Research article

On robust weakly $ \varepsilon $-efficient solutions for multi-objective fractional programming problems under data uncertainty

  • Received: 09 August 2021 Accepted: 26 October 2021 Published: 11 November 2021
  • MSC : 90C17, 90C29, 90C32

  • In this study, we use the robust optimization techniques to consider a class of multi-objective fractional programming problems in the presence of uncertain data in both of the objective function and the constraint functions. The components of the objective function vector are reported as ratios involving a convex non-negative function and a concave positive function. In addition, on applying a parametric approach, we establish $ \varepsilon $-optimality conditions for robust weakly $ \varepsilon $-efficient solution. Furthermore, we present some theorems to obtain a robust $ \varepsilon $-saddle point for uncertain multi-objective fractional problem.

    Citation: Shima Soleimani Manesh, Mansour Saraj, Mahmood Alizadeh, Maryam Momeni. On robust weakly $ \varepsilon $-efficient solutions for multi-objective fractional programming problems under data uncertainty[J]. AIMS Mathematics, 2022, 7(2): 2331-2347. doi: 10.3934/math.2022132

    Related Papers:

  • In this study, we use the robust optimization techniques to consider a class of multi-objective fractional programming problems in the presence of uncertain data in both of the objective function and the constraint functions. The components of the objective function vector are reported as ratios involving a convex non-negative function and a concave positive function. In addition, on applying a parametric approach, we establish $ \varepsilon $-optimality conditions for robust weakly $ \varepsilon $-efficient solution. Furthermore, we present some theorems to obtain a robust $ \varepsilon $-saddle point for uncertain multi-objective fractional problem.



