      Eq (5.1.8) 
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.
       Eq (5.1.9) 
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2 2
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     Eq (5.1.10) 
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  Eq (5.1.11) 

Section 5.2 
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.       Eq (5.2.1) 

Where, 2 2 2
2 2 2 2p p p p p p p p p p p p pA B B C C D E B B C D D E         and 2

3 p p p pA B E B     
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      Eq (5.2.2) 
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      Eq (5.2.3) 
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      Eq (5.2.4) 
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      Eq (5.2.5) 
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     Eq (5.2.6) 
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     Eq (5.2.7) 
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.
       Eq (5.2.9) 
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     Eq (5.2.10) 
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   Eq (5.2.11) 
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