We first discuss the existence of solutions of the infinite system of $ (n-1, n) $-type semipositone boundary value problems (BVPs) of nonlinear fractional differential equations
$ \begin{equation*} \begin{cases} D^{\alpha}_{0_+}u_i(\rho)+\eta f_i(\rho,v(\rho)) = 0,& \rho\in(0,1), \\ D^{\alpha}_{0_+}v_i(\rho)+\eta g_i(\rho,u(\rho)) = 0,& \rho\in(0,1), \\u_i^{(j)}(0) = v_{i}^{(j)}(0) = 0,& 0\leq j\leq n-2, \\ u_{i}(1) = \zeta\int_0^1 u_i(\vartheta)d\vartheta, \ v_{i}(1) = \zeta\int_0^1 v_i(\vartheta)d\vartheta,& i\in\mathbb{N},\\ \end{cases} \end{equation*} $
in the sequence space of weighted means $ c_0(W_1, W_2, \Delta) $, where $ n\geq3 $, $ \alpha\in(n-1, n] $, $ \eta, \zeta $ are real numbers, $ 0 < \eta < \alpha, $ $ D^{\alpha}_{0_+} $ is the Riemann-Liouville's fractional derivative, and $ f_i, g_i, $ $ i = 1, 2, \ldots $, are semipositone and continuous. Our approach to the study of solvability is to use the technique of measure of noncompactness. Then, we find an interval of $ \eta $ such that for each $ \eta $ lying in this interval, the system of $ (n-1, n) $-type semipositone BVPs has a positive solution. Eventually, we demonstrate an example to show the effectiveness and usefulness of the obtained result.
Citation: Majid Ghasemi, Mahnaz Khanehgir, Reza Allahyari, Hojjatollah Amiri Kayvanloo. Positive solutions of infinite coupled system of fractional differential equations in the sequence space of weighted means[J]. AIMS Mathematics, 2022, 7(2): 2680-2694. doi: 10.3934/math.2022151
We first discuss the existence of solutions of the infinite system of $ (n-1, n) $-type semipositone boundary value problems (BVPs) of nonlinear fractional differential equations
$ \begin{equation*} \begin{cases} D^{\alpha}_{0_+}u_i(\rho)+\eta f_i(\rho,v(\rho)) = 0,& \rho\in(0,1), \\ D^{\alpha}_{0_+}v_i(\rho)+\eta g_i(\rho,u(\rho)) = 0,& \rho\in(0,1), \\u_i^{(j)}(0) = v_{i}^{(j)}(0) = 0,& 0\leq j\leq n-2, \\ u_{i}(1) = \zeta\int_0^1 u_i(\vartheta)d\vartheta, \ v_{i}(1) = \zeta\int_0^1 v_i(\vartheta)d\vartheta,& i\in\mathbb{N},\\ \end{cases} \end{equation*} $
in the sequence space of weighted means $ c_0(W_1, W_2, \Delta) $, where $ n\geq3 $, $ \alpha\in(n-1, n] $, $ \eta, \zeta $ are real numbers, $ 0 < \eta < \alpha, $ $ D^{\alpha}_{0_+} $ is the Riemann-Liouville's fractional derivative, and $ f_i, g_i, $ $ i = 1, 2, \ldots $, are semipositone and continuous. Our approach to the study of solvability is to use the technique of measure of noncompactness. Then, we find an interval of $ \eta $ such that for each $ \eta $ lying in this interval, the system of $ (n-1, n) $-type semipositone BVPs has a positive solution. Eventually, we demonstrate an example to show the effectiveness and usefulness of the obtained result.