    加载中


    [1] A. Beck, A. Ben-Tal, Duality in robust optimization primal worst equals dual best, Oper. Res. Lett., 37 (2009), 1–6. doi: 10.1016/j.orl.2008.09.010.
    [2] A. Ben-Tal, EL. Ghaoui, A. Nemirovski, Robust optimization, Princeton Series in Applied Mathematics, 2009.
    [3] R. Bokrantz, A.Fredriksson, Necessary and Sufficient conditions for pareto efficiency in robust multiobjective optimization, Eur. J. Oper. Res., 262 (2017), 682–692. doi: 10.1016/j.ejor.2017.04.012.
    [4] J. M. Buhmann, A. Y. Gronskiy, M. Mihalák, T. Pröger, R. Šrámek, P. Widmayar, Robust optimization in the presence of uncertainty: A generic approach, J. Comput. Syst. Sci., 94 (2018), 135–166. doi: 10.1016/j.jcss.2017.10.004.
    [5] S. Chandra, B. D. Craven, B. Mond, Vector valued lagrangian and multiobjective fractional programming duality, Numer. Funct. Anal. Optim., 11 (1990), 239–254. doi: 10.1080/01630569008816373.
    [6] I. P. Debnath, X. Qin, Robust optimality and duality for minimax fractional programming problems with support functions, J. Nonlinear Funct. Anal., 2021 (2021), 1–22. doi: 10.23952/jnfa.2021.5.
    [7] W. Dinkelbach, On nonlinear fractional programming, Manage. Sci., 13 (1967), 492–498. doi: 10.1287/mnsc.13.7.492.
    [8] M. Fakhar, M. R. Mahyarinia, J. Zafarani, On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization, Eur. J. Oper. Res., 265 (2018), 39–48. doi: 10.1016/j.ejor.2017.08.003.
    [9] N. Gadhi, Necessary and sufficient optimality conditions for fractional multiobjective problem, Optimization, 57 (2008), 527–537. doi: 10.1080/02331930701455945.
    [10] M. G. Govil, A. Mehra, $\varepsilon$-optimality for multiobjective programming on a Banach spaces, Eur. J. Oper. Res., 157 (2004), 106–112. doi: 10.1016/S0377-2217(03)00206-6.
    [11] V. Jeyakumar, G. Y. Li, Strong duality in robust convex programming: complete characterization, SIAM. J. Optim., 20 (2010), 3384–3407. doi: 10.1137/100791841.
    [12] V. Jeyakumar, G. Y. Li, Robust Duality for Fractional Programming Problems with Constraint-Wise Data Uncertainty, J. Optim. Theory Appl., 151(2011), 292–303. doi: 10.1137/100791841.
    [13] V. Jeyakumar, G. M. Lee, N. Dinh, Characterization of solution sets Of convex vector minimization problems, Eur. J. Oper. Res., 174 (2006), 1380–1395. doi: 10.1016/j.ejor.2005.05.007.
    [14] V. Jeyakumar, Asymptotic dual conditions characterizing optimality for infinite convex programs, J. Optim. Theory Appl., 93 (1997), 153–165. doi: 10.1023/A:1022606002804.
    [15] G. S. Kim, G. M. Lee, On $\varepsilon$-approximate solutions for convex semidefinite optimization problems, Taiwanese J Math., 11 (2007), 765–784.
    [16] M. H. Kim, G. S. Kim, G. M. Lee, On $\varepsilon$-optimality conditions for multiobjective fractional optimization problems, J Fixed Point Theory Appl., 2011 (2011), 1–13. doi: 10.1186/1687-1812-2011-6.
    [17] M. H. Kim, Duality theorem and vector saddle point theorem for robust multiobjective optimization problems, Korean. Math. Soc., 28 (2013), 597–602. doi: 10.4134/CKMS.2013.28.3.597.
    [18] G. S. Kim, G. M. Lee, On $\varepsilon$-optimality theorems for convex vector optimization problems, J. Nonlinear and Convex Anal., 12 (2011), 473–482.
    [19] G. M. Lee, G. H. Lee, $\varepsilon$-Duality for convex semidefinite optimization problem with conic constraints, J. Inequalities Appl., 2010 (2010). doi: 10.1155/2010/363012.
    [20] J. H. Lee, G. M. Lee, On $\varepsilon$-solutions for convex optimizations problems with uncertainty data, Positivity, 16 (2012), 509–526. doi: 10.1007/S11117-012-0186-4.
    [21] Ch. Li, K. F. Ng, T. K. Pong, The SECQ, Linear regularity and the strong CHIP for an infinite system of closed convex sets in normed linear spaces, SIAM. J. Optim., 18 (2007), 643–665. doi: 10.1137/060652087.
    [22] Z. A. Liang, H. X. Huang, P. M. Pardalas, Efficiency condition and duality for a class of multiobjective fractional programming problems, J. Glob. Optim., 27 (2003), 447–471. doi: 10.1023/A:1026041403408.
    [23] J. C. Liu, $\varepsilon$-duality theorem of nondifferentiable nonconvex multiobjective programming, J. Optim. Theory and Appl., 69 (1991), 153–167. doi: 10.1007/BF00940466.
    [24] X. J. Long, N. J. Huang, Z. B. Lia, Optimality conditions, duality and saddlepoints for nondifferentiable multiobjective fractional programs, J. Ind. Manag. Optim., 4 (2008), 287–298. doi: 10.3934/jimo.2008.4.287.
    [25] P. Loridan, Necessary conditions for $\varepsilon$-optimality, In: Guignard M. (eds) Optimality and Stability in Mathematical Programming, Mathematical Programming Studies, Springer, Berlin, Heidelberg, 19 (1982), 140–152. doi: 10.1007/BFb0120986.
    [26] S. Nobakhtian, Optimality and duality for nonsmooth multiobjective fractional programming with mixed constraints, J. Glob. Optim., 41 (2008), 103–115. doi: 10.1007/s10898-007-9168-7.
    [27] X. K. Sun, K. L. Teo, L. Tang, Dual approaches to characterize robust optimal solution sets for a class of uncertain optimization problems, J. Optim. Theory Appl., 182 (2019), 984–1000. doi: 10.1007/s10957-019-01496-w.
    [28] X. K. Sun, X. B. Li, X. J. Long, Z. Y. Peng, On robust approximate optimal solutions for uncertain convex optimization and applications to multiobjective optimization, Pac. J. Optim., 13 (2017), 621–643.
    [29] X. K. Sun, X. J. Long, H. Y. Fu, X. B. Li, Some characterizations of robust optimal solutions for uncertain fractional optimization and applications, J. Ind. Manag. Optim., 13 (2017), 803–824. doi: 10.3934/jimo.2016047.
    [30] X. K. Sun, H. Y. Fu, J. Zeng, Robust approximate optimality conditions for uncertain nonsmooth optimization with infinite number of constraints, Mathematics, 7 (2019), 1–14. doi: 10.3390/math7010012.
    [31] X. K. Sun, K. L. Teo, J. Zeng, X. L. Guo, On approximate solutions and saddle point theorems for robust convex optimization, Optim. Lett., 14 (2020), 1711–1730. doi: 10.1007/s11590-019-01464-3.
    [32] T. Q. Sun, D. S. Kim, $\varepsilon$-mixed type duality for nonconvex multiobjective programs with an infinite number of constraints, J. Glob. Optim., 57(2013), 447–465. doi: 10.1007/s10898-012-9994-0.
    [33] J. Zeng, P. Xu, H. Y. Fu, On robust approximate optimal solutions for fractional semi-infinite optimization with data uncertainty data, J. Inequalities Appl., 2019 (2019), 1–16. doi: 10.1186/s13660-019-1997-7.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1922) PDF downloads(120) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog