In this paper, we proposed a generalized of Darbo's fixed point theorem via the concept of operators $ S(\bullet; .) $ associated with the measure of noncompactness. Using this generalized Darbo fixed point theorem, we have given the existence of solution of a system of differential equations. At the end, we have given an example which supports our findings.
Citation: Rahul, Nihar Kumar Mahato. Existence solution of a system of differential equations using generalized Darbo's fixed point theorem[J]. AIMS Mathematics, 2021, 6(12): 13358-13369. doi: 10.3934/math.2021773
In this paper, we proposed a generalized of Darbo's fixed point theorem via the concept of operators $ S(\bullet; .) $ associated with the measure of noncompactness. Using this generalized Darbo fixed point theorem, we have given the existence of solution of a system of differential equations. At the end, we have given an example which supports our findings.
The measure of noncompactness (MNC) performs an important character in real world problems. First of all, the fundamental paper of Kuratowski [1] in $ 1930 $ open up a new direction of MNC to solve diffent type of Functional equations, which comes from the diffent real life problems. Using the notion of MNC, Darbo [2] in $ 1955 $ ensure that the endurance of fixed points, which is obtained by the generalization of Schauder fixed point theorem (SFPT) and banach contraction principle. Many authors using the notion of MNC generalize Darbo fixed point theorem (DFPT) which ensure that the endurance of fixed point to solve various kind of integal or differentail equations. Up to now, many authors have been published several papers using the notion of generalization of DFPT and MNC [3,4,5,6,7,8,9,10,11,12,13,14].
Our purpose of present paper is to extend the DFPT and we aaply our obtained results to find the existence of solutions of the functional differential equations.
At the beginning we provide concepts, notations, definitions and the preliminaries, which will be used all over the present paper.
The set of real numbers is symbolize by $ \mathbb{R} $, $ \mathbb{R_+} = [0, \infty) $ and the set of natural numbers by $ \mathbb{N} $. Let $ (\Xi, \parallel.\parallel) $ be real Banach spaces. If $ \Omega $ is a nonempty subset of $ \Xi $ then $ \bar{\Omega} $ and Conv$ \Omega $, symbolize the closure and convex closure of $ \Omega $ respectively. Also, let $ \mathcal{M}_{\Xi} $ symbolize the set of all nonempty and bounded subsets of $ \Xi $ and $ \mathcal{N}_{\Xi} $ is the subset of all relatively compact sets.
Banas and Lecko [15] have given the definition of MNC which is given below.
Definition 2.1. A MNC is a mapping $ \chi :\mathcal{M}_{\Xi} \rightarrow \mathbb{R_+} $ if it fulfills the following constraints for all $ \Omega, \; \Omega_1, \; \Omega_2\in\mathcal{M}_{\Xi}. $
($ M_1 $) $ $The family ker $ \chi = \left\lbrace\Omega \in \mathcal{M}_{\Xi}: \chi\left(\Omega\right) = 0 \right\rbrace $ is nonempty and ker $ \chi \subset \mathcal{N}_{\Xi}. $
($ M_2 $)$ \Omega_1 \subset \Omega_2 \implies \chi\left(\Omega_1\right) \leq \chi\left(\Omega_2\right). $
($ M_3 $)$ \chi\left(\bar{\Omega}\right) = \chi\left(\Omega\right). $
($ M_4 $)$ \chi\left(Conv\Omega\right) = \chi\left(\Omega\right). $
($ M_5 $)$ \chi\left(\kappa\Omega_1 +\left(1- \kappa \right)\Omega_2 \right) \leq \kappa \chi\left(\Omega_1\right)+\left(1- \kappa \right)\chi\left(\Omega_2\right) $ for $ \kappa \in \left[0, 1 \right]. $
($ M_6 $) if $ \Omega_{n} \in \mathcal{M}_{\Xi}, \:\Omega_{n} = \bar{\Omega}_{n}, \: \Omega_{n+1} \subset \Omega_{n} $ for $ n = 1, 2, 3, ... $ and $ \lim\limits_{n \rightarrow \infty}\chi\left(\Omega_{n}\right) = 0, $ then $ \bigcap\limits_{n = 1}^{\infty}\Omega_{n} \neq \emptyset. $
We are going to define the Concept of operator $ S(\bullet; .) $ which was introduced by Altan and Turkoglu [16].
Definition 2.2. Let $ A(\mathbb{R_+}) $ be the set of fuctions $ f:\mathbb{R_+}\rightarrow \mathbb{R_+} $ and let $ Z $ be the set of functions $ S(\bullet; .):A(\mathbb{R_+})\rightarrow A(\mathbb{R_+} $), which fulfills the following constraints:
($ O_1 $) $ S(f; \sigma)\geq 0\; for\; \sigma > 0\; and \; S(h; 0) = 0 $, $ $$ S(f; \sigma_1)\leq S(f; \sigma_2)\; for\; \sigma_1\leq \sigma_2 $,
($ O_2 $) $ \lim\limits_{n \rightarrow \infty}S(f; \sigma_n) = S(f; \lim\limits_{n \rightarrow \infty}\sigma_n) $,
($ O_3$) $ S(f; \max\lbrace \sigma_1, \sigma_2\rbrace) = \max\lbrace S(f; \sigma_1), S(f; \sigma_2)\rbrace $ for some $ f\in A(\mathbb{R_+}) $.
Theorem 2.1. (Schauder)[17] A mapping $ \Delta: \Omega \rightarrow \Omega $ which is compact and continuous has at least one fixed point for a nonempty, bounded, closed and convex (NBCC) subset $ \Omega $ of a Banach space $ \Xi $.
DFPT is generalize by resting the compactness of Schauder's mapping and theorem is known as SFPT.
Theorem 2.2. (Darbo)[18] Let $ \Delta: \Omega \rightarrow \Omega $ be a continuous mapping and $ \chi $ is an MNC. Then for any nonempty subset $ \wp $ of $ \Omega $, there exists a $ k \in \left[0, 1\right) $ having the inequality
$ \chi\left(\Delta\wp\right) < k \chi(\wp). $ |
Then the mapping $ \Delta $ have a fixed point in $ \Omega $.
Isik et al. [10] introduce a function $ f $ to generalize the Banach contraction, we find various type of contraction mapping.
Theorem 2.3. Let $ \Delta:\Omega\rightarrow \Omega $ be a continuous self-mapping, where $ (\Omega, \rho) $ is a complete metric space. Then for all $ \gamma, \delta \in\Xi $ there exists a mapping $ f: \mathbb{R_+}\rightarrow \mathbb{R_+} $ such that $ \lim\limits_{\tau \rightarrow 0_+}f(\tau) = 0, \; f(0) = 0, $
$ \rho(\Delta \gamma, \Delta\delta)\leq f\left(\rho(\gamma, \delta)\right)-f\left(\rho(\Delta \gamma, \Delta \delta)\right). $ |
Then $ \Delta $ contains a unique fixed point.
Parvenah et al. [10] generalized DFPT as follows:
Theorem 2.4. Let $ \Delta: \Omega \rightarrow \Omega $ be a continuous operator defined on a NBCC subet $ \Omega $ of $ \Xi $ having the inequality
$ \chi(\Delta \wp)\leq f\left(\chi(\wp)\right)-f\left(\chi(\Delta \wp)\right), $ |
for all $ \wp\subset\Omega $, where $ f:\mathbb{R_+}\rightarrow \mathbb{R_+} $ with $ \lim\limits_{\tau \rightarrow 0_+}f(\tau) = 0, \; f(0) = 0, $ and $ \chi $ is an MNC. Then $ \Delta $ contains a fixed point in $ \Omega $.
Remark 2.1. Remember that Theorem 2.4 generalize DFPT. Since $ \Delta:\wp\rightarrow \wp $ is a Darbo mapping.
Then for all $ \wp\subset \Xi $ there exists $ k\in[0, 1) $ having the property $ \chi\left(\Delta\wp\right) < k \chi(\wp) $.
So with the help of inequality, we have
$ \chi\left(\Delta\wp\right) \leq k\chi(\wp)\leq \frac{k}{1+k-\sqrt{k}}\chi(\wp), $ |
for all $ \wp\subset\Xi $.
Consequently
$ k\chi\left( \Delta\wp\right)+(1-\sqrt{k})\chi(\Delta \wp)\leq k\chi(\wp), $ |
$ (1-\sqrt{k})\chi\left(\Delta \wp\right)\leq k\chi(\wp)-k\chi(\Delta \wp). $ |
So
$ \chi\left(\Delta\wp\right)\leq \frac{k}{1-\sqrt{k}}\chi\left(\wp\right)-\frac{k}{1-\sqrt{k}}\chi\left( \Delta\wp\right). $ |
Taking $ f(\tau) = \frac{k}{1-\sqrt{k}}\tau $, we have $ \chi(\Delta\wp)\leq f\left(\chi(\wp)\right)-f\left(\chi(\Delta \wp)\right) $ for all $ \wp\subset \Xi $. Therefore the Darbo Theorem is a specific case of contraction mapping of Theorem $ (2.4) $.
Let us recall an important theorem in this work which extends DFPT by taking the concept of $ S(h; .) $.
Theorem 3.1. Let $ (\Xi, \parallel.\parallel) $ be a Banach space. Suppose $ \Delta:\Xi\rightarrow \Xi $ is a continuous, nondecreasing and bounded mapping fulfills the following inequality
$ \begin{equation} S\left(h;\int\limits_0^{\chi(\Delta \wp)}\pi(\tau)d\tau+\phi\left(\int\limits_0^{\chi(\Delta \wp)}\pi(\tau)d\tau \right)\right)\leq f\left(S\left(h;\int\limits_0^{\chi( \wp)}\pi(\tau)d\tau+\phi\left(\int\limits_0^{\chi(\wp)}\pi(\tau)d\tau \right)\right) \right)-f\left(S\left(h;\int\limits_0^{\chi(\Delta \wp)}\pi(\tau)d\tau+\phi\left(\int\limits_0^{\chi(\Delta \wp)}\pi(\tau)d\tau \right)\right) \right), \end{equation} $ | (3.1) |
for all bounded $ \wp $ of $ \Xi $, where $ \chi $ is MNC, $ h\in A(\mathbb{R_+}), \; S(\bullet; .)\in Z $, $ \phi, \pi:\mathbb{R_+}\rightarrow \mathbb{R_+} $ is continuous functions and $ f:\mathbb{R_+}\rightarrow \mathbb{R_+} $ is a function as $ \lim\limits_{\tau \rightarrow 0_+}f(\tau) = 0, \; f(0) = 0 $. Then $ \Delta $ contains at least one fixed point.
Proof. Assume that $ \wp_n $ with $ \wp_0 = \wp $ and $ \wp_{n+1} = conv(\Delta\wp_n) $ for all $ n\geq 0. $
Also, $ \Delta\wp_0 = \Delta\wp\subseteq \wp = \wp_0, \; \; \wp_1 = conv(\Delta\wp_0)\subseteq\wp = \wp_0 $. Since $ \wp_n $ is a closed and bounded subset in $ \Xi $ and
$ \begin{equation} \wp_0\supset \wp_1\supset, ..., \supset \wp_n\supset , .... \end{equation} $ | (3.2) |
Following (3.1), we have
$ S\left(h;\int\limits_0^{\chi(\wp_{n+1})}\pi(\tau)d\tau+\phi\left(\int\limits_0^{\chi(\wp_{n+1})}\pi(\tau)d\tau\right)\right) = S\left(h;\int\limits_0^{\chi(conv(\Delta\wp_n))}\pi(\tau)d\tau+\phi\left(\int\limits_0^{\chi(conv(\Delta\wp_n))}\pi(\tau)d\tau\right)\right), $ |
$ S = \left(h;\int\limits_0^{\chi(\Delta\wp_n)}\pi(\tau)d\tau+\phi\left(\int\limits_0^{\chi(\Delta\wp_n)}\pi(\tau)d\tau \right)\right) $ |
$ \leq f\left(S\left(h;\int\limits_0^{\chi(\wp_n)}\pi(\tau)d\tau+\phi\left(\int\limits_0^{\chi(\wp_n)}\pi(\tau)d\tau \right)\right) \right)-f\left(S\left(h;\int\limits_0^{\chi(\Delta\wp_n)}\pi(\tau)d\tau+\phi\left(\int\limits_0^{\chi(\Delta\wp_n)}\pi(\tau)d\tau \right)\right) \right). $ |
Taking the limit as $ n \rightarrow \infty $ on both the sides of this inequality, we have
$ \lim\limits_{n \rightarrow \infty}S\left(h;\int\limits_0^{\chi(\Delta\wp_n)}\pi(\tau)d\tau+\phi\left(\int\limits_0^{\chi(\Delta\wp_n)}\pi(\tau)d\tau \right)\right) $ |
$ \leq \lim\limits_{n \rightarrow \infty}f\left(S\left(h;\int\limits_0^{\chi(\wp_n)}\pi(\tau)d\tau+\phi\left(\int\limits_0^{\chi(\wp_n)}\pi(\tau)d\tau \right)\right) \right)-\lim\limits_{n \rightarrow \infty}f\left(S\left(h;\int\limits_0^{\chi(\Delta\wp_n)}\pi(\tau)d\tau+\phi\left(\int\limits_0^{\chi(\Delta\wp_n)}\pi(\tau)d\tau \right)\right) \right). $ |
Therefore
$ \lim\limits_{n \rightarrow \infty}S\left(h;\int\limits_0^{\chi(\wp_{n})}\pi(\tau)d\tau+\phi\left(\int\limits_0^{\chi(\wp_{n})}\pi(\tau)d\tau \right)\right) = 0. $ |
By the virtue of $ (iii) $ of Definition $ S(h; .) $, we get
$ S\left(h;\lim\limits_{n \rightarrow \infty}\int\limits_0^{\chi(\wp_{n})}\pi(\tau)d\tau+\lim\limits_{n \rightarrow \infty}\phi\left(\int\limits_0^{\chi(\wp_{n})}\pi(\tau)d\tau \right)\right) = 0, $ |
and therefore $ \lim\limits_{n \rightarrow \infty}\int\limits_0^{\chi(\wp_{n})}\pi(\tau)d\tau = 0. $
But for any $ \epsilon > 0, \; \; \int\limits_0^\epsilon \pi(\tau)d\tau > 0 $, then $ \chi(\wp_n)\rightarrow 0 \; as\; n\rightarrow \infty $.
Now since $ \wp_n $ is nested sequence, by the definition of (MNC) of $ (M_6) $, we conclude that $ \wp_{\infty} = \cap_{n = 1}^{\infty}\wp_n $ is NBCC of $ \Xi $. Also we aware that $ \wp_{\infty}\in ker\chi $. Therefore $ \wp_{\infty} $ is compact and invariant under the mapping $ \Delta $. Therefore by the SFPT, $ \Delta $ has a fixed point in $ \wp_{\infty} $.
Remark 3.1. Putting $ \pi(\tau) = 1 $ for $ \tau\in[0, \infty) $ in Theorem 3.1, we have
$ S\left(h; \chi(\Delta \wp)+\phi\left(\chi(\Delta \wp)\right)\right)\leq f\left(S\left(h; \chi(\wp)+\phi\left(\chi(\wp) \right)\right) \right)-f\left(S\left(h; \chi(\Delta \wp)+\phi\left(\chi(\Delta \wp) \right)\right) \right). $
Remark 3.2. Take $ \phi = 0, \; \; S(h; \tau) = \tau, \; \; h = I $ in Remark(3.1), then we have
$ \chi(\Delta \wp)\leq f\left(\chi( \wp)\right)-f\left(\chi(\Delta \wp)\right). $ |
It is a generalization of the result given by Parvenah et al.[10].
Definition 3.1. [19] A mapping $ \Delta:\; \Xi\times \Xi\times \Xi\rightarrow \Xi $ is said to have a TFP $ (\gamma, \delta, \theta)\in \Xi^3 $ if
$ \Delta(\gamma, \delta, \theta) = \gamma, \; \; \; \; \; \; \Delta(\gamma, \delta, \theta) = \delta, \; \; \; \; \; \Delta(\gamma, \delta, \theta) = \theta. $ |
Theorem 3.2. [18] Let $ \chi_1, \chi_2, ..., \chi_n $ be the measure of noncompactness of $ \Xi_1, \Xi_2, ..., \Xi_n $ respectively. Also assume that the function $ \mathcal{B}:\mathbb{R_+}^\tau\rightarrow \mathbb{R_+} $ is convex and $ \mathcal{B}(\gamma_1, \gamma_2, ..., \gamma_\tau) = 0 $ if and only if $ \gamma_r = 0 $ for $ r = 1, 2, ..., \tau $. Then
$ \hat\chi(\Theta) = \mathcal{B}(\chi_1(\Theta_1), \chi_2(\Theta_2), ..., \chi_n(\Theta_n)). $ |
Example 3.1. [20] Let $ \mathcal{\mathcal{B}}(\gamma, \delta, \theta) = \max\lbrace \gamma, \delta, \theta\rbrace $ for $ (\gamma, \delta, \theta)\in\mathbb{R_+}^3 $. Now $ \mathcal{B}(\gamma, \delta, \theta) = \max\lbrace \gamma, \delta, \theta \rbrace = 0 $ iff $ \gamma = \delta = \theta = 0 $. Then $ \mathcal{\mathcal{B}} $ is convex and satisfied all conditions of Theorem 3.2. Therefore $ \hat\chi(\Theta) = \mathcal{B}(\chi_1(\Theta_1), \chi_2(\Theta_2), \chi_3(\Theta_3)) $ is an MNC on $ \Xi_1\times \Xi_2\times \Xi_3 $, where $ \chi $ be an MNC in $ \Xi $ and $ \Theta_j $ is the natural projections of $ Z $ into $ \Xi_j $ for $ j = 1, 2, 3 $.
Example 3.2. [20] Let $ \mathcal{B}(\gamma, \delta, \theta) = \gamma+\delta+\theta $ for $ (\gamma, \delta, \theta)\in\mathbb{R_+}^3 $. Now $ \mathcal{B}(\gamma, \delta, \theta) = \gamma+\delta+\theta = 0 $ iff $ \gamma = \delta = \theta = 0 $. Then $ \mathcal{B} $ is convex and satisfied all conditions of Theorem 3.2. Therefore $ \hat\chi(\Theta) = \mathcal{B}(\chi_1(\Theta_1), \chi_2(\Theta_2), \chi_3(\Theta_3)) $ is an MNC on $ \Xi_1\times \Xi_2\times \Xi_3 $, where $ \chi $ be an MNC in $ \Xi $ and $ X_j $ is the natural projections of $ Z $ into $ \Xi_j $ for $ j = 1, 2, 3 $.
Theorem 3.3. Let $ C $ be a NBCC subset of a Banach space $ \Xi $ and let $ \Delta: C\times C\times C\rightarrow C $ be a continuous mapping such that
$ S(f;\chi(\Delta(\Theta_1\times \Theta_2 \times \Theta_3))) = \omega[S(f;\chi(\Theta_1)+\chi(\Theta_2)+\chi(\Theta_3))]-\omega[S(f;\chi(\Delta\Theta_1)+\chi(\Delta\Theta_2)+\chi(\Delta\Theta_3))], $ |
for all $ \Theta_1, \Theta_2, \Theta_3\in C $, $ \chi $ is MNC and $ \omega:[0, \infty)\rightarrow [0, \infty) $ is such that $ \lim\limits_{\tau \rightarrow 0_+}\omega(\tau) = 0, \; \omega(0) = 0 $. Also $ S(f; .)\in Z $ and $ S(f; \tau_1+\tau_2+\tau_3) = S(f; \tau_1)+S(f; \tau_2)+S(f; \tau_3) $ for all $ \tau_1, \tau_2, \tau_3\geq 0 $. $ \Delta $ has at least a triple fixed point.
Proof. We define a mapping $ \hat\Delta:C_3\rightarrow C_3 $ by
$ \hat \Delta(\gamma, \delta, \theta) = (\Delta(\gamma, \delta, \theta), \Delta(\delta, \gamma, \theta), \Delta(\theta, \delta, \gamma)) $ for all $ (\gamma, \delta, \theta)\in C_3. $
$ \hat \Delta $ is continuous, since $ \Delta $ is continuous.
We know that $ \hat\chi(\Theta) = \chi(\Theta_1)+\chi(\Theta_2)+\chi(\Theta_3) $,
where $ \Theta_1, \Theta_2, \Theta_3 $ denotes the natural projections of $ C $. Suppose $ \Theta\subset C^3 $ be a nonempty subset.
Now using the Theorem 3.3, we get
$ S(f;\hat\chi(\hat \Delta\Theta))\leq S(f;\hat\chi(\Delta(\Theta_1\times \Theta_2 \times \Theta_3)\times \Delta(\Theta_2\times \Theta_1 \times \Theta_3)\times\Delta(\Theta_3\times \Theta_2 \times \Theta_1))) $ |
$ \leq S(f;\chi(\Delta(\Theta_1\times \Theta_2 \times \Theta_3)+S(f;\chi (\Delta(\Theta_2\times \Theta_1 \times \Theta_3)))+S(f;\chi(\Delta(\Theta_3\times \Theta_2 \times \Theta_1)) $ |
$ \leq \omega(S(f;\chi(\Theta_1\times \Theta_2 \times \Theta_3)))-\omega(S(f;\chi(\Delta(\Theta_1\times \Theta_2 \times \Theta_3)))) $ |
$ +\omega(S(f;\chi(\Theta_2\times \Theta_1 \times \Theta_3)))-\omega(S(f;\chi(\Delta(\Theta_2\times \Theta_1 \times \Theta_3)))) $ |
$ +\omega(S(f;\chi(\Theta_3\times \Theta_2 \times \Theta_1)))-\omega(S(f;\chi(\Delta(\Theta_3\times \Theta_2 \times \Theta_1)))) $ |
$ \leq[\omega(S(f;\chi(\Theta_1)+\chi(\Theta_2)+\chi(\Theta_3)))-\omega(S(f;\chi(\Delta\Theta_1)+\chi(\Delta\Theta_2)+\chi(\Delta\Theta_3)))] $ |
$ +[\omega(S(f;\chi(\Theta_2)+\chi(\Theta_1)+\chi(\Theta_3)))-\omega(S(f;\chi(\Delta\Theta_2)+\chi(\Delta\Theta_1)+\chi(\Delta\Theta_3)))] $ |
$ +[\omega(S(f;\chi(\Theta_3)+\chi(\Theta_2)+\chi(\Theta_1)))-\omega(S(f;\chi(\Delta\Theta_3)+\chi(\Delta\Theta_2)+\chi(\Delta\Theta_1)))] $ |
$ \leq 3\omega( S(f;\hat\chi(\hat \Theta)))-3\omega(S(f;\hat\chi(\hat \Delta\Theta))). $ |
Putting $ \omega = \frac{1}{3}\nu $, we have
$ S(f;\hat\chi(\hat \Delta\Theta))\leq \nu(S(f;\hat\chi( \Theta)))-\nu(S(f;\hat\chi(\hat \Delta\Theta))). $ |
Now from the Theorem 3.1, we conclude that $ \Delta $ has at least a triple fixed point.
Remark 3.3. By taking $ S(f; \tau) = \tau, \; \; \; \nu(\tau) = \tau, \; \; f = I $ in Theorem 3.3, we get the corollary which is given below.
Corollary 1. Let $ \Delta:C\times C\times C\rightarrow C $ be a continuous function defined on a NBCC subset $ C $ of $ \Xi $ in such a way that
$ \chi(\Delta(\Theta_1\times \Theta_2\times \Theta_3))\leq \frac{1}{2}[\chi(\Theta_1)+\chi(\Theta_2)+\chi(\Theta_3)]. $ |
Then $ \Delta $ has a TFP.
This section contains the applicability of Theorem 3.1 and Corollary 1 by using the system of equations which is defined as
$ \begin{equation} \begin{array}{ll} \xi\prime(\gamma) = h(\gamma, \xi(\zeta(\tau)), \nu(\zeta(\tau)), w(\zeta(\tau)), \xi\prime(\eta(\tau)), \nu\prime(\eta(\tau)), w\prime(\eta(\tau))), \\ \nu\prime(\gamma) = h(\gamma, \nu(\zeta(\tau)), w(\zeta(\tau)), \xi(\zeta(\tau)), \nu\prime(\eta(\tau)), w\prime(\eta(\tau)), \xi\prime(\eta(\tau))), \\ w\prime(\gamma) = h(\gamma, w(\zeta(\tau)), \xi(\zeta(\tau)), \nu(\zeta(\tau)), w\prime(\eta(\tau)), \xi\prime(\eta(\tau)), \nu\prime(\eta(\tau))), \end{array} \end{equation} $ | (4.1) |
where $ \gamma\in[0, T] $ with the initial state $ \xi(0) = \xi_0, \; \; \nu(0) = \nu_0\; \; and\; \; w(0) = w_0 $.
Suppose that the space of all bounded continuous function defined on $ [0, T] $ is $ C[0, T] $ equipped with the standard norm
$ ||\gamma|| = \sup\lbrace |\gamma(\tau)|:\; \; \; \tau\in[0, T]\rbrace. $ |
A function having Modulus of contiunity for $ \gamma\in[0, T] $ is defined as
$ \omega(\gamma, \epsilon) = \sup\lbrace|\gamma(\tau_1)-\gamma(\tau_2)|:\; \; \tau_1, \tau_2\in[0, T], |\tau_1-\tau_2|\leq\epsilon\rbrace, $ |
$ \omega(\gamma, \epsilon)\rightarrow 0\; as\; \epsilon\rightarrow 0 $, because $ \gamma $ is continuously uniform on $ [0, T] $. The Hausdorff MNC for every bounded subset $ \wp $ of $ C[0, T] $ is
$ \mu(\wp) = \lim\limits_{\epsilon\rightarrow 0}\left\lbrace\sup\limits_{\gamma\in \Theta }\omega(\gamma, \epsilon)\right\rbrace. $ |
Now, we construct the assumptions by which the system of integral Eq (4.1) will be studied.
(i) $ \zeta, \eta: [0, T]\rightarrow [0, T] $ are the functions which are continuous.
(ii) For a continuous function $ h:[0, T]\times\mathbb{R}^6\rightarrow \mathbb{R} $ there exists a continuous function $ \phi:\mathbb{R_+}\rightarrow \mathbb{R_+} $ with $ \phi(0) = 0\; \; and\; \; \phi(\tau) < \tau $ for all $ \tau > 0 $ and also satisfy
$ S\left(f;|h(\tau, \gamma_1, ..., \gamma_6)-h(\tau, \delta_1, ..., \delta_6)|\right) $ |
$ \leq\phi\left(S(f;\max\limits_{1\leq i\leq 3}\lbrace|\gamma_i-\delta_i|\rbrace)\right)+\frac{1}{2}S\left(f;\max\lbrace|\gamma_4-\delta_4|, |\gamma_5-\delta_5|, |\gamma_6-\delta_6|\rbrace\right). $ |
(iii) $ M = \sup\lbrace S(f; |h(\tau, \xi_0, \nu_0, z_0, 0, 0)|)\rbrace < \infty $, where $ \tau\in[0, T] $ and $ S(f; \epsilon) < \epsilon $.
(iv) There exists $ r_0 $ such that
$ \phi(S(f;\Delta r_0))+\frac{1}{2}S(f;3r_0)+M\leq r_0. $ |
Theorem 4.1. The system (4.1) with the assumptions $ (i)-(iv) $ has at least one solution which belongs to the space $ \lbrace C[0, T]\rbrace^3 $.
Proof. Assume that $ \mathcal{U}(\tau) = \xi\prime(\tau), \; \; \mathcal{V}(\tau) = \nu\prime(\tau), \; \; \mathcal{W}(\tau) = w\prime(\tau) $. Then our system of Eq (4.1) can be written as the system of integral eqautions
$ \begin{equation} \begin{array}{ll} \mathcal{U}(\tau) = h\left(\tau, \xi_0+\int\limits_0^{\zeta(\tau)}\xi(\varrho)d\varrho, \nu_0+\int\limits_0^{\zeta(\tau)}\nu(\varrho)d\varrho, w_0+\int\limits_0^{\zeta(\tau)}w(\varrho)d\varrho, \xi(\eta(\tau)), \nu(\eta(\tau)), w(\eta(\tau))\right), \\ \mathcal{V}(\tau) = h\left(\tau, \nu_0+\int\limits_0^{\zeta(\tau)}\nu(\varrho)d\varrho, w_0+\int\limits _0^{\zeta(\tau)}w(\varrho)d\varrho, \xi_0+\int\limits_0^{\zeta(\tau)}\xi(\varrho)d\varrho, \nu(\eta(\tau)), w(\eta(\tau)), \xi(\eta(\tau))\right), \\ \mathcal{W}(\tau) = h\left(\tau, w_0+\int\limits_0^{\zeta(\tau)}w(\varrho)d\varrho, \xi_0+\int\limits_0^{\zeta(\tau)}\xi(\varrho)d\varrho, \nu_0+\int\limits_0^{\zeta(\tau)}\nu(\varrho)d\varrho, w(\eta(\tau)), \xi(\eta(\tau)), \nu(\eta(\tau))\right), \end{array} \end{equation} $ | (4.2) |
where $ \tau\in[0, T]. $
Assume $ \Delta: C[0, T]\rightarrow C[0, T] $ be a operator with
$ \Delta(\xi, \nu, w)(\tau) = h\left(\tau, \xi_0+\int\limits_0^{\zeta(\tau)}\xi(\varrho)d\varrho, \nu_0+\int\limits_0^{\zeta(\tau)}\nu(\varrho)d\varrho, w_0+\int\limits_0^{\zeta(\tau)}w(\varrho)d\varrho, \xi(\eta(\tau)), \nu(\eta(\tau)), w(\eta(\tau))\right). $ |
We notice for every $ \tau\in C[0, T] $, the mapping $ \Delta $ is continuous i.e $ \Delta $ maps the space $ C[0, T] $ into itself.
For fixed arbitrary $ \tau\in C[0, T] $ and $ f\in\mathcal{F}([0, \infty)) $, we have from the assumptions $ (i)-(iv) $,
$ \begin{align*} & S\Bigg(f;|\Delta(\xi, \nu, w)(\tau)|\Bigg)\\ & = S\Bigg(f;\Bigg|h\Bigg(\tau, \xi_0+\int\limits_0^{\zeta(\tau)}\xi(\varrho)d\varrho, \nu_0+\int\limits_0^{\zeta(\tau)}\nu(\varrho)d\varrho, w_0+\int\limits_0^{\zeta(\tau)}w(\varrho)d\varrho, \xi(\eta(\tau)), \nu(\eta(\tau)), w(\eta(\tau))\Bigg)\Bigg|\Bigg)\\ &\leq S\Bigg(f;\Bigg|h\Bigg(\tau, \xi_0+\int\limits_0^{\zeta(\tau)}\xi(\varrho)d\varrho, \nu_0+\int\limits_0^{\zeta(\tau)}\nu(\varrho)d\varrho, w_0+\int\limits_0^{\zeta(\tau)}w(\varrho)d\varrho, \xi(\eta(\tau)), \nu(\eta(\tau)), w(\eta(\tau))\Bigg)\\ &-h(\tau, \xi_0, \nu_0, w_0, 0, 0, 0)\Bigg|\Bigg)+ S(f;|h(\tau, \xi_0, \nu_0, w_0, 0, 0, 0)|)\\ &\leq \phi\Bigg(S\Bigg(f;\max\left\lbrace\Bigg|\int\limits_0^{\zeta(\tau)}\xi(\varrho)d\varrho\Bigg|, \Bigg|\int\limits_0^{\zeta(\tau)}\nu(\varrho)d\varrho\Bigg|, \Bigg|\int\limits_0^{\zeta(\tau)}w(\varrho)d\varrho\Bigg|\right\rbrace\Bigg)\Bigg)\\ &+\frac{1}{2}S\Bigg(f;|\xi(\eta(\tau))|+|\nu(\eta(\tau))|+|w(\eta(\tau))|\Bigg) +S(f;|h(\tau, \xi_0, \nu_0, w_0, 0, 0, 0)|)\\ &\leq\phi\Bigg(S\Bigg(f;\Delta\max\left\lbrace||\xi||, ||\nu||, ||w||\right\rbrace\Bigg)\Bigg)+\frac{1}{2}S\Bigg(f;||\xi||+||\nu||+||w||\Bigg)+M. \end{align*} $ |
Thus
$ S(f;||\Delta(\xi, \nu, w)(\tau)||)\leq\phi\left(S\left(f;\Delta\max\left\lbrace||\xi||, ||\nu||, ||w||\right\rbrace \right)+\frac{1}{2}S\left(f;||\xi||+||\nu||+||w||\right)\right) +M, $ |
and
$ \Delta(\xi, \nu, w)\in C [0, T]. $ |
Due to the inequality $ \phi\left(S\left(f; \Delta r_0 \right)\right) +\frac{1}{2}S\left(f; 3r_0\right) +M \leq r_0 $, the function $ \Delta $ maps $ (B_{r_0})^3 $ into $ (B_{r_0}) $.
Now we prove that $ \Delta $ is continuous on $ (B_{r_0})^3 $.
Let fixed arbitrary $ \epsilon > 0 $ and take $ (\gamma, \delta, \theta), (\xi, \nu, w)\in (B_{r_0})^3 $ such that
$ \max\lbrace||\gamma-\xi||, ||\delta-\nu||, ||\theta-w||\rbrace < \epsilon. $ |
Therefore for every $ t\in[0, T] $, we get
$ \begin{align*} & S\left(f;|\Delta(\gamma, \delta, \theta)(\tau)-\Delta(\xi, \nu, w)(\tau)|\right)\\& \leq S\left(f;\Bigg|h\left(\tau, x_0+\int\limits_0^{\zeta(\tau)}x(\varrho)d\varrho, y_0+\int\limits_0^{\zeta(\tau)}y(\varrho)d\varrho, z_0+\int\limits_0^{\zeta(\tau)}z(\varrho)d\varrho, x(\eta(\tau)), y(\eta(\tau)), z(\eta(\tau))\right)\Bigg|\right)\\& -S\left(f;\Bigg|h\left(\tau, \xi_0+\int\limits_0^{\zeta(\tau)}\xi(\varrho)d\varrho, \nu_0+\int\limits_0^{\zeta(\tau)}\nu(\varrho)d\varrho, w_0+\int\limits_0^{\zeta(\tau)}w(\varrho)d\varrho, \xi(\eta(\tau)), \nu(\eta(\tau)), w(\eta(\tau))\right)\Bigg|\right)\\& \leq\phi\left(S\left(f;T\max\left\lbrace|x_0-\xi_0|+\int\limits_0^{\zeta(\tau)}|x(s)-\xi(\varrho)d\varrho, |y_0-\nu_0|+\int\limits_0^{\zeta(\tau)}|y(s)-\nu(\varrho)d\varrho, |z_0-w_0|+\int\limits_0^{\zeta(\tau)}|z(s)-w(s)|ds\right\rbrace \right) \right)\\& +\frac{1}{2}S\left(f;\max\left\lbrace|x(\eta(\tau))-\xi(\eta(\tau))|, |y(\eta(\tau))-\nu(\eta(\tau))|, |z(\eta(\tau))-w(\eta(\tau))|\right\rbrace\right)\\& \leq\phi\left(S\left(f;\epsilon+\Delta\epsilon \right)\right) +\frac{1}{2}S\left(f;\epsilon\right). \end{align*} $ |
Thus, we have $ \phi\left(S\left(f; \epsilon+\Delta\epsilon \right)\right) +\frac{1}{2}S\left(f; \epsilon\right)\rightarrow 0 $ as $ \epsilon \rightarrow 0 $.
Therefore $ \Delta $ is a continuous function on $ (B_{r_0})^3 $. Now, we shall show that $ \Delta $ satisfy all the conditions of Corollary 1. To do this, let $ \mathcal{U}, \; \; \mathcal{V}\; \; and\; \; W $ are nonempty and bounded subsets of $ (B_{r_0}) $ and $ \epsilon > 0 $ is constant. Moreover we take $ \tau_1, \tau_2\in [0, T] $ with $ |\tau_2-\tau_1|\leq\epsilon $ and $ \xi\in \mathcal{U}, \; \; \nu\in \mathcal{V}\; \; and\; \; w\in W $.
Then we have
$ \begin{align*} & S\Bigg(f;|\Delta(\gamma, \delta, \theta)(\tau)-\Delta(\xi, \nu, w)(\tau)|\Bigg)\\ & = S\Bigg(f;\Bigg|h(\tau_1, \xi_0+\int\limits_0^{\zeta(\tau_1)}\xi(\varrho)d\varrho, \nu_0+\int\limits_0^{\zeta(\tau_1)}\nu(\varrho)d\varrho, w_0+\int\limits_0^{\zeta(\tau_1)}w(\varrho)d\varrho, \xi(\eta(\tau_1)), \nu(\eta(\tau_1)), w(\eta(\tau_1)))\\ &-h(\tau_1, \xi_0+\int\limits_0^{\zeta(\tau_1)}\xi(\varrho)d\varrho, \nu_0+\int\limits_0^{\zeta(\tau_1)}\nu(\varrho)d\varrho, w_0+\int\limits_0^{\zeta(\tau_1)}w(\varrho)d\varrho, \xi(\eta(\tau_2)), \nu(\eta(\tau_2)), w(\eta(\tau_2)))\Bigg|\Bigg)\\ &+S\Bigg(f;\Bigg|h(\tau_1, \xi_0+\int\limits_0^{\zeta(\tau_1)}\xi(\varrho)d\varrho, \nu_0+\int\limits_0^{\zeta(\tau_1)}\nu(\varrho)d\varrho, w_0+\int\limits_0^{\zeta(\tau_1)}w(\varrho)d\varrho, \xi(\eta(\tau_2)), \nu(\eta(\tau_2)), w(\eta(t_2)))\\ &-h(\tau_2, \xi_0+\int\limits_0^{\zeta(\tau_1)}\xi(\varrho)d\varrho, \nu_0+\int\limits_0^{\zeta(\tau_1)}\nu(\varrho)d\varrho, w_0+\int\limits_0^{\zeta(\tau_1)}w(\varrho)d\varrho, \xi(\eta(\tau_2)), \nu(\eta(\tau_2)), w(\eta(\tau_2)))\Bigg|\Bigg)\\ &+S\Bigg(f;\Bigg|h(\tau_2, \xi_0+\int\limits_0^{\zeta(\tau_1)}\xi(\varrho)d\varrho, \nu_0+\int\limits_0^{\zeta(\tau_1)}\nu(\varrho)d\varrho, w_0+\int\limits_0^{\zeta(\tau_1)}w(\varrho)d\varrho, \xi(\eta(\tau_2)), \nu(\eta(\tau_2)), w(\eta(\tau_2)))\\ &-h(\tau_2, \xi_0+\int\limits_0^{\zeta(\tau_1)}\xi(\varrho)d\varrho, \nu_0+\int\limits_0^{\zeta(\tau_1)}\nu(\varrho)d\varrho, w_0+\int\limits_0^{\zeta(\tau_1)}w(\varrho)d\varrho, \xi(\eta(\tau_2)), \nu(\eta(\tau_2)), w(\eta(\tau_2)))\Bigg|\Bigg)\\ &+S\Bigg(f;\Bigg|h(\tau_2, \xi_0+\int\limits_0^{\zeta(\tau_1)}\xi(\varrho)d\varrho, \nu_0+\int\limits_0^{\zeta(\tau_1)}\nu(\varrho)d\varrho, w_0+\int\limits_0^{\zeta(\tau_1)}w(\varrho)d\varrho, \xi(\eta(\tau_2)), \nu(\eta(\tau_2)), w(\eta(\tau_2)))\\ &-h(\tau_2, \xi_0+\int\limits_0^{\zeta(\tau_1)}\xi(\varrho)d\varrho, \nu_0+\int\limits_0^{\zeta(\tau_1)}\nu(\varrho)d\varrho, w_0+\int\limits_0^{\zeta(\tau_1)}w(\varrho)d\varrho, \xi(\eta(\tau_2)), \nu(\eta(\tau_2)), w(\eta(\tau_2)))\Bigg|\Bigg)\\ &\leq\frac{1}{2}S\Bigg(f;\max\left\lbrace|\xi(\eta(\tau_1))-\xi(\eta(\tau_2))|, |\nu(\eta(\tau_1))-\nu(\eta(\tau_2))|, |w(\eta(\tau_1))-w(\eta(t_2))|\right\rbrace\Bigg)\\ &+S(f;\omega(h, \epsilon))+\phi\Bigg(S\Bigg(f;\max\left\lbrace\int\limits_{\zeta(\tau_1)}^{\zeta(\tau_2)}|\xi(\varrho)|d\varrho, \int\limits_{\zeta(\tau_1)}^{\zeta(\tau_2)}|\nu(\varrho)|d\varrho, \int\limits_{\zeta(\tau_1)}^{\zeta(\tau_2)}|w(\varrho)|d\varrho\right\rbrace\Bigg)\Bigg)\\ &\leq\frac{1}{2}S\Bigg(f;\max\left\lbrace\omega(\xi, \omega(\eta, \epsilon)), \omega(\nu, \omega(\eta, \epsilon)), \omega(w, \omega(\eta, \epsilon))\right\rbrace\Bigg)+S(f;\omega(h, \epsilon))+\phi(S(f;\max r_0\omega(\zeta, \epsilon))), \end{align*} $ |
where $ \omega(\eta, \epsilon) = \sup\left\lbrace|\eta(\tau_2)-\eta(\tau_1)|: \; \; \; |\tau_1-\tau_2|\leq\epsilon\; \; \;, \tau_1, \tau_2\in[0, T]\right\rbrace $,
$ \omega(\zeta, \epsilon) = \sup\left\lbrace|\zeta(\tau_2)-\zeta(\tau_1)|: \; \; \; |\tau_1-\tau_2|\leq\epsilon\; \; \;, \tau_1, \tau_2\in[0, T]\right\rbrace, $
$ \omega(\xi, \omega(\eta, \epsilon)) = \sup\left\lbrace|\xi(\tau_2)-\xi(\tau_1)|: \; \; \; |\tau_1-\tau_2|\leq\omega(\eta, \epsilon)\; \; \;, \tau_1, \tau_2\in[0, \eta(T)]\right\rbrace $,
$ \omega(h, \epsilon) = \sup\left\lbrace|h(\tau_1, \gamma_1, ..., \gamma_6)-h(\tau_2, \gamma_1, ..., \gamma_6)|: \; \; \; |\tau_1-\tau_2|\leq\epsilon\; \; \;, \tau_1, \tau_2\in[0, T]\right\rbrace, $
and $ \gamma_1, ..., \gamma_6\in[-r_0, r_0]. $
We infer that
$ \begin{align*} &S\left(f;|\Delta(\gamma, \delta, \theta)(\tau)-\Delta(\xi, \nu, w)(\tau)|\right)\\ &\leq\frac{1}{2}S\left(f;\max\left\lbrace\omega(\xi, \omega(\eta, \epsilon)), \omega(\nu, \omega(\eta, \epsilon)), \omega(w, \omega(\eta, \epsilon))\right\rbrace\right)+S(f;\omega(h, \epsilon))+\phi(S(f;\max r_0\omega(\zeta, \epsilon))). \end{align*} $ |
Therefore we get
$ S\left(f; \omega(\Delta(\mathcal{\mathcal{U}}\times \mathcal{V}\times \mathcal{W}), \epsilon)\right)\\ \leq\frac{1}{2}S\left(f; \max\left\lbrace\omega(\mathcal{\mathcal{U}}, \omega(\eta, \epsilon)), \omega(\mathcal{V}, \omega(\eta, \epsilon)), \omega(\mathcal{W}, \omega(\eta, \epsilon))\right\rbrace\right)+S(f; \omega(h, \epsilon))+\phi(S(f; \max r_0\omega(\zeta, \epsilon))). $
Since $ h, \eta, \zeta $ are uniformly continuous on $ [0, T]\times [-r_0, r_0]^5, [0, T]\; \; and\; \; [0, T] $ respectively, we get $ \omega(h, \epsilon)\rightarrow 0, \; \; \omega(\eta, \epsilon)\rightarrow 0\; \; and\; \; \omega(\zeta, \epsilon)\rightarrow 0\; \; as\; \; \epsilon\rightarrow 0 $.
By taking $ S(f; \tau) = \tau, \; \; \Theta_1 = \mathcal{\mathcal{U}}, \; \; \Theta_2 = \mathcal{V}, \; \; \Theta_3 = \mathcal{W}, \; \; f = I $ and from the MNC definition, we have $ \chi(\Theta_1\times \Theta_2\times \Theta_3)\leq \frac{1}{2}\left(\max\left\lbrace\chi(\Theta_1), \chi(\Theta_2), \chi(\Theta_3)\right\rbrace\right). $
By the Corollary 1, $ \Delta $ has at least a TFP.
Example 5.1. Let the system of differentail equations is as
$ \begin{equation} \begin{array}{ll} \xi\prime(\tau) = \tau^2+\frac{\sqrt [3]{\xi{(\tau)}}+\sqrt [5]{\nu{(\tau)}}+\sqrt [7]{w{(\tau)}}}{3}+\frac{1}{6}\log(1+|\tau\prime(\tau)+\nu\prime(\tau)+w\prime(\tau)|), \\ \nu\prime(\tau) = \tau^2+\frac{\sqrt [3]{\xi{(\tau)}}+\sqrt [5]{\nu{(\tau)}}+\sqrt [7]{w{(\tau)}}}{3}+\frac{1}{6}\log(1+|\nu\prime(\tau)+w\prime(\tau)+\xi\prime(\tau)|), \\ w\prime(\tau) = \tau^2+\frac{\sqrt [3]{\xi{(\tau)}}+\sqrt [5]{\nu{(\tau)}}+\sqrt [7]{w{(\tau)}}}{3}+\frac{1}{6}\log(1+|w\prime(\tau)+\xi\prime(\tau)+\nu\prime(\tau)|).\\ \end{array} \end{equation} $ | (5.1) |
with the state condition $ \xi(0) = 1, \; \; \nu(0) = 3, \; \; w(0) = 2 $ and $ \tau\in[0, 5] $.
System of Eq (5.1) is the particular case of Eq (4.1) where $ \zeta(\tau) = \tau = \eta(\tau) $,
By the definition of $ \zeta $ and $ \beta $ assumption $ (i) $ is satisfied.
$ h(\tau, \gamma_1, ..., \gamma_6) = \tau^2+\frac{\sqrt [3]{\xi{(\tau)}}+\sqrt [5]{\nu{(\tau)}}+\sqrt [7]{w{(\tau)}}}{3}+\frac{1}{6}\log(1+|\xi\prime(\tau)+\nu\prime(\tau)+w\prime(\tau)|) $.
Now assume that $ \tau\in[0, T], \; \; S(f; \tau) = \tau, \; \; and\; \; \phi(\tau) = \max_{i = 3, 5, 7}\lbrace\sqrt[i]{\tau}\rbrace $,
we get
$ \begin{align*} &|f(\tau, \gamma_1, ..., \gamma_6)-f(\tau, \gamma_1, ..., \gamma_6)|\\& \leq\frac{|\sqrt[3]\gamma_1-\sqrt[3]\delta_1|+|\sqrt[5]\gamma_2-\sqrt[5]\delta_2|+|\sqrt[7]\gamma_3-\sqrt[7]\delta_3|}{3}+\frac{1}{6}|\log(1+|\gamma_4+\gamma_5+\gamma_6|)-\log(1+|\delta_4+\delta_5+\delta_6|)\\& \leq\frac{|\sqrt[3]\gamma_1-\sqrt[3]\delta_1|+|\sqrt[5]\gamma_2-\sqrt[5]\delta_2|+|\sqrt[7]\gamma_3-\sqrt[7]\delta_3|}{3}+\frac{1}{6}\log\left(1+\frac{|\gamma_4+\gamma_5+\gamma_6|-|\delta_4+\delta_5+\delta_6|}{1++|\delta_4+\delta_5+\delta_6|}\right)\\& \leq\frac{\sqrt[3]{|\gamma_1-\delta_1|}+\sqrt[5]{|\gamma_2-\delta_2|}+\sqrt[7]{|\gamma_3-\delta_3|}}{3}+\frac{1}{6}\log(1+|\gamma_4+\gamma_5+\gamma_6-(\delta_4+\delta_5+\delta_6)|)\\& \leq\frac{\sqrt[3]{|\gamma_1-\delta_1|}+\sqrt[5]{|\gamma_2-\delta_2|}+\sqrt[7]{|\gamma_3-\delta_3|}}{3}+\frac{1}{6}\log(1+|\gamma_4-\delta_4|+|\gamma_5-\delta_5|+|\gamma_6-\delta_6|)\\& = \frac{1}{3}(\max\gamma\lbrace|\gamma_4-\delta_4|, |\gamma_5-\delta_5|, |\gamma_6-\delta_6|\rbrace)+\phi(\max\gamma_{i = 1, 2, 3}\lbrace|\gamma_i-\delta_i|\rbrace). \end{align*} $ |
Hence assumption $ (ii) $ is satisfied. Moreover
$ \begin{align*} M& = \sup\lbrace|h(\tau, \gamma_0, \delta_0, \theta_0, 0, 0, 0):\; \; \tau\in[0, T]\rbrace\\& = \sup\lbrace \tau^2+\sqrt[3]{1}+\sqrt[5]{3}+\sqrt[7]{2}:\; \; \tau\in[0, 5]\rbrace\\& \leq 29. \end{align*} $ |
It is simple to notice every number $ r\geq 75 $ fulfills the inequality given in $ (iii) $.
Now the inequality in assumption $ (iv) $ is $ \phi\left(S(f; \Delta r_0)\right)+\frac{1}{6}S\left(f; 3r_0\right)+M $ is equal to
$ \phi(5r)+\frac{1}{6}(3r)+29\leq r. $ |
Hence, as the number $ r_0 $ we can take $ r_0 = 75 $. Therefore, all the assumptions of Theorem 4.1 are satisfied. Hence the system of Eq (5.1) have at least one solution which belongs to $ \lbrace C[0, T]\rbrace^3 $ space.
The present paper concentrated on multiple FPT which is based on the generalization of DFPT via MNC. In this work, by using the concept of operators we extend DFPT by using MNC. We demonstrate the endurance of TFP by our extended DFPT and MNC. At the last we yield an example which fulfills our findings.
The authors would like to express their deep gratitude to the journal editor and referees for their careful reviews and valuable comments which helped to improve the paper. This research is supported by Govt. of India CSIR fellowship, Program No. 09/1174(0005)/2019-EMR-I, New Delhi.
All the authors declare that there is no conflict of interest.
[1] |
K. Kuratowski, Sur les espaces complets, Fund. Math., 15 (1930), 301–309. doi: 10.4064/fm-15-1-301-309
![]() |
[2] | G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Semin. Mat. Univ. Padova, 24 (1955), 84–92. |
[3] |
A. Aghajani, R. Allahyari, M. Mursaleen, A generalization of Darbo's theorem with application to the solvability of systems of integral equations, J. Comput. Appl. Math., 260 (2014), 68–77. doi: 10.1016/j.cam.2013.09.039
![]() |
[4] |
A. Hajji, A generalization of Darbo's fixed point and common solutions of equations in Banach spaces, Fixed Point Theory Appl., 2013 (2013), 62. doi: 10.1186/1687-1812-2013-62
![]() |
[5] |
H. K. Nashine, R. W. Ibrahim, R. P. Agarwal, N. H. Can, Existence of local fractional integral equation via a measure of non-compactness with monotone property on Banach spaces, Adv. Differ. Equ., 2020 (2020), 694. doi: 10.1186/s13662-020-03154-2
![]() |
[6] |
A. Samadi, M. B. Ghaemi, An extension of Darbo fixed point theorem and its applications to coupled fixed point and integral equations, Filomat, 28 (2014), 879–886. doi: 10.2298/FIL1404879S
![]() |
[7] |
L. S. Cai, J. Liang, New generalizations of Darbo's fixed point theorem, Fixed Point Theory Appl., 2015 (2015), 156. doi: 10.1186/s13663-015-0406-2
![]() |
[8] |
S. Banaei, An extension of Darbo's theorem and its application to existence of solution for a system of integral equations, Cogent Math. Stat., 6 (2019), 1614319. doi: 10.1080/25742558.2019.1614319
![]() |
[9] |
A. Das, B. Hazarika, P. Kumam, Some new generalization of Darbo's fixed point theorem and its application on integral equations, Mathematics, 7 (2019), 214. doi: 10.3390/math7030214
![]() |
[10] |
V. Parvaneh, M. Khorshidi, M. De La Sen, H. Isik, M. Mursaleen, Measure of noncompactness and a generalized Darbo's fixed point theorem and its applications to a system of integral equations, Adv. Differ. Equ., 2020 (2020), 243. doi: 10.1186/s13662-020-02703-z
![]() |
[11] |
S. Banaei, Solvability of a system of integral equations of Volterra type in the Frechet space $L_{loc}^{p} (\mathbb{R_+})$ via measure of noncompactness, Filomat, 32 (2018), 5255–5263. doi: 10.2298/FIL1815255B
![]() |
[12] |
S. Banaei, M. B. Ghaemi, R. Saadati, An extension of Darbo's theorem and its application to system of neutral differential equation with deviating argument, Miskolc Math. Notes., 18 (2017), 83–94. doi: 10.18514/MMN.2017.2086
![]() |
[13] |
A. Das, B. Hazarika, V. Parvaneh, M. Mursaleen, Solvability of generalized fractional order integral equations via measures of noncompactness, Math. Sci., 15 (2021), 241–251. doi: 10.1007/s40096-020-00359-0
![]() |
[14] |
S. Banaei, M. Mursaleen, V. Parvaneh, Some fixed point theorems via measure of noncompactness with applications to differential equations, Comp. Appl. Math., 39 (2020), 139. doi: 10.1007/s40314-020-01164-0
![]() |
[15] |
J. Banas, M. Lecko, Solvability of infinite systems of differential equations in Banach sequence spaces, J. Comput. Appl. Math., 137 (2001), 363–375. doi: 10.1016/S0377-0427(00)00708-1
![]() |
[16] | I. Altun, D. Turkoglu, A fixed point theorem for mappings satisfying a general condition of operator type, J. Comput. Anal. Appl., 9 (2007), 9–14. |
[17] | A. Aghajani, J. Banas, N. Sabzali, Some generalizations of Darbo fixed point theorem and applications, Bull. Belg. Math. Soc., 20 (2013), 345–358. |
[18] | J. Banas, On measures of noncompactness in Banach spaces, Commentat. Math. Univ. Carol., 21 (1980), 131–143. |
[19] |
V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal.-Theor., 74 (2011), 4889–4897. doi: 10.1016/j.na.2011.03.032
![]() |
[20] |
A. Aghajani, R. Allahyari, M. Mursaleen, A generalization of Darbo's theorem with application to the solvability of systems of integral equations, J. Comput. Appl. Math., 