Research article

Splitting type viscosity methods for inclusion and fixed point problems on Hadamard manifolds

  • Received: 03 October 2020 Accepted: 01 March 2021 Published: 11 March 2021
  • MSC : 47J20, 47J25, 49J40, 47H10

  • In this article, we suggest and analyze the splitting type viscosity methods for inclusion and fixed point problem of a nonexpansive mapping in the setting of Hadamard manifolds. We derive the convergence of sequences generated by the proposed iterative methods under some suitable assumptions. Several special cases of the proposed iterative methods are also discussed. Finally, some applications to solve the variational inequality, optimization and fixed point problems are given on Hadamard manifolds.

    Citation: Mohammad Dilshad, Aysha Khan, Mohammad Akram. Splitting type viscosity methods for inclusion and fixed point problems on Hadamard manifolds[J]. AIMS Mathematics, 2021, 6(5): 5205-5221. doi: 10.3934/math.2021309

    Related Papers:

  • In this article, we suggest and analyze the splitting type viscosity methods for inclusion and fixed point problem of a nonexpansive mapping in the setting of Hadamard manifolds. We derive the convergence of sequences generated by the proposed iterative methods under some suitable assumptions. Several special cases of the proposed iterative methods are also discussed. Finally, some applications to solve the variational inequality, optimization and fixed point problems are given on Hadamard manifolds.



    加载中


    [1] S. Al-Homidan, Q. H. Ansari, F. Babu, Halpern and Mann type algorithms for fixed points and inclusion problems on Hadamard manifolds, Numer. Funct. Anal. Optim., 40 (2019), 621-653. doi: 10.1080/01630563.2018.1553887
    [2] S. Al-Homidan, Q. H. Ansari, F. Babu, J. C. Yao, Viscosity method with a $\phi$-contraction mapping for hierarchical variational inequalities on Hadamard manifolds, Fixed Point Theory, 21 (2020), 561-584. doi: 10.24193/fpt-ro.2020.2.40
    [3] Q. H. Ansari, F. Babu, X.-B. Li, Variational inclusion problems on Hadamard manifolds, J. Nonlinear Convex Anal., 19 (2018), 219-237.
    [4] Q. H. Ansari, F. Babu, Proximal point algorithm for inclusion problems in Hadamard manifolds with applications, Optim. Lett., (2019), 1-21.
    [5] Q. H. Ansari, M. Islam, J. C. Yao, Nonsmooth variational inequalities on Hadamard manifolds, Appl. Anal., 99 (2020), 340-358. doi: 10.1080/00036811.2018.1495329
    [6] D. W. Boyd, J. S. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 335-341.
    [7] M. Dilshad, Solving Yosida inclusion problem in Hadamard manifold, Arab. J. Math., 9 (2020), 357-366. doi: 10.1007/s40065-019-0261-9
    [8] J. X. Da Cruz Neto, O. P. Ferreira, L. R. Lucambio Pérez, Monotone point-to-set vector fields, Balk. J. Geometry Appl., 5 (2000), 69-79.
    [9] D. Filali, M. Dilshad, M. Akram, F. Babu, I. Ahmad, Viscosity method for hierarchical variational inequalities and variational inclusions on Hadamard manifolds, to be appear in J. Inequal. Appl., 2021.
    [10] K. Khammahawong, P. Kumam, P. Chaipunya, Splitting algorithms of common solutions between equilibrium and inclusion problems on Hadamard manifold, arXive: 1097.00364, 2019.
    [11] C. Li, G. Lopez, V. M. Márquez, Monotone vector fields and the proximal point algorithm on Hadamard manifolds, J. Lond. Math. Soc., 79 (2009), 663-683. doi: 10.1112/jlms/jdn087
    [12] C. Li, G. López, V. M. Márquez, J. H. Wang, Resolvent of set-valued monotone vector fields in Hadamard manifolds, J. Set-valued Anal., 19 (2011), 361-383. doi: 10.1007/s11228-010-0169-1
    [13] C. Li, G. López, V. Martín-Márquez, Iterative algorithms for nonexpansive mappings on Hadamard manifolds, Taiwan J. Math., 14 (2010), 541-559. doi: 10.11650/twjm/1500405806
    [14] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510. doi: 10.1090/S0002-9939-1953-0054846-3
    [15] B. Martinet, Régularisation d'inequations variationnelles par approximations successives, Rev. Fr. Inform. Oper., 4 (1970), 154-158.
    [16] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000), 46-55. doi: 10.1006/jmaa.1999.6615
    [17] S. Z. Németh, Monotone vector fields, Publ. Math. Debrecen, 54 (1999), 437-449.
    [18] S. Z. Németh, Variational inequalities on Hadamard manifolds, Nonlinear Anal., 52 (2003), 1491-1498. doi: 10.1016/S0362-546X(02)00266-3
    [19] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (2003), 877-898.
    [20] D. R. Sahu, Q. H. Ansari, J. C. Yao, The Prox-Tikhonov forward method and application, Taiwan. J. Math., 19 (2003), 481-503.
    [21] T. Sakai, Riemannian Geomety, Translations of Mathematical Monograph, Amer. Math. Soc., Providence, RI, 1996.
    [22] S. Takahashi, W. Takahashi, M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl., 147 (2010), 27-41. doi: 10.1007/s10957-010-9713-2
    [23] R. Walter, On the metric projections onto convex sets in Riemannian spaces, Arch. Math., 25 (1974), 91-98. doi: 10.1007/BF01238646
    [24] N. C. Wong, D. R. Sahu, J. C. Yao, Solving variational inequalities involving nonexpansive type mappings, Nonlinear Anal., 69 (2008), 4732-4753. doi: 10.1016/j.na.2007.11.025
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1861) PDF downloads(123) Cited by(4)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog