Research article

Existence of local and global solutions to fractional order fuzzy delay differential equation with non-instantaneous impulses

  • Received: 09 September 2021 Accepted: 01 November 2021 Published: 11 November 2021
  • MSC : 03B52, 34A07, 34A08, 34A37

  • The main concern of this manuscript is to examine some sufficient conditions under which the fractional order fuzzy delay differential system with the non-instantaneous impulsive condition has a unique solution. We also study the existence of a global solution for the considered system. Fuzzy set theory, Banach fixed point theorem and Non-linear functional analysis are the major tools to demonstrate our results. In last, an example is given to illustrate these analytical results.

    Citation: Anil Kumar, Muslim Malik, Mohammad Sajid, Dumitru Baleanu. Existence of local and global solutions to fractional order fuzzy delay differential equation with non-instantaneous impulses[J]. AIMS Mathematics, 2022, 7(2): 2348-2369. doi: 10.3934/math.2022133

    Related Papers:

  • The main concern of this manuscript is to examine some sufficient conditions under which the fractional order fuzzy delay differential system with the non-instantaneous impulsive condition has a unique solution. We also study the existence of a global solution for the considered system. Fuzzy set theory, Banach fixed point theorem and Non-linear functional analysis are the major tools to demonstrate our results. In last, an example is given to illustrate these analytical results.



    加载中


    [1] M. Benchohra, J. Henderson, S. Ntouyas, Impulsive differential equations and inclusions, New York: Hindawi Pub. Corp., 2006. doi: 10.1155/9789775945501.
    [2] V. Lakshmikantham, P. S. Simeonov, Theory of impulsive differential equations, World scientific, 1989. doi: 10.1142/0906.
    [3] M. Li, C. Kou, Existence results for second-order impulsive neutral functional differential equations with nonlocal conditions, Discrete Dyn. Nat. Soc., 2009 (2009), 641368. doi: 10.1155/2009/641368.
    [4] V. Kumar, M. Malik, Controllability results of fractional integro-differential equation with non-instantaneous impulses on time scales, IMA J. Math. Control Inf., 38 (2021), 211–231. doi: 10.1093/imamci/dnaa008.
    [5] K. Oldham, J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, New York: Academic Press, 1974.
    [6] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, New York: Academic Press, 1998.
    [7] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. doi: 10.1006/jmaa.2000.7194.
    [8] D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204 (1996), 609–625. doi: 10.1006/jmaa.1996.0456.
    [9] M. Muslim, Existence and approximation of solutions to fractional differential equations, Math. Comput. Model., 49 (2009), 1164–1172. doi: 10.1016/j.mcm.2008.07.013.
    [10] D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci., 59 (2018), 444–462. doi: 10.1016/j.cnsns.2017.12.003.
    [11] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. doi: 10.12785/pfda/010201.
    [12] B. Ghanbari, A. Atangana, A new application of fractional Atangana–Baleanu derivatives: Designing ABC-fractional masks in image processing, Physica A, 542 (2020), 123516. doi: 10.1016/j.physa.2019.123516.
    [13] M. R. Ammi, D. F. Torres, Optimal control of a nonlocal thermistor problem with ABC fractional time derivatives, Comput. Math. Appl., 78 (2019), 1507–1516. doi: 10.1016/j.camwa.2019.03.043.
    [14] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 2006.
    [15] S. Salahshour, A. Ahmadian, F. Ismail, D. Baleanu, A fractional derivative with non-singular kernel for interval-valued functions under uncertainty, Optik, 130 (2017), 273–286. doi: 10.1016/j.ijleo.2016.10.044.
    [16] L. A. Zadeh, Fuzzy sets, fuzzy logic, and fuzzy systems: Selected Papers by Lotfi A Zadeh, World Scientific, 1996. doi: 10.1142/2895.
    [17] O. Kaleva, Fuzzy differential equations, Fuzzy Set. Syst., 24 (1987), 301–317. doi: 10.1016/0165-0114(87)90029-7.
    [18] P. Balasubramaniam, S. Muralisankar, Existence and uniqueness of fuzzy solution for semilinear fuzzy integrodifferential equations with nonlocal conditions, Comput. Math. Appl., 47 (2004), 1115–1122. doi: 10.1016/S0898-1221(04)90091-0.
    [19] Y. C. Kwun, M. J. Kim, B. Y. Lee, J. H. Park, Existence of solutions for the semilinear fuzzy integrodifferential equations using by successive iteration, J. Korean Inst. Intell. Syst., 18 (2008), 543–548. doi: 10.5391/JKIIS.2008.18.4.543.
    [20] A. Kumar, M. Malik, K. S. Nisar, Existence and total controllability results of fuzzy delay differential equation with non-instantaneous impulses, Alex. Eng. J., 60 (2021), 6001–6012. doi: 10.1016/j.aej.2021.04.017.
    [21] S. Seikkala, On the fuzzy initial value problem, Fuzzy Set. Syst., 24 (1987), 319–330. doi: 10.1016/0165-0114(87)90030-3.
    [22] M. Belmekki, J. Nieto, R. Rodriguez-Lopez, Existence of periodic solution for a nonlinear fractional differential equation, Bound. Value Probl., 2009 (2009), 324561. doi: 10.1155/2009/324561.
    [23] G. M. Mophou, Existence and uniqueness of mild solutions to impulsive fractional differential equations, Nonlinear Anal. Theor., 72 (2010), 1604–1615. doi: 10.1016/j.na.2009.08.046.
    [24] T. Allahviranloo, S. Salahshour, S. Abbasbandy, Explicit solutions of fractional differential equations with uncertainty, Soft Comput., 16 (2012), 297–302. doi: 10.1007/s00500-011-0743-y.
    [25] S. Arshad, On existence and uniqueness of solution of fuzzy fractional differential equations, Iran. J. Fuzzy Syst., 10 (2013), 137–151. doi: 10.22111/IJFS.2013.1336.
    [26] B. Radhakrishnana, A. Mohanrajb, Existence of solutions for nonlinear fuzzy impulsive integrodifferential equations, Malaya Journal of Matematik, Special Issue (2013), 1–10.
    [27] W. Witayakiattilerd, Nonlinear fuzzy differential equation with time delay and optimal control problem, Abstr. Appl. Anal., 2015 (2015), 659072. doi: 10.1155/2015/659072.
    [28] R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. Torres, Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3–29. doi: 10.1016/j.cam.2017.09.039.
    [29] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal. Theor., 72 (2010), 2859–2862. doi: 10.1016/j.na.2009.11.029.
    [30] T. Allahviranloo, B. Ghanbari, On the fuzzy fractional differential equation with interval Atangana-Baleanu fractional derivative approach, Chaos Soliton. Fract., 130 (2020), 109397. doi: 10.1016/j.chaos.2019.109397.
    [31] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A.
    [32] B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Set. Syst., 151 (2005), 581–599. doi: 10.1016/j.fss.2004.08.001.
    [33] M. Mizumoto, K. Tanaka, Some properties of fuzzy sets of type 2, Information and Control, 31 (1976), 312–340. doi: 10.1016/S0019-9958(76)80011-3.
    [34] P. Diamond, P. E. Kloeden, Metric spaces of fuzzy sets: theory and applications, World scientific, 1994. doi: 10.1142/2326.
    [35] A. Harir, S. Melliani, L. S. Chadli, Existence and uniqueness of a fuzzy solution for some fuzzy neutral partial differential equation with nonlocal condition, IJMTT, 65 (2019), 102–108. doi: 10.14445/22315373/IJMTT-V65I2P517.
    [36] H. Khan, A. Khan, F. Jarad, A. Shah, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos Soliton. Fract., 131 (2020), 109477. doi: 10.1016/j.chaos.2019.109477.
    [37] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York, NY: Springer, 2012.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1959) PDF downloads(118) Cited by(5)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog