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1. Introduction

The selection of biased and unbiased estimators has drawn considerable attention from researchers in
the field of statistical estimation. However, researchers frequently employ biased estimators in scenarios
with modest variations, ensuring their estimates closely resemble the underlying population parameter on
average. These approaches typically result in greater variety, which reduces their usefulness in most cases.
As more information becomes available, the estimation of scenario changes favors biased estimators with
a lower mean square error (MSE), not with standing their bias. This feature increased the precision of the
estimator. Using supplementary data with a strong relationship to the variable under study is a standard
procedure in the field of survey sampling. This methodology frequently enhances the accuracy and
dependability of the estimators during both the design and estimation phases. Selecting pertinent additional
data with care can significantly reduce the mean square error (MSE) of the estimators used to estimate the
population parameters. As ratio estimators may leverage the current link between the study and auxiliary
variables, they have become popular in support of this goal. Ratio estimators are useful tools for increasing
the accuracy of estimates when calculating the population total or average. Significant progress has been
made in this sector as a result of numerous academics that have created a range of ratio and
regression-based estimators, each based on a different transformation [1], significantly increasing the
amount of knowledge in this field. Within the SSRS framework, some studies have presented estimators
based on mixed ratio-type techniques. Koyuncu et al. [2] Examined the estimators developed by [1]
within the context of SSRS. Moreover, Koyuncu et al. [3] provided a combined version of the SSRS
estimator that had been put forth by [5]. Singh et al. [6] Proposed an extensive set of estimators that
utilize supplemental data in the SSRS. Singh et al. [7] generated an extraordinarily effective set of
estimators using the same SSRS architecture. Together with the references included in these publications,
the [8] provided a thorough assessment.

Stratified sampling with auxiliary variables has diverse applications in physics, engineering, and
environmental sciences. In physics, it enhances the particle density estimates in high-energy collisions,
cosmological parameter estimates, and material property predictions. Engineering applications include
reliability analysis, signal processing, and network-traffic estimation. Specific examples have revealed
their utility in estimating ocean currents, predicting structural failures, and optimizing energy systems.
These applications underscore the flexibility and potential of stratified sampling in improving the
estimation accuracy and efficiency [9].

Our primary goal of this study, in the context of stratified random sampling, is to develop and
evaluate efficient estimators that utilize only one additional variable. Furthermore, we describe and
assess two novel groups of mean estimators for a finite population. Our investigation includes a
thorough examination of their bias and MSE up to the first level of approximation, which yields useful
insights into their performance.

Researchers constantly strive for progress in their respective domains. The proposed estimator
is a significant improvement in the field of sampling methodology. The adoption of this strategy
enhances the development of statistical methods, leading to a constant enhancement in the precision
and reliability of estimating population parameters. The suggested estimator is specifically developed
to offer improved accuracy in calculating the mean of a finite population. By strategically including a
single auxiliary variable in each stratum, it optimizes the use of available information, leading to
more precise estimations in comparison to current approaches.

In stratified random sampling, precise estimation of the finite population mean is crucial.
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Estimators, such as the traditional stratified sampling estimator, ratio estimator, and regression
estimator, often rely on simplistic assumptions or fail to effectively hitch the correlation between the
study and auxiliary variable. Recently developed estimators, such as the generalized regression
estimator and the exponential ratio estimator, offer enhancements, but still have limitations. To
address these gaps, we introduce new estimators that incorporate a single auxiliary variable into
stratified random sampling. These novel estimators aim to enhance the estimation accuracy and
efficiency by better capturing the complex relationships between variables. The proposed estimators
are significant, as they provide more reliable and precise estimates, especially in scenarios with
non-linear relationships or non-normal distributions, thereby filling an important methodological gap
in the survey sampling literature. Simulation studies and empirical evaluations demonstrate the
superiority of the proposed estimators over existing ones, making them wvaluable tools for
practitioners and researchers seeking improved estimation strategies.

2. Methodology

Let us take population of size N that comprises L strata (a group of homogenous units) such that

L
Z N, =N where Ny shows the 4’ stratum size (h=1, 2,...,.L). Let each stratum sampled ns units
h=1

L
through simple random sample without replacement (SRSWOR) scheme, such that, Znh =n. Let
h=1

us suppose that the i pair of the sample (yu;, x;) represent the values of y (study variable) and x
(auxiliary variable) on the i unit of the 4" stratum, where i=1, 2, 3, ... Ny

To obtain the expressions for the Bias and MSE of the estimators, we supposed the various
properties listed below to be true.

_ Lo _ Lo
Suppose y, = Z Wy, =Y(+&)> Xu= z W,xn=X(+g) are the overall means of the study
h=1 h=1

and auxiliary variables obtained through a stratified random sample, respectively. Thus the relative
error terms &,and & satisfies the below properties.

h™" yh xh

L L
E(e)=E(g)=0 and  E(g)=C)=> w,4,Cl =V, E(el)=Cl =% w,A,C; =V,
h=1 h=1

L
E (‘90‘91 ) = Z Wfﬂ’hpyxhcyhcxh =V,
el

where,
2 2
c?, :S% and (2 _ Sy are population coefficient of variations of the study and auxiliary
yh — X —
) ) 1 1 . ) : . )
variables, respectively. 4, = is the finite population correction (fpc), ,, :% is the
h h

stratum weight, and R =

~| <

3. Summary of some estimators

Several estimators have been devised to evaluate the finite population mean in the context of
stratified random sampling with a single auxiliary variable. Researchers and statisticians have
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studied several approaches, each designed to utilize information contained in the auxiliary variable to
improve the accuracy of the population parameters estimates. The estimators in this context are
designed to address the complexities of finite population sampling, considering the stratified
structure and the utilization of a single auxiliary variable as a valuable tool for more robust and
reliable mean estimation [4]. The conventional estimator for the population mean in the context of
stratified random sampling is an unbiased estimator and is defined as follows:

L _
T,=> Wy, 3.1)
h=1

The formula for the variance of the conventional unbiased estimator is provided as:
MSE(T,) =Y V- (3:2)

Though the usual estimator is unbiased, its variance is large. Therefore, when auxiliary information
X about the study variable Y; is available, then the researchers in [10] suggest the traditional ratio
estimator as

_ X
L=y,—. (3.3)

xst
The bias of Cochran’s ratio estimator along with its MSE is given as:
Bias(T,) =Y (Vy, = V,)), (3.4)

MSE(T) =Y (Vyy +Viy =2V7). (3.5)

Bahl et al. [11] suggested an exponential ratio-type estimator. The functional form, Bias, and MSE of
Bahl and Tuteja’s estimators are as follows:

- }_;st
Tyr =Yy exp{f_i_g} (3.6)
: =3 1
Bias(Ty;) = Y(g Vo T N (3.7)
= V.
Aﬂﬂxzﬁ)zygogw+i%—2mg. (3.8)

Based on the work of [12,13] a ratio estimator is introduced where the population coefficient of
variation is known.

_ (X+C))

T..=7. ) 39
ke = Y x,+C.) (3.9)

The estimator's first-order bias and MSE are discussed as follows:
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Bias(Ty.) =T ($*Vy, — 9V, (3.10)

MSE(Tye) =Y (Vyy + ¢V, = 267,)) . (3.11)

Where ¢ = i w _X

= X+C)
Upadhyaya et al. [14] suggested a modified version of [15] by multiplying the coefficient of kurtosis
by the mean of the auxiliary variable:

_5 (YhﬂZh(x)'i'th) 3.12
Tys ysthz;wh (;11ﬂ2h(X)+th) . (3.12)

L

The MSE and Bias of this estimator are:

Bias(Tys) =Y (0V,, - V,,) (3.13)
MSE(T,)=Y (V,, +6V,, —20V,). (3.14)

Here, 0 =— X055, (%) .
Xnf,,(x)+C,,

A general family of estimators of the population mean was proposed by [16] in response to the work
of [17].

Tfi{ — aX+h = } (3.15)
a(ax, +b)+(1-a)(aX +b)

Substituting different values of the constants a, b, 7 (=0, 1, -1), and a, we obtain several estimators.
The bias and MSE of the estimator are:

Bias(TL,h):Y_(T(TZ—Jrl)azzeroz—asz“] (3.16)

MSE(T,)=Y" (V) +a’c’ 2V, - 2arzV,,) (3.17)

T = aX ,a:Land
aX +b TV,

based on [18,19], introduced a class of exponential estimators for the population mean in the
SRSWOR scheme is introduced.

T, =y, alexp{ f(}_;“) }+azexp{ (‘i(;”_?) } (3.18)
a

a(xs,+})+2b xs,+})+2b

The estimator’s MSE is obtained as,

Voonz — Vé

MSE(T,))=—002_"12
? Voo + sz - 2V12

(3.19)

where,
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L _
Voo = z Wlfﬂ’hyz |:C;2:h +%¢’th(¢’ - 4K)} >

h=1

L —
Vy = z w;ﬂ,hY: [C)zrh + ‘1‘-_¢Cx2h (p + 4K):|
=1

L — 1
V, = Z wf/ith(Cih —Z¢)2th)
h=1
X C,
Q= aX and K =2,
aX +b C.

Motivated by [20,21], proposed a ratio cum exponential type estimator is proposed, as follows:

_Ix " X, -X,
Tfk{j—;} eXP{——” x} (3.20)

st Xst' + xst’

L L
Here, X, ZZWh(ah)_ch +b,) and X, =th (ahXh +bh), and a, and b, are functions of the
h=1 h=1

known parameters like coefficient of Kurtosis, coefficient of variations etc. of the auxiliary variable.
The Bias and MSE of the above estimator are:

Bias(T,)= YB{% (@, =1)-0" =2a,0}V,, +(a, +9)VH} (3.21)
L
MSE(T,) =Y w4, (82, +(a, - 0)’S], +2(ct, —O)RS ) (3.22)
h=1
where ¢ - "_—X and « , are minimizing constant.
2(aX +b)
L
*2,(8,S, — RS, . . .
For Z‘l Wi ki (045 ) the optimum MSE converges to Regression estimator as,

Zth

aZ(opt) = L
h=1

MSE(T,) =YV, (1-p,). (3.23)

The factor p. represents the aggregate correlation coefficient over all strata and is defined as,

B 2
(Z W}?ﬂ’hphSthxhj
pre B
z W;ﬂ’thhz W}fﬂ’hsjh
h=1 h=1

Motivated by [22,23] the following difference exponential ratio estimator are proposed:

— f, ! Ast()?st_)?)
T = klyst+k2{)i(} exp y (f —)?)+2B . (3.24)

Here,An, B,, and y are the generalizing constants, and k, and k2 are the minimizing constants.

The Koyuncu estimator’s first order of approximated Bias and MSE are given as:
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BIAS(TNK):Y(kl—1)+k1)75(§5l/02—%Vuj+k2{%7(}/+%5z—é‘—leoz} (3.25)
MSE (T ) =Y’ +Y’klA+k;B+kY’C+k, YD+ kk,YE . (3.26)
X _ _CE-
Here, 6 =——=—-— . For optimum values of %, :M and k,=Y CE—MJZ) the MSE is
 X+B, 44B-E 44B—-E
given as:
—, | AD?+BC?-CDE
MSE (T )=Y?|1- . 3.27
(1) =7 1= A2 LB CDE) 32)
Here, A=1+V,+8W, 20V, , B=1+(2/+8 —y-25)Vy, | C:§VH—2—%52V02 ,

D={57—%52 —7/(7/—1)}1/02 —2 and E:{252 +7 —7(25+1)} Vi +2+2(y =0)V;,.

Tiwari et al. [24] proposed the following difference cum ratio exponential estimator as

— a —_ _ p
TTSS={k3)7w+k4()?—2“)}{%} {exp{éléH . (3.28)

st7st

Here,a., b

> st st >

G, and d, are either known parameters or some functions of the parameters of X,

a, and g which are the generalizing constants that can take values like (1, 0, -1) etc, and k&, and

k, are the minimizing constants. The estimator’s bias and MSE are provided:

Bias (T,SS) = }7“ [(laﬂk3 - 1) + U, {[(%Jr asv,, j k,R+ [g + azuwj% + (é + a3uﬂj %] Vi = (§+ a3uffjk3Vn H . (329)

Here, u, = [M} and o, = {c_‘t—X}
cSt st

c, X +d, X+d
MSE (Tygs ) =Y, [ 1+ A kS + Bk} = Cky = 2Dk, + 2E ke k, |- (3.30)
For k, = M andk, = M , the lowest possible MSE is calculated as:
2(4B8-E) 2(4,8, - E})
2 2
MSE (T, )= 72| 1- BC + 44 D0 ~4C,DE, |, (3.31)
2(4,B -E)
2
Here, A =42 |14V, + (Ve —47;,)| £ £ B =R,
’ 1 = Hg |1 E 20+(V02 Vn) > +ayv,, |+2V, 5 T U, > 1 MoV )

2
C =u, {2 + (Voz -2r, )(%"' 0‘3’%:}"’ Ver (§+ 0‘3’%:) :l » Dy =Ry, Vi, (§+ a3ustj and E, = R/usthll .
Javed et al. [25] proposed the following family of estimator estimators,
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x,-X X-x - a,X +b
s pexp| —L |V 4+ k. +k (X -X ——t—1|. (3.32
{GXP{YWX} exp[f +X}} vkl xﬁ)}exp[“ X+ } o

st st7Ust st

<

TMJ:|:

Here, the constants a, b are generalizing elements. The bias of the proposed estimator is given as,

>|

, = 1+20n7° - 5Yn', = -
BlaS(TMJ) =Y, {Voz (TUJ_UVII:|+I% [Yst +%_YSWVHJ+X5¢771%V02- (3.33)

_BG, 2DE, g ko =— R(24,D,=C,E,)  minimal value for MSE is expressed as,
2(4,8,-E;) 2(4,8,-E;)

For k, =

(3.34)

st

7 44,D? + B,C}-4C,D,E
MSE(TMJ)min:Y2[(V20+772V02—277V11)_ 2772 22 2 2:l.

4(4,B,-E7)

2
Here, A2:1+V20+4772V02, BZ:R2V02’ CZZVZO_,_[%]VOZ_MVH, D, =V, —-nV,, and

E, =V, =2nV,,.
4. Proposed estimator

The estimators suggested in this study represent significant improvements in the field of finite
population estimation. In contrast to conventional unbiased estimators, which are appropriate when only
the primary study variable is accessible, these innovative estimators designed to exploit the potential of
supplementary information. By carefully including only one auxiliary variable in the estimation process,
we achieved sophisticated equilibrium between bias and precision.

Two discrete estimator families were carefully designed and assessed using stratified random
sampling. The aforementioned estimators were specifically designed to address the inherent
difficulties associated with estimating the average of a determinate population. Consequently, they
provided a novel approach for enhancing the accuracy of the estimation.

4.1. First proposed estimator

Muneer et al. [26] proposed the following regression-exponential-Ratio type estimator

I R )

Here, w;and w, are minimizing constants and « takes values either 1 or 0 to have ratio exponential or

. (4.1.2)

product exponential estimators, respectively. Similarly, Shabbir et al. [28] proposed the below estimator

Tyeo =[wW, 7 +w, ] —( ) (4.1.b)
w. w, |€X — . A
SGO 3y 4 p (X _) 2V

Here, w,and w, are the generalizing constants and u, v are some known suitably chosen

parameters of the auxiliary variable or some real valued constants.
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In light of the work of [26,28], we propose the following estimator:

()[U{WH}()UW))H @11

Here, S; and S: are optimizing constants, whose values are obtained so that the MSE is minimum, 1
can take values from 0 to 1 and the generalizing constants «# and v are to be replaced by the values of
the population parameters or some function of the parameters of the supplementary variable.

s X u»,( (1+4) )?,) L(1+¢e) uﬂ()i(ﬂ—)i(j, 1+g,)) . (412)
T,,ml—(SIK,(1+80)+S2){1[X (1+8)H2 exp{ (X, X, (1ra))+ 2 }} )[ X jexp{uﬂ()(ﬂ+Xﬂ(1+gl))+2vx,ﬂ

After simplification and application of different series, the proposed estimator is converted to the
following form:

o :[Slzz (1+50)+S2}[1+'91‘91 _‘92‘912]- (4.1.3)

_ _Q_ — _l l _ 2 _ u)?st

Here, 4 =1 > 2l and 9, l+(l 2jf7+8(3 21)n*and n_u)_(sﬁv
prol—SY(l+80+1981+98081 951)+S(1+981 1951) (4.1.4)

Now, subtracting Y,, from both sides, we have:

T Y SY(1+80+.9151+l915051—192512)+S2(1+19151—.92512)—Yt_ (4.1.5)

prol st S

When we apply expectation to both sides of the previous equation, we get the following bias
expression:

Bzas( ) SY(1+!91V11 -4V, 02)+S (1 ,921/02) . (4.1.6)

To obtain the MSE expression, we take the square of both sides of the equation

(T, ~T,) =S¥; (1460 + (97 =28,) 8! +495,, )+ 83 (1+ (9 - 29,) &/ )

+¥) -28,Y) (1-9,6] + 96,6, )- 25,7, (1- 9,¢7) . (417
£28,8,7, (1+(8 —28, )& + 2955, )

After taking expectation the MSE expression obtained as,
MSE (T,,,,) = ST} (14 V0 +(97 =28, )V, + 48V, )+ 82 (1+(97 =29, )V, )
L7228, 72 (1= 8V, + 8V, )= 28,7, (1= 9.7,,) (4.1.8)
+28,8,7,, (1+(97 =28, )V, + 29V,

MSE(WI) SY?A +SB +Y:-28Y’C,6 —2s5,Y,D +2S,S,Y E (4.1.9)

1 Zst ““pr 2" pr st~ pr st~ pr st pr

Here, 4, =1+Vy+(& =29V, +49V, . B, =1+($-29)V, , C,=1-9V,+3V, .

2
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D, =1-9V, and E, =1+(% -2, )V, +29V,,.

Now, let differentiate the MSE equation to obtain the values of S; and S to have minimum MSE.

OMSE OMSE
M =0 and M =0. So, we obtain:
oS, oS,
SYY,Apr+S Yprr—Ypr, =0 (4.1.10)
SY”Epr-i-SB KtDpr—O (4.1.11)
. . 1 . B IC 7 D IE r
Solving Eqs (4.1.10) and (4.1.11), we gain the following optimal values of §, = pA % PE —
propr T Fpr

Yu(4,D,-C,E,)

pr_pr pr

2
AB, —E

and S, = . With these values, the minimum MSE adopts the below form:

pr—pr pr"pr pr " prpr

2
AB ~E

wsa(r,) =

—,|. 4.D.+B C-2C D E
) =¥41- (4.1.12)

4.2. Second proposed estimator

Taking some insights from the work of [26-28], we propose the following class of estimators.

—(Tv )_( X, Uy (Xst _fst)
Tpm—(leS,+T2){1[x J (1—1)()(“}})({ (yﬁm”vﬂ]. 4.2.1)

st

The values of optimizing constants 7, and 7, are obtained so that the MSE is minimum. The

difference equation up-to first order of approximation of the proposed estimator in terms of errors is
expressed as

T =Y, =[(T-1)Y, +TY, (6,- 56 +6.8" ~ 586+ T,(1-85 +5,8]) | (422)

After taking the expectation the bias of the suggested estimator is given as,
BiaS( proZ) (T I)Y +T1'Y_;t(§21/02 _511/11)+7;(1+§21/()2) . (423)

Here, 51=%77+21—1 and 52=1+%77(21—1)+§772-

Squaring both sides of the above (4.2.2) difference equation and using first order of approximation,
we have,

(T, 1) 0+ 127 (Vo + (82 + 28, )V, — 46, )

_ _ 424

E(T 402_Ym)2 = +T22 (1+(512+252)V02)_2T1Yst2 (62V02_51V11) ( )

21T, (14 6,V ) + 21T, (1+(87 + 26, )V, =267, )

or
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(L=1) 02+ 107 (Vg + (87 + 26, )Wy — 46,0,

MSE (T,,,,) = | +T; (14 (87 + 28, )V ) = 217, (8,V0, = 6111, (4.2.5)
27,7, (1+6,V,, )+ 2T\ T, Y, (1+(52+25) ~25V, )
or
MSE (T,,,,)= [(Tl—l) Y+ 1Y} A,+T'B, -2T,Y,C, —2T,7,D, + 27T ] (4.2.6)
Here, A, =(Vy+(87 426,V —4501,) . B,=(1+(57+25,),) . G= (52 -a%,)

D,=(1+6Vp) and E, =(1+(5+25,)V,, ~267;,).

BpCp—DpEp+BP} and T V(4,0,-C,E,+D,~E,)|
2 2 2
AB -E.+B, AB -E’+B,

For optimum values of 7 =—{

least possible value of the MSE up to the first order of approximation is shown as

2 2 5
use(T,,) =72l 2Pt B "26D,E, + B, +26,C, 7D, 2D, E,
pro2 Jiin — st Apo —Ei +Bp .

5. Efficiency comparison

In this section, we define the conditions that must be met for the suggested estimators to
outperform the currently used estimating methods in terms of efficiency.

5.1. Conditions for the first proposed estimator

Condition (i)
By comparing (3.2) and (4.1.12), MSE(T

prol

)< MSE(T,) if
[(Vy=1)+%,]>0. (5.1.1)

A,D +B C -2C D E,

pr—pr
Here, =

A,B -E,

Condition (ii)
By comparing (3.5) and (4.1.12), MSE ( rol) <MSE(T))if

[Vao + Vi =2V, =1+ R,]>0. (5.1.2)

Condition (iii)
By comparing (3.8) and (4.1.12), MSE(T,

prol

) < MSE (T, )it

1
(VZO+ZVOZ—VMJ—1+S&>O. (5.1.3)
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Condition (iv)
By comparing (3.11) and (4.1.12), MSE(T

prol

)< MSE (T, )it
(V2 + Vi =207, )-149%, >0,

Condition (v)
By comparing (3.14) and (4.1.12), MSE(T

prol

) < MSE (T, ) if
(Vi + 6V, =200, ) -14+%, >0.

Condition (vi)
By comparing (3.17) and (4.1.12), MSE(TPM) < MSE (T, ) if

(Vzo +a’g’ 'V, —205g7ﬂ/“)—1+9%1 >0.

Condition (vii)
By comparing (3.20) and (4.1.12), MSE(T;M) <MSE(T,)if

2
[ V00V22_V12 }_)72[1_9{1]>0'
V00+V22_2V12

Condition (viii)
By comparing (3.24) and (4.1.12), MSE(T

prol

)< MSE(T,) if

[V (1-p,) -1+ %, |>0.

Condition (ix)
By comparing (3.28) and (4.1.12), MSE(T

prol

) < MSE(T,,, ) if

AD?* + BC* —CDE
- > >0
44AB—E

Condition (x)
By comparing (3.32) and (4.1.12), MSE(T

prol

) < MSE (T ) if

2 2
g | BCI 44D 42(711)115l 0.
2(4,B -E)

Condition (xi)
By comparing (3.35) and (4.1.12) MSE(T,

prol

)< MSE(T,,, ) if

44,D? + B,C? —4C,D,E,

(Vzo +1Vy, _277V11)+ER1 -

4(4,B, - E;)

AIMS Mathematics

(5.1.4)

(5.1.5)

(5.1.6)

(5.1.7)

(5.1.8)

(5.1.9)

(5.1.10)

(5.1.11)
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5.2. Conditions for the second proposed estimator

Condition (i)
By comparing (3.2) and (4.2.7), MSE(T;M) <MSE(T,)if

{(V20 —1)+3§—2} > 0. (5.2.1)

Where, R,=4B,+BC -2C DE +B +2BC —D,—2DFE  anq R,=A4B —E +B,
Condition (ii)

By comparing (3.5) and (4.2.7), MSE(T,,,,)<MSE(T,)if
i]:{Z
Vyg+Vy =2V, —1+—%+{>0. (5.2.2)
i]:{3
Condition (iii)
By comparing (3.8) and (4.2.7), MSE(Y}W2 ) < MSE(TSD ) if
1 R
(Vzo"'ZVoz_an_l"‘az>O- (5.2.3)
3

Condition (iv)
By comparing (3.11) and (4.2.7), MSE(TPM) < MSE(T,, )if

R
(160+¢2%2—2¢K1)—1+§2>0. (5.2.4)
3
Condition (v)
By comparing (3.14) and (4.2.7), MSE(TPM) < MSE(TUS ) if
2 SRZ
(7 +0 V02—20V11)—1+§>0. (5.2.5)

3

Condition (vi)
By comparing (3.17) and (4.2.7), MSE(Tpmz) <MSE(T,,)if

R
(Vo + &g 7,y ~2agaV, ) =1+ 2> 0, (52.6)
3
Condition (vii)
By comparing (3.20) and (4.2.7), MSE(T,,)<MSE(T,)if
2
{ VoV =V }Y‘Z {1_&} 5 0. (5.2.7)
Voo + sz - 2V12 933
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Condition (viii)
By comparing (3.24) and (4.2.7), MSE(T

pro2

)< MSE(T,) if

3

[VZO (1- pn)—1+% >0. (5.2.3)

Condition (ix)
By comparing (3.28) and (4.2.7), MSE(T

pro2

) < MSE(T,,, ) if

R, AD’+BC’-CDE
R, 44B-E’

>0. (5.2.9)

Condition (x)
By comparing (3.32) and (4.2.7), MSE(TW2 ) < MSE (T, ) if

R, |BCI+44D7 -4CDE, | (5.2.10)
R, 2(4,B,-E)
Condition (xi)
By comparing (3.35) and (4.2.7), MSE(TWZ) <MSE(T,,)if
S 2 2 _
(Vat 17¥os =200, )+ - 4A2Dz4z jg ;C)DE ] o 5210
3 2P, T b

The above theorems are important for the development of conditions under which the novel
estimators outperform the suggested estimators. If these conditions hold, then the novelty of the
estimators is guaranteed. In other words, these assumptions are related to the efficiency of the
proposed estimator.

6. Numerical comparison

To check the performance of the proposed estimator relative to the classical estimator, the
following data sets were considered (see Table 1).
Data I: (source: [29])
(The two strata are Stratum 1: Rawalpindi, Lahore, Sargodha and Gujranwala. Stratum 2: Sahiwal,
Faisalabad, D.G Khan, Multan and Bahawalpur)
Y: In 2012 division’s wise employment level.
X: in 2012 division’s wise quantity of registered factories.
Data II: (source: [29])
Y: in 2012 division’s wise enrollment of students.
X:1n 2012 divisions wise the count of Govt schools.
Data III: (source: [17]). The dataset has information on the apple production amount (Y) and the
number of apple trees (X) in 854 villages in Turkey in the year 1999. The data is categorized into
strata based on the region of Turkey.
Data IV: (source: [2]) The study contains the number of instructors as study variable and the number of

AIMS Mathematics Volume 10, Issue 3, 5495-5531.



5509

students as supplementary variable in schools for 923 districts in six regions in Turkey in 2007. (1:
Aegean 2: Black Sea 3: Central Anatolia 4: East and Southeast Anatolia 5: Marmara 6: Mediterranean)
Data V: (source: [30]). The main variable pertains to the number of wet days, whereas the auxiliary
variable refers to the total number of sunshine hours.

Table 1. Summary statistics of all the data sets.

Data Stratum N, 1 Xn Sy S Pyh Cn Cun
1 1 18 8 85572.11 414.5556 248216 521.68 0.3473 2.9007 1.2584
2 18 8 19293.61 257 37979.33 365.70 0.9796 1.9685 1.423
11 1 18 8 162979.3 962.0556 255887.7 307.95 0.1447 1.5701 0.3202
2 18 8 134458 1146.722 50235.82 469.93 0.787 0.3736 0.4098
111 1 10 4 1497 1630 102.17 13.470 -0.779 0.063 0.09
2 10 4 102.6 2036 103.26 12.610 -0.503 0.050 0.122
v 1 127 31 703.74 20804.59 883.835 30486.75 0.937 1.256 1.465
2 117 21 413 9211.79 644.922 15180.77 0996 1.562 1.648
3 103 29 573.17 14309.3 1033.467 27549.70 0.291 1.803 1.925
4 170 38 424.66 9478.85 810.585 1821893 0983 1909 1.922
5 205 22 267.03 556995 403.654 8497.776 0.989 1.512 1.526
6 201 39 393.84 12997.59 711.723  23094.14 0965 1.807 1.777
A% 1 106 9 1536 127 49189 6425 0.82 4.18 2.02
2 106 17 2212 117 57461 11552 0.86 5.22 2.1
3 94 38 9384 103 160757 29907 0.9 3.19 2.22
4 171 67 5588 170 285603 28643 0.99 5.13 3.84
5 204 7 967 205 45403 2390 0.71 2.47 1.75
6 173 2 404 201 18794 946 0.89 2.34 1.91

Table 2 shows the MSE of all the estimators selected from the [25], along with the proposed
estimators under stratified random sampling with a single supplementary variable. The first, second,
and third populations consisted of two strata, each with summary information mentioned. The fourth
and fifth populations consisted of six strata each. MSE results were obtained for the proposed
estimators for three different values of the generalizing constants u and v. In the first estimator, u=1
and v=0, and no transformation is applied. In the second estimator, u=1 and v=Cx, while the third
value had the proposed estimators u=p,x and v=C,. Furthermore, in the first three populations, the
value of the generalizing constant o was 0.5, while in the fourth population, it was 0=0.65. In the fifth
population, 0=0.40, and the suggested estimators were compared. It was apparent that the MSEs of the
proposed estimators (Tporl and Tpro2) were less than those of all competing estimators in this study.
In addition, the use of transformation further decreased the MSE values of the suggested estimator.
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Table 2. MSEs of the estimators of finite population means in real data.

Estimators Data-1 Data-I1 Data-III Data-1V Data-V

T, 1094699971 1180635530  8.877803 2229.266 674045.7
T, 951308503 1137894915  18.79581 727.6426 159151.3
Ty, 069403894 1134267624  13.08039 934.847 341011.7
T, 951118894 1137875148  18.79535 727.5525 159165.3
Ty 951118894 1137875148  18.79535 727.6346 159151.7
T 3788003666 4524594622  1295.744 24760.6 9975257
T, 041649845 1129698712  4.945649 403.8754 107055.4
Ty 045428869 1129700285  4.952633 675.4922 121796.6
T, 51053306 22296777 0.170545 457.1203 38205.42
T 843775561 1086123241  4.944853 403.2811 106561 4
T,y 855382199 1086209302  4.944776 403.5506 106547.6
- 38240012 16382473 0.358289 112.3608 8942.898
& prot 38009353 16371323 0.358265 1123313 8941.515
Lo 37582179 16325464 0.358324 112.2752 8941.243
1o o 42105942 16465112 0.358323 110.2066 8459.403
1 o 41844854 16453885 0.358299 110.1783 8458.088
L 41353334 16407580 0.358359 110.1219 8457.812

The entries in Table 3 and Figure 1 represent the PRESs of the estimators for the population mean
in the stratified random sampling WOR scheme, in the presence of an auxiliary variable. PREs were
obtained relative to the classical estimator of the mean. In all five populations, the efficiencies of the
proposed estimators were higher than those of all the listed estimators. In addition, the use of
transformation (by applying different parameter values for u and v) further enhanced the efficiency of
the estimator. As in the given case, Tproi(1) did not undergo transformations. In 7proi(2), u=1I and
v=Cx, and in Tproi(3), u=rho and v=Cx (i=1,2). A visual display of the PRESs relative to each dataset is
shown in Figure 1. Each of the five lines compare the PREs of the estimators in different datasets. It is
obvious that among the five lines, the height of the graph was maximum for the last six entries
(Tprol(1) to Tpor2(3), proposed estimators) compared to the rest of the existing estimators. Hence, the
graphical display of PREs supports the claim that the proposed estimators are significantly more
efficient than the existing estimators of the finite population mean in stratified random sampling with
single auxiliary information.
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Table 3. PREs of the estimators relative to usual estimator for real data.

Estimators Data-1 Data-I1 Data-II1 Data-1V Data-V
T, 100 100 100 100 100

T, 115.0731 103.7561 47.2329 306.3683 423.5251
Ty 112.9251 104.0879 67.87107 238.4632 197.6606
T, 115.096 103.7579 47.23404 306.4062 423.4879
T 115.096 103.7579 47.23404 306.3717 423.5241
Ties 28.89913 26.09373 0.685151 9.00328 6.757176
T, 116.2534 104.5089 179.5073 551.9688 629.623
Ty, 115.7887 104.5087 179.2542 330.021 553.4193
T, 2144.229 5295.095 5205.549 487.6761 1764.267
Trs 129.7383 108.7018 179.5362 552.7822 632.5421
T,y 127.9779 108.6932 179.539 552.4131 632.6243
v ot 2862.708 7206.699 2477.835 1984.024 7537.217
& o 2880.081 7211.607 2478.002 1984.545 7538.383
Lo 2912.817 7231.865 2477591 1985.537 7538.612
1o o2 2599.871 7170.529 2477.597 2022.807 7968.005
1 Ty 2616.092 7175.421 2477.763 2023.326 7969.244
L 2647.187 7195.671 2477.352 2024.363 7969.504

e=@==Data 1l e=fll=Data 2 Data3 e==Data4 ===Data5

25000

20000

15000

10000

5000

Figure 1. PREs of the estimators in real data.
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7. Simulation study

In the section, we conducted a simulation study of both the established and newly introduced
estimators to assess the stability of these estimators across random samples. We began with a stratified
population of N=7000 units, from which a sample of n=100 pairs of values (), x) were selected. This
population comprised two strata with sizes N;=600 and N>=400. By employing proportional allocation,
we extracted samples of size n;=60% and n,=40% of the total sample size (n) from these respective
strata. The mean vectors and covariance matrices are expressed as follows (see Table 4):

Table 4. Strata summary statistics.

Stratum N n H >
1 600 60% [3 8] 4 4
2 400 40% [6 2] 2 15

Here, MSE and PRE values for the estimators were carried out using the following steps in R software.
Step-1: Simple random samples without replacement (SRSWOR) of different sizes n=10, 20, 50, 100,
200. were drawn from the target population. For each sample size, a loop of 10,000 times was caried
out and allowed R-studio to compute the estimator values at each iteration.

Step-2: For each sample, the values of the existing and suggested estimators were calculated
separately by taking the average of all iterations.

Step-3: Using the values obtained in Step-2 the MSE of the estimators is obtained.

Step-4: PRE of the estimators is obtained using the following formula:

Var(T;) . :
pre(T)) =———x100 Where, T, replaces different estimators.
MSE (Z)

Table 5 presents the simulation results for the MSEs of the estimators with respect to the usual
estimators for various sample sizes. By exploring the table, we can see that the MSEs of the suggested
estimators are smaller than those of other estimators. Furthermore, our estimator is stable with respect
to sample size, and as the sample size increases, the MSE of the estimator also decreases. Hence, our
suggested estimators are the best among all competing estimators under study.
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Table 5. MSEs of the estimators of population mean through simulations.

Sample Size (n)

Estimator 10 20 50 100 200

T, 0.57167885 0.23228891  0.097460 0.04408674 0.02228120
T, 0.2800072 0.10384171  0.03535013 0.01578904 0.00729696
T, 3.46848296 1.42177894  0.59069627 0.26428811 0.13505578
Ty 0.07554437 0.02890564  0.01200708 0.00584716 0.00253814
T 0.16541336 0.06573896  0.0225091 0.01076952 0.00461603
Ty 0.23223990 0.08851816  0.02989319 0.01389308 0.00621069
Tey 0.28000722 0.10384171  0.03535013 0.01578904 0.00729696
Ty 0.02673456 0.01189527  0.00481989 0.00252548 0.00098261
Ty 0.06359180 0.02652505  0.01157819 0.00575902 0.00251554
Trg 0.16076453 0.02538855  0.00588480 0.00266663 0.00101421
Ty 0.07674410 0.02874377  0.01196348 0.00584770 0.00253646
?;ZTpml 0.013249273  0.00518138  0.00217518 0.00100506 0.00033924
1,%ijrol 0.013210254  0.00507809  0.00215045 0.00083683 0.00033277
p,()éf];r-al 0.013109884  0.00503650  0.00211079 0.00078796 0.00033036
?;ngmz 0.0138653 0.00547664  0.00243563 0.00108857 0.00036112
1,%prr02 0.0132086 0.00539962  0.0023895 0.0009051 0.00035744
p,()éf];roz 0.0130670 0.00526565  0.00235865 0.00086015 0.00034784

Table 6 shows the simulation results of the different estimators with respect to the usual
estimators for the various sample sizes. By exploring the table, we can see that the PREs of the
suggested estimators are higher than those of all rival estimators. Furthermore, the suggested
estimators are stable with respect to sample size, and as the size of the sample increases, efficiency also
increases. Hence, our proposed estimator is superior to all the competing estimators under study. The
visual display of the PREs is shown in Figure 2, where each line shows the PREs distribution with a
different sample size. Upon examination of the graph, we decided that in each of the samples, the
height of the line was the maximum for the last six values (Tprol(1) to Tpro2(3), the proposed
estimators). Hence, the graphical display of the simulation results supports the superiority of the
proposed estimators.
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Table 6. PREs of the estimators of population mean relative to usual estimator in simulated data.

Sample Size (n)

Estimator 10 20 50 100 200

T, 100 100.00 100.00 100 100.000
T, 2041658  223.6952 2756999 2873062 305.3491
T, 16.4821 1633791 1649922  16.68181 16.49777
Ty 7567458 803.6109  811.6894  773.0501 877.8541
Ty 3456062 3533505 4329804  424.0894 482.6918
Ty 2461588 2624195 3260283 3268191 358.7558
Ty, 2041658  223.6952 2756999 2873062 305.3491
T, 2138351 1952783 2022.043 1735336 2267.554
T 898.982 875.7341 8417566 7852975 885.7426
T 355.6001 9149358 1656135 162634 2196.898
T,y 7449157 808.1366  814.6483 7735519 878.4379
2o o 43147941 4483149 4480530  4386.484 6631.513
o Lyror 44320027 4574340  4532.065 5304581 6692.862
Lo 46565601  4612.107 4617214  5718.092 6744.618
o 4123084 4241449 4001426 4049.964 6229.81
T2 4237.098  4301.946  4078.654 4904424 6324.287
ol 44055421 4411404 4132013 5238.144 6405.531

=== Data 1 ==fll=Data 2 Data3 e==Data4 ==de=Data5
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20000
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10000
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Figure 2. PREs of the estimators in simulated data.
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8. Discussion

We provide two new families of estimators in the context of stratified random sampling that are
intended to enhance population mean estimation by utilizing a single auxiliary variable. Eq (4.1.1)
formalizes the study in [26,28], which has a major effect on the construction of the first family of
estimators. Equation (4.2.1) provides the mathematical representation of the second family of
estimators, which is also developed based on the findings published in [28,31]. Expressions for the
bias and mean squared error (MSE) of both estimator families were derived by a comprehensive
theoretical study that took into account their first-order approximations. The statistical features of
these formulations are explained in depth in Eqs (4.1.6), (4.1.12), (4.2.3), and (4.2.7).

To determine the relative efficiency of our proposed estimators compared to existing methods, we
established performance criteria based on MSE minimization and precision improvement. Specifically,
Egs (5.1.1)«(5.1.11) delineated the necessary conditions under which the first estimator family
achieved superior performance relative to conventional estimators. Likewise, a corresponding set of
conditions was identified for the second estimator family, ensuring its enhanced efficiency over
competing methods. These are those situations that are necessary for the proposed estimators to be
efficient relative to the estimators mentioned under study.

Both real and simulated datasets were used to thoroughly assess the suggested estimators’
effectiveness. The MSE and percentage relative efficiency (PRE) values calculated for real-world data
are shown in Tables 2 and 3, which also show how the estimator performs differently for varying
values of auxiliary variables, represented by u and v. Among these tables, one can observe that the
MSE values of the last six estimators, the proposed one, have small values relative to all the other
estimators shown in the table. Similarly, the PRE values for the proposed last six estimators are larger
than all the competing estimators for the population mean given in the tables. The findings support the
suggested estimators' statistical superiority by showing a constant trend of producing lower MSEs and
higher PREs than traditional estimators for the five data sets. The observed patterns indicate that the
suggested methodologies provide more accurate estimates of the population mean, thereby reducing
estimation errors and enhancing efficiency.

Furthermore, the robustness of these findings was confirmed through extensive simulation
studies, with Tables 5 and 6 summarizing the outcomes. The performance of the estimators was tested
under five sample sizes: 10, 20, 50, 100, and 200. In all sample sizes used in the simulation studies,
both families of estimators exhibited small mean squared errors (MSEs) and large values of percent
relative efficiencies (PREs) compared to all competing estimators for the population mean.
Furthermore, the tables confirm that the proposed estimators are less variable across sample sizes in
terms of MSEs and PREs. These simulated results align closely with the empirical observations,
further validating the performance advantages of our proposed estimator families. Notably, the trends
in simulated data mirror those observed in real-world datasets, suggesting the generalizability of our
approach across population structures.

Visual representations of the PRE values are provided in Figures 1 and 2, which illustrate the
efficiency comparisons between our estimators and existing alternatives. Each line in Figure 1
represents a distinct population, while each line in Figure 2 corresponds to a different sample size. In
both figures, the graph lines for the proposed families reach the highest points, indicating superior
percent relative efficiencies (PREs). A consistent upward trend is evident, demonstrating that the
proposed families consistently achieve higher PRE values across scenarios. This graphical evidence
strongly supports our conclusion that the new estimator families outperform traditional approaches in
terms of precision and reliability.
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By analyzing the summary statistics in Table 1 and the percent relative efficiencies (PREs) in
Table 3, we observe the following patterns: In the first three datasets, the correlation coefficients for all
strata are comparatively smaller than those in the last two datasets. Additionally, the PRE values for
the first estimator are higher in the first three datasets compared to the second estimator. Conversely,
the PREs for the second estimator are higher than those of the first estimator in the last two datasets.

Based on these findings, we conclude that the first family of estimators performs more efficiently
when the correlation coefficients for all or some of the datasets are relatively small. On the other hand,
the second family of estimators performs more efficiently when all or most strata have larger
correlation coefficients.

Overall, our research offers a substantial contribution to the field of sampling methodology by
introducing efficient estimators that optimize the use of an auxiliary variable in stratified random
sampling. The proposed approaches not only enhance estimation accuracy but also provide a more
reliable alternative to existing techniques. Researcher can extend this work by exploring the
application of these estimators in more complex sampling frameworks or integrating additional
auxiliary variables to further refine precision levels. The methodological advancements presented in
this study pave the way for improved sampling strategies in statistical analysis, benefiting empirical
research and practical data collection applications.

9. Conclusions

We introduced two new exponential estimators that can be used to calculate the population mean
when stratified random sampling is applied with a single auxiliary variable. We also found formulas for the
first-order bias and the MSE of the new estimators. Furthermore, a demanding criterion was established to
identify the circumstances in which the proposed estimators outperformed traditional and existing
alternatives. We performed a thorough comparison of the MSEs and PREs of our newly designed
estimators with those of other approaches. We conducted a comprehensive review, including both
simulated experiments and real-world datasets, to improve the robustness and usefulness of our findings.
The empirical findings from this investigation consistently confirm the superiority and effectiveness of the
proposed estimator families when compared to all the other estimators examined in this study.

We emphasize the significant advancements made by our cutting-edge exponential-type
estimators and highlight their improved performance and efficacy in the difficult field of stratified
random sampling using a single auxiliary variable.

The proposed estimators account for the nonlinear relationships between the study and auxiliary
variables, in contrast to traditional estimators. Additionally, the proposed estimators are a hybrid of
regression, ratio, product, and exponential functions to obtain more accurate results. Furthermore, the
proposed estimators can adapt to multiple distributions, making them more versatile.

The first limitation of the suggested estimators is that although they can handle nonlinear
relations, they assume specific functional forms between the variables. Violation of this assumption
may affect the performance of the estimator. Adding more parameters to the suggested estimators
increases complexity and computational requirements.

In conclusion, researchers can develop more effective variables in light of the suggested
estimators to cope with nonresponse problems. Researchers can extend the proposed estimators to
scenarios of multiple auxiliaries and examine the proposed estimators in other sampling designs and
population scenarios.
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Appendix A
a. Development of the Bias and MSE of the first family of estimators

Rewriting the first family of estimators

— X usz(fvr_)?vt) X, uw(/?"—)?w) (4 1 1)
T =(S7,+8)[1| == |{2- S L 1-1)] = S : e
! ( St 2)[ [sf J{ exp|‘usz (th+‘xsz)+zvt‘|}+( )(XstJexp[u,z(st+xvz +2Vsz
In terms of error, the estimator could be written as
_ (x (1+)-X, X,-X,(1
:(Slet(l-i—go)+Sz) 1| =—— 2—exp u”( +4) ) -1) X‘"(P_gl) exp ui( v +€1)
X, (1+¢) u, (X, +X, 1+g ))+2v, X, u, (X, +X, (1+5))+2v,
_ _ X ¢ —u X
— SY 1 S l 1 1 2_ 7“5[ :t 1 1_1 1 — st 73[ 1
(3155 1054) { o) - (ZXﬁXygl)”vﬂ}( I m[ (2X”+Xwgl)+2vﬁﬂ

¢,
2

i)

=(S7, (1+5)+S, >

prol

~—
T

1(1+5) {2 exp[’f (1+

] Jro-voecren] 250022 7]|

Expanding the above Taylor series up to first order of approximation, we have

prl=(Slnt(1+go)+sz)[l(1+el) {2 exp{n; (1 ’7§I+’745 .H}-k(l—l)(l-kgl)exp{ ’7; (1 ”§1+’745 m
Tpml:(SIY”(1+80)+S2){1(1+51) {2 exp|:772' nzfz+..1}+(1—1)(1+81)exp{—77g'+7724€'2—...H'

After applying the exponential series, we obtain the below expression

= [ ne, n'e ne, 3n's’
T, =(SY,(1+£)+5,) 1(1—gl+gf—...){2 (1+ 21 81 +_,,J}+(1-1)(1+q)(1—21+ - i +H
B 2.2
=(S.7, (1+&)+S,)|[1(1-5 +& —...)[1—772%+77;‘+...j+(1—l)(l+gl)[l—77g‘+377881 +H
_ i 2 2.2 3722
(5T, (a5 R ] (R H
i 2
o = (ST, (146,)+5,) 1+(1—’27—21]51—{1+(1—;]77+’§(3—21)}55}

T, :(SIZz(1+gO)+S2)|:1+‘91€1_‘92812:| :
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By subtracting Y, from both sides, we have

st

T, —Y, =S¥, (1+5+ 96 + 956 -9 )+, (1+ 95 - %& ) -7, .

prol Ty
When we apply expectation to both sides of the previous equation, we get the following bias expression:

Bias( ) SY(1+‘91V11_‘92V02)+S2(1_‘92V02)_Zz- (4.1.6)

prol

To obtain the MSE expression, we take the square of both sides of the equation,

1 st

(T, -T,) =SPP2 (146, + 96 + a6, e ) +S2 (1486 8l | +12 42557, 1+, +86 + 96,6~ el ) (1+ 96~ %é?)
_2S1Yst (1+go +'91‘91 +‘9150‘91 _‘92512)_2S2?sz(1+L9151 _'92512)

(T, -Y, )2 =87} (1+6 + 36 +26,+296,+295,6, - 29,5 +296,6,)+5; (1+ K& +296, - 29,6 )+ Y,

+28,8,Y, (1 +&,+9e + 8,6 — e’ + e + 8,6 +F e —he )
28,7} (1 +&,+8¢ +8¢,6 -3¢ ) -28,Y, (1 +3¢ - 1926‘12)

prol T

(T, =7,) =S272 (1426, + 28,6, + &7 +(9: =29, )& + 48,6, )+ 53 (1428, +(8 -29,) &
+Y? -28Y;] (1+50 +8¢& —-9,¢ +191£081)—2S2Kt (1+ Y, —32512) (4.1.7)

128,81, (1+5,+295 +(97 -28,) 57 +29.5,5))
After taking expectation, the MSE expression is obtained as:
MSE (T, )= SV (1 Vo + (92 =28, Wy, + 487, ) +82 (1 +(92 - 292)V02)
+)7vr2 —2517; (1_‘92V02 +191V11)_2S27vt (1_‘92V02) ) (418)
+28,5,7, (1 +(92 28, )V, + 2311/“)
Or

MSE (T, )=SY] A, +S;B, +¥]-28Y)C, —25,Y,D, +25S,YE, - (4.1.9)

Here, A, =14Vy+(8-29)V,,+43%, ., B, =1+($-29)V, . C,=1-9V,+3V, .
D, =1-8V, and E, =1+(F -2 )V, +29V,,.

Now, let us differentiate the MSE equation to obtain the values of S; and S> to have minimum MSE.

aMSE( prol) _
— 0= 2SYA +2SY.E -2Y'C, =0
aSI D P
SYA +SYstEpr—Ys C,=0 (4.1.10)
OMSE _
M:o = 28,B, +2SY,E, -2Y,D =0
oS, ‘
SY,E +S,B, ~Y.D =0. 4.1.11
st pr st™ pr

Solving Eq (4.1.10) for S1, we have
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~S,YE, +Y’ C,
= = . (4.1.1a)
Y, 4,
Solving Eq (4.1.11) for S2, we have
SYE
Sz— fl P’B Sl (4.1.2a)

pr

By putting Eq (4.1.2a) in Eq (4.1.1a) we have

S (YstDpr S YstEpr ) Y;tEpr + Yst Bprcpr
=
Yst Aperr
_SYJE, -Y!D,E,+Y;B,C,
b Yst Aperr

SE2+BC -D E

pr__pr pr__pr
1=
A,B,
SE, _B,C,-D,E,
- _
Aper" Api"Bpr
2
S(4,B,-E,)_B,C,-D,E,
A,B, A,B,

B,C, -DE
e (4.1.3a)
)

pr—pr

S, =

Now, to obtain a value for S2, we put the value from Eq (4.1.3a) in (4.1.2a)

_ B,.C, -DE, |-
)/stDpr ( p/l pB 22 S ]YstEpr
pr

pr—pr

B

pr

S, =

_Y,4,B,D,-Y.D,E, ~YB,C,E,+YD,6E

st~ pr——pr st pr~pr—pr pr—pr
2 2
B, (4,B, -E.)

YY,(A D,-C,E, |

prpr

;. (4.1.4a)
AB —E

With these values from Eqs (4.1.3a) and (4.1.4a), the minimum MSE adopts the below form,

B,C —-D E ) — Yu(4,D, -C,E, _ B C -DE )_
MSE( ml) {—pAPB 22” J YS,ZAP,+[ L b ")J BP’JFY‘:_{%JY’ZC

prepr 4,8, - E;r 4,8, - E;r
) (AprDP’ C”’E”r ) Y,D, +2 ( Bprcpr DprEpr j (Ar"rDr'” C”’ E’” ) Y E
2 st r 2 2 st r
4,8, -E, ! 4,8, -E, A,B, —E, !
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A4,B,C +4,D)E —24,B C, D E +A'B D> +B C.E —24 B C D E,
—24,B,C: +24,B,C, D E +2B C’E' -2C D E. -24>B D> +24, B C D E_
MSE(T,, )= 72| 1+ +24,D) E> -2C, D E, +24,B C D, E, - 21231,,(7;15; -24,D)E’ +2C, D, E
(Aperr - £, )
MSE(T,, )= 7| 1+ -4,B°C> +4,D"E’ -4’ B D’ +B, C,E., -2C,D, E +24,8,C,DE,
(4,8, ~5,)

-A_B (AD2+BC2 2CDE)+E2(AD2+BC2 2CDE)

MSE )72 1 pr-—pr pr pr— pr pro— pr pr pr pr =~ pr pr— pr
( prol) st I + (A[”Bpr E[zjr)z
MsE(r, )= 7 1+—(AWBW >)(4,D} +B,C: -2C,D E,)
prol st
I (4,8, —E%Y
2
MSE(];M)M;I_(?{I Ay Dy + By Cr =2C, Dy } 4.1.12)

Apr'B pr —E;r
b. Development of the Bias and MSE of the second family of estimators

Rewriting the Eq (4.2.1), we have,

X % u, (X, -%,)
T Ty +T,) 1| —= 1-1) == — . 4.2.1
st(Pro) — ( yvt + )|: [ f J_‘_( )(Xst }:| eXp ust (X + f )+ 2\/‘ ( )

st

In terms of errors, the above equation could be written as:

T,,=(TY,(1+&)+T,) 1£_i—ﬂ)j+(1—1)[_”y—

X, (1+¢

Tmz:(rlg,(ugo)nz)[l(ugl)1+(1_1)(1+gl)}expL (z)?_uf*”j)m }
st 1 st

st st

T,.=(T¥, (1+e,)+ Tz)[l (1+6) +(1-1)(1+¢, )} exp{—%(l +%) } : (4.2.1b)
Expanding the above Taylor series up to first order of approximation, we have:

2.2
Tpm:(TIYH(1+80)+T2)[1(1+51)1+(1—1)(1+el)}exp{ ’7281 [1—’7251+’T—...H

]—;JVUZ

(17, (1+6)+ L)1 (1+5) +(1—1)(1+51)}exp{—77261+7724€12—...] (4.2.2b)

After applying exponential series, we obtain the below expression:

3 2.2
T,.=(TY, (1+go)+Tz)[1(1—51+gf—...)+(1—1)(1+gl)][1—’72‘"1+’7851+...j
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2.2
T, =(5Y, (1+5)+T)[ 1+ -2l ¢ +1$12J(1—'728‘+3’7;+...]

2 2.2

TOZ:(]}K[(1+50)+T2){1+51 —2lg+lgl - 77281 77;‘ +771$12+3778€‘}
2

Tmz:(rlx,(1+go)+rz){1—(g+21—1]gl+{1+’27(21—1)+3Z}glz}

T

pro2

=[ 1Y, + 1Y, (5, - 06, + 8,67 =560 )+ T, (15,6, + 6,67 |. (4.2.3b)

The difference equation up-to first order of approximation of the proposed estimator in terms of
errors is expressed as

T =Y, =[(T-1)Y,+TY, (6,- 56 +0.8" - 56+ T,(1-85 +5,8]) | (422)
After taking the expectation, the bias of the suggested estimator is given as:
Bias(T,,,,) = (T, DY, + 1Y, (8,Vy, =5V ) + L,(1+6V,,) (4.2.3)

where 51=%77+21—1 and 52=1+%17(21—1)+§772.

Squaring both sides of the above (49) difference equation and using first order of approximation, we
have,

_(Tl _1)2 le +T12Ysz2 (50 _51‘91 +52312 _51‘90‘91 )2 +T2 (1_5‘91 +0 ‘912 )2
T, -1)Y; (2, - 6,6+ 0,6 0,66, )+ 21, (T, ~1) Y, (1- 6,6, + 6,57 )

20(7,
27]T}7 ( ~ 5.6 +0,8 515051)(1—5151 +5251)

(L1 T+ T (6 + 676 - 28,62,
(T —Yt)Q = +T2(1+5252 —268,6 +206. 52)+2(7]2 —Tl)zf(go — 5.6 +0,8 —515051)
+2(TT -T,)Y, (1 5,6 +0,& )+27}Tzzt(50—5151 +0,8] —0.8,6, —5,6,8, +512512)

_(Tl ~1) Y2+ Y2 (26, -26,6,+ &, +20,5 + 6,60 —25,6,6, - 25,6,5, )
(T . —1_(,)2 =|+T7; (1+512512 -20,¢&, +2§2512)—2T117S,2 (6‘0 ~ 5,6 +0,8 —516‘06‘1)

-2T,Y, (1—5151 +52512)+27}T27St (1+50 — 5.6 — 0,6 +0,8 + 5,8l —0.8,6,— 5,648, +512512)
(T-1) 02+ 1772 (26, - 266, + £ +(87 +25, ) 6 ~ 45,605,

_Yst)2 = "'Tz2 (1_25151 +(512 +252)812)_2T;zt2 (50 —6¢ +52512 _515051) (4.2.4b)

pro2

LY, (1-56 +6,5")+ 2L LY, (1+8, - 25,5 +(87 +28,) ] =256, )
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(Tl - 1)2 Y_vrz + lefvtz (Vzo + (512 + 252)V02 - 451[/11)

E (Tprn - )7.7[ )2 = "'Tz2 (1 + (512 + 252 )Voz)_ 2Tth2 (52V02 - 51V11) (424)
“2L,T, (14 8,0, ) + 2L ILT, (14 (87 + 26, )V, =267, )
or
(1 =1) 77+ 127 (Vg + (87 +28, )V, =467
2 (4.2.5)
MSE (T, ) = | +T7 (14 (8] + 28, )V, ) = 217, (8,V0, =5V
STV, (14 6,V )+ 2T LT, (14 (82 + 28, )V, - 257, )
or
MSE(T,,,)= [(T 1) V24TV A, +T2B, - 2T,V,2C, - 21,7, D, + 21T, YstEp] (4.2.6)
where A, =(Vy +(82 428,V —457,) . B, =(1+(57+26,)V,) . G =(dp-N) |
D,=(14+8)}) and E, =(1+(57 +25,)V,, ~257,).
To obtain the values of T1 and T2, we differentiate the Eq (4.2.6) w.r.t as below:
OMSE — _ _ _
. 0= 2(T,-1)Y;+2TY A, -2Y,’C,+2T,Y,E, =0
1
OMSE _ _ _
o =0=  27,B,-2V,D, +2TV,E, =0
(,-1)Y,+T,Y,4,-Y,C,+T,E, =0
T,B,-Y,D,+TY,E, =0
Y,+Y,C, -T,E
T =_r 27 (4.2.5b)
1+4,)7,
r, = Lulp "N E, (4.2.6b)
B

st st~ p B
L= =
(1+4,)7,
- _LB,+Y.B,C, -Y,D,E +TY E’
1 =
(1+4,)B,7,
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2
1,(4,8,+B,-E,) B,+B,C,~D,E,
A,B,+B, A,B,+B,

B,C,-DE, +B,
2
A,B,—E, +B,

(4.2.7b)

1

With this value of T1, Eq (4.2.6b) adopts the following form

The least possible

)4

B,C,-D,E,+B,

B,C
Ap

,~-D,E, +B
2
B,—E}+B,
B

p

)Tssz_( pjfstEp

v 2 2
Y,(4,8,D,-D,E}+D,B,~B,C,E, +D,E}~-BE,)
2
B,(4,B,-E.+B,)

T,

Y,(4,D,-C,E, +D,
A,B,-E+B,

“£,). (4.2.8b)

T =

2

value of the MSE is obtained by utilizing Eqs (4.2.7b) and (4.2.8b)

— 2 ]
—, (B,C,-D,E,+B (4,D,-C,E,+D,-E,) R

)4

’(

A,

2 st 2
B, —E>+B, AB —E+B,

2
_ Y,
+ - YstAp+ 2 P
A,B,-E>+B,
Y(4D —-CE +D _
( P r r—r P D

P

B,C,-D,E, +B,

p

st

MSE(T,,,,)=

1

_E”)JY

) st
Ysz Cp - 2[

+2

|

T

pro2

MSE (

)min

A,B,-E, +B, A,B,-E,+B,
B,C,~D,E,+B, [)7 (4,0,-C,E, +D,~E, )]Y r

4,B,-E, +B, 4,B,-E,+B,

B,C,+D,E,+ 4B, +E,-2B,C,D,E, ~24,B:C,+2B,C,E’+24,B,D E, -2DE, |

—24,B,E; + A,B;C; + A,D,E;+A,B, ~24,B,C,D E, +24,B.C,~24,B,D E, +A'B,D

+B,C,E;+B,D;+B,E, ~2A4,B,C,D,E,+2A4,B,D,-24,B,D,E, -2B,C D E, +2B,CE;

-24,B,C, +24,B,C,D,E,-24,B.C,+B,C,E,-2C,D,E, +2B,C,E;, -2B,C;+2B,C,D E,

-2B;C,-24;B,D, +24,B,C,D,E,~2A4,B,D} +24,B,D,E, +24,DE; -2C,D E}+2D;E,

-2D,E, -24,B,D}+2B,C,D,E,-2B,D,+2B,D E,+24,8,C,D E, -2B,C,E,+2B,C,DE,

-2B,C,E; -24,D,E, +2C,D E, -2DE, +2D E,+2A4,B,D,E,-2B,C E; +2B,D E, -2B E,

(APBP _E; + BP )2

or

MSE(

AIMS Mathematics

-2C,D,E,+B,+2B,C, D2

p_p P

2
A,B,-E +B,

2 2
4,D}+B,C DE|

v2
¥

T

pro

~

)
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Appendix B

Section 5.1
MSE (Tpml )min < MSE(TSI)

_ A D*+B C>-2C. D E —
Yz{l_ prpr Aperr E2 pr_pr pr}SYZVzo
pl” pl”_ pl”

2
A0 +B,C -2C D E,

1-R, <V, where 3= 4B I

(Vo —1)+R, =0,

MSE(T,,, ). < MSE(T,)
=5 —2
Y {l_ml}SY(Vzo‘i'V:n_zVu)
{1—931}S(V20+V02—2V11)
[Vao + Vi =2V, =1+ R,]> 0.

MSE(T,,,) < MSE(T,)

min

V{I-R,) <Y (%, +%—2VH)
Voo
{l_ml} S(Vzo""T_an)

[Vzo+%V02—VHJ—IHR1 >0.

MSE (T,,, ) < MSE(Ty)
T2 {1=R,} < T2V + 92V, — 267,
{1-R < (Vy + 87V, —2¢V,)

(Vo + 8V, =207, ) -1+ R, >0.

MSE (T,,, ) < MSE(Ty)

— =2
y? {1—931} <Y (V20+92V;)2 _26”/11)

{I—ERI} <V +0°V,, —20V,,)

AIMS Mathematics

Eq(5.1.1)

Eq(5.1.2)

Eq(5.1.3)

Eq (5.1.4)
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(V2o +6V =26V, ) =1+%, >0 Eq (5.1.5)

MSE(T,,,) < MSE(T,)

mi

7?2 {1—9’1’1} <Y? (VZO +a’c’n’V,, —2ar7rV“)
{1-%,}< (Vzo +a’t’ 'y, _20”7[[/11)

(V20+a2g27[2V02—2C(g7Z'V11)_1+SR1 >0. Eq (516)

MSE(T,,, ) <MSE(T,)

min

}72{1_9{ }<M
S
Voo"'sz_lez

—_— 2 —_—
{M}_yz[pmlpo.
Voo + V2 =2V, Eq (5.1.7)

MSE(T,,,) < MSE(T,)
PR} < T, (1-p,)
{1I-R,} <V, (1-p,)

[V (1-p,)-1+%,]>0. Hq (5.18)

MSE(T,,,) < MSE(Ty)

mi

2 2
172{1—9%1}3172[1—’“) + BC CDE}

44B - E*

2 2
f1_w,} <[ 1AL+ BC? = CDE
44B—E

AD? + BC* —CDE
R, — > >0.
44AB-E Eq(5.1.9)

MSE(T,,,) < MSE (Tyg)

mi

-} <7 [1_3@2 ra4D ““*DlEl]

2(4,B,-E})

B,.C} +44,D] —4C,D,E,
2(4B,-E})

{1—9%1}4[1—
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%, _[Blcf +44,D! —4C D(E, ] 0.

2(45 - Ef) Eq (5.1.10)

MSE (T

prol

) < MSE(T\,) 0

— — 44,D? + B,.C?-4C,D,E
Yz{l_ml}SYZ[(V20+772V02_277V11)_ oL + B,G 236D, 2}

4(4,B,-E;)

44,D? + B,C? —4C,D,E

1-R < (V,, +nV,, —2nV, |——22 22 22

{ 1} [( 20 T71 Vop =477 11) 4(Asz_E22) ]

44,D; + B,C; —4C,D,E,
4(4,B, - E;)

(Vzo +772V02 _277[/11)"'9{1 o

] 0.
Eq (5.1.11)

Section 5.2

MSE (T

pro2

), S MSE(T,)

2 2
7)1 A,D2+B C.—2C,D.E +B +2B,C —D,-2D E, 7
AB, —Ef} +B, 20

{(V20—1)+%}>0. Eq (5.2.1)

3
2 2 2 _ 2
Where, ®,=4,B,+B,C,-2C,D,E,+B,+2B,C,-D.-2D E, and R, =4 B, -E, +B,

MSE(T,,,,) < MSE(T,)

mi

_ ‘R —
Yz {1—?}9’ (Vzo +K)2 _2V11)

3

R
{l_f} < (Vzo +V02 _2V11)

3

g“RZ
{VZO+V02—2VH—1+9T}>O. Eq(5.2.2)

3

MSE(T,,,) <MSE(T,,)

mi

7 {1—%}3?2<n0+%—2m

3
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R V
{1—?2} <My +%_2Vn)

3

(Vzo +1V02 _VllJ_H_& >0.
4 R, Eq (5.2.3)

MSE(T,,,,) . < MSE(Ty.)

min

Y’ {1_ mz}ﬁ Y_2(Vzo +¢2V02 - 2V,))

{1_ SRZ}S Voo + 67V s = 26711)

(Vo #4200, -1 42250

3

Eq(5.2.4)

MSE(T,,,,) < MSE(T,)

min

v {1_%} S?Z(Vzo +92V02 _201/11)

3

{1—%} < (Vzo + ‘92V02 B 26'V11)

3

(1/20+921/02—29VM)—1+& >0
R, Eq (5.2.5)

MSE(T,,,) < MSE(T,)

) iRz 2 2_2_2
Y 1—? <Y (V20+ar7rV02—2ar7lel)

3

{1 _&} < (Vo + o’ n Wy, —2a1V),)

3

(I/20 +a’g’n’V, —ZO{gﬂ'VIl)—l+% >0,

3

Eq (5.2.6)

MSE(T,,,) < MSE(T,)

min

7 {lfﬂ;}u
SR3 V00+V22_2V12
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Voo + sz _2V12 ER3

MSE(T,,,) < MSE(T,)

mi

3

{1—%}3%0(1%)

3

3

|:V20(1_pst)_l+%:|>0'

MSE(T,,,,) < MSE(Ty,)

mi

2 2
72 l—& <72 1_AD +BC”--CDE
R, 44AB-E’

1_& § 1_AD2+BC2—CDE
R, [~ 44B - E*

R, AD? + BC* —CDE

>0.
R, 44B-E’

MSE (Tpmz) RS MSE (TTSS)

mi

Pl Rl 1_31C12+4A1D12‘4C1D1E1
R, 2(4,B8,-E})

1—& <|1- BIC12 + 4A1D12 _4C1D1E1
2(4B -E})

3

R,

R,

BC/ +44D; ~4CDE, | _
2(4,B8 - E})

MSE(T,,,,) < MSE(T,,)

mi min

Eq(5.2.7)

Eq (5.2.8)

Eq (5.2.9)

Eq (5.2.10)

r {l _%} v [(Vzo +17°V, — 277V11)_

3

44,D; + B,C; —4C,D,E,
4(4,8,-E;)

4(4,B,-E;)

3
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R, 44,D; + B,C; —4C,D,E,

(V20+772V02_277V11)+_ >0.

%%% AIMS Press

AIMS Mathematics

2
%, 4(4., - E}) Eq (5.2.11)

© 2025 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0)

Volume 10, Issue 3, 5495-5531.