[1] | A. Aghajani, J. Banaś, Y. Jalilian, Existence of solution for a class of nonlinear Volterra singular integral equation, Comput. Math. Appl., 62 (2011), 1215–1227. doi: 10.1016/j.camwa.2011.03.049. doi: 10.1016/j.camwa.2011.03.049 |
[2] | A. Aghajani, E. Pourhadi, Application of measure of noncompactness to $l_1$-solvability of infinite systems of second order differential equations, Bull. Belg. Math. Soc.-Sim., 22 (2015), 105–118. doi: 10.36045/bbms/1426856862. doi: 10.36045/bbms/1426856862 |
[3] | O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl., 272 (2002), 368–379. doi: 10.1016/S0022-247X(02)00180-4. doi: 10.1016/S0022-247X(02)00180-4 |
[4] | Z. Ahmadi, R. Lashkaripour, H. Baghani, S. Heidarkhani, G. Caristi, Existence of solutions of infinite system of nonlinear sequential fractional differential equations, Adv. Differ. Equ., 2020 (2020), 1–20. doi: 10.1186/s13662-020-02682-1. doi: 10.1186/s13662-020-02682-1 |
[5] | M. Alabedalhadi, M. Al-Smadi, S. Al-Omari, D. Baleanu, S. Momani, Structure of optical soliton solution for nonliear resonant space-time Schr$\ddot{o}$dinger equation in conformable sense with full nonlinearity term, Phys. Scripta, 95 (2020), 105215. doi: 10.1088/1402-4896/abb739. doi: 10.1088/1402-4896/abb739 |
[6] | A. Alotaibi, M. Mursaleen, B. A. Alamri, Solvability of second order linear differential equations in the sequence space $n(\phi)$, Adv. Differ. Equ., 2018 (2018), 1–8. doi: 10.1186/s13662-018-1810-9. doi: 10.1186/s13662-018-1810-9 |
[7] | M. Al-Smadi, O. A. Arqub, S. Hadid, An attractive analytical technique for coupled system of fractional partial differential equations in shallow water waves with conformable derivative, Commun. Theor. Phys., 72 (2020), 085001. doi: 10.1088/1572-9494/ab8a29. doi: 10.1088/1572-9494/ab8a29 |
[8] | M. Al-Smadi, O. A. Arqub, S. Momani, Numerical computations of coupled fractional resonant Schr$\ddot{o}$dinger equations arising in quantum mechanics under conformable fractional derivative sense, Phys. Scripta, 95 (2020), 075218. doi: 10.1088/1402-4896/ab96e0. doi: 10.1088/1402-4896/ab96e0 |
[9] | A. Ashyralyev, A note on fractional derivatives and fractional powers of operators, J. Math. Anal. Appl., 357 (2009), 232–236. doi: 10.1016/j.jmaa.2009.04.012. doi: 10.1016/j.jmaa.2009.04.012 |
[10] | J. Banaś, K. Goebel, Measures of noncompactness in Banach spaces, Marcel Dekker Inc., New York, 1980. |
[11] | J. Banaś, M. Lecko, Solvability of infinite systems of differential equations in Banach sequence spaces, J. Comput. Appl. Math., 137 (2001), 363–375. doi: 10.1016/S0377-0427(00)00708-1. doi: 10.1016/S0377-0427(00)00708-1 |
[12] | J. Banaś, M. Mursaleen, Sequence spaces and measure of noncompactness with applications to differential and integral equation, Springer, India, 2014. |
[13] | J. Banaś, M. Mursaleen, S. M. H. Rizvi, Existence of solutions to a boundary-value problem for an infinite system of differential equations, Electron. J. Differ. Equ., 262 (2017), 1–12. Available from: http://ejde.math.txstate.edu. |
[14] | D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Appl., 204 (1996), 609–625. doi: 10.1006/jmaa.1996.0456. doi: 10.1006/jmaa.1996.0456 |
[15] | I. Djolovi$\acute{c}$, E. Malkowsky, A note on compact operators on matrix domains, J. Math. Anal. Appl., 340 (2008), 291–303. doi: 10.1016/j.jmaa.2007.08.021/. doi: 10.1016/j.jmaa.2007.08.021/ |
[16] | V. Gafiychuk, B. Datsko, V. Meleshko, D. Blackmore, Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations, Chaos Soliton. Fract., 41 (2009), 1095–104. doi: 10.1016/j.chaos.2008.04.039. doi: 10.1016/j.chaos.2008.04.039 |
[17] | J. Harjani, B. L$\acute{o}$pez, K. Sadarangani, Existence and uniqueness of mild solutions for a fractional differential equation under Sturm-Liouville boundary conditions when the data function is of Lipschitzian type, Demonstr. Math., 53 (2020), 167–173. doi: 10.1515/dema-2020-0014. doi: 10.1515/dema-2020-0014 |
[18] | S. G. Hristova, S. A. Tersian, Scalar linear impulsive Riemann-Liouville fractional differential equations with constant delay-explicit solutions and finite time stability, Demonstr. Math., 53 (2020), 121–130. doi: 10.1515/dema-2020-0012. doi: 10.1515/dema-2020-0012 |
[19] | A. M. Jarrah, E. Malkowsky, Ordinary, absolute and strong summability and matrix transformations, Filomat, 17 (2003), 59–78. doi: 10.2298/fil0317059j. doi: 10.2298/fil0317059j |
[20] | M. D. Johansyah, A. K., Supriatna, E. Rusyaman, J. Saputra, Application of fractional differential equation in economic growth model: A systematic review approach, AIMS Math., 6 (2021), 10266–10280. doi: 10.3934/math.2021594. doi: 10.3934/math.2021594 |
[21] | G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions, Appl. Math. Lett., 22 (2009), 378–385. doi: 10.1016/j.aml.2008.06.003. doi: 10.1016/j.aml.2008.06.003 |
[22] | A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 204 (2006). |
[23] | K. Kuratowski, Sur les espaces complets, Fund. Math., 15 (1930), 301–309. |
[24] | V. Lakshmikantham, Theory of fractional dynamic systems, Cambridge: Cambridge Academic Publishers, 2009. |
[25] | A. Mahmood, S. Parveen, A. Arara, N. A. Khan, Exact analytic solutions for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model, Commun. Nonlinear Sci., 14 (2009), 3309–3319. doi: 10.1016/j.cnsns.2009.01.017. doi: 10.1016/j.cnsns.2009.01.017 |
[26] | M. Mursaleen, Some geometric properties of a sequence space related to $l_p$, Bull. Aust. Math. Soc., 67 (2003), 343–347. doi: 10.1017/S0004972700033803. doi: 10.1017/S0004972700033803 |
[27] | M. Mursaleen, B. Bilalov, S. M. Rizvi, Applications of measures of noncompactness to infinite system of fractional differential equations, Filomat, 31 (2017), 3421–3432. doi: 10.2298/FIL1711421M. doi: 10.2298/FIL1711421M |
[28] | M. Mursaleen, V. Karakaya, H. Polat, N. Simsekd, Measure of noncompactness of matrix operators on some difference sequence spaces of weighted means, Comput. Math. Appl., 62 (2011), 814–820. doi: 10.1016/j.camwa.2011.06.011. doi: 10.1016/j.camwa.2011.06.011 |
[29] | M. Mursaleen, S. A. Mohiuddine, Applications of measures of noncompactness to the infinite system of differential equations in $l_p$ spaces, Nonlinear Anal., 75 (2012), 2111–2115. doi: 10.1016/j.na.2011.10.011. doi: 10.1016/j.na.2011.10.011 |
[30] | M. Mursaleen, S. M. H. Rizvi, Solvability of infinite system of second order differential equations in $c_0$ and $l_1$ by Meir-Keeler condensing operator, P. Am. Math. Soc., 144 (2016), 4279–4289. doi: 10.1090/proc/13048. doi: 10.1090/proc/13048 |
[31] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 198 (1998). |
[32] | I. Podlubny, Fractional differential equations mathematics in science and engineering, New York: Academic Press, 198 (1999). |
[33] | H. Polat, V. Karakaya, N. Simsek, Difference sequence spaces derived by using a generalized weighted mean, Appl. Math. Lett., 24 (2011), 608–614. doi: 10.1016/j.aml.2010.11.020. doi: 10.1016/j.aml.2010.11.020 |
[34] | M. Rabbani, A. Das, B. Hazarika, R. Arab, Measure of noncompactness of a new space of tempered sequences and its application on fractional differential equations, Chaos Soliton. Fract., 140 (2020), 110221. doi: 10.1016/j.chaos.2020.110221. doi: 10.1016/j.chaos.2020.110221 |
[35] | A. Salem, H. M. Alshehri, L. Almaghamsi, Measure of noncompactness for an infinite system of fractional Langevin equation in a sequence space, Adv. Differ. Equ., 2021 (2021), 1–21. doi: 10.1186/s13662-021-03302-2. doi: 10.1186/s13662-021-03302-2 |
[36] | A. Samadi, S. K. Ntouyas, Solvability for infinite systems of fractional differential equations in Banach sequence spaces $l_p$ and $c_0$, Filomat, 34 (2020), 3943–3955. doi: 10.2298/FIL2012943S. doi: 10.2298/FIL2012943S |
[37] | A. Seemab, M. Rehman, Existence of solution of an infinite system of generalized fractional differential equations by Darbo's fixed point theorem, J. Comput. Appl. Math., 364 (2020), 112355. doi: 10.1016/j.cam.2019.112355. doi: 10.1016/j.cam.2019.112355 |
[38] | A. Traore, N. Sene, Model of economic growth in the context of fractional derivative, Alex. Eng. J., 59 (2020), 4843–4850. doi: 10.1016/j.aej.2020.08.047. doi: 10.1016/j.aej.2020.08.047 |
[39] | C. Yuan, Two positive solutions for $(n- 1, 1)$-type semipositone integral boundary value problems for coupled systems of nonlinear fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 930–942. doi: 10.1016/j.cnsns.2011.06.008. doi: 10.1016/j.cnsns.2011.06.008 |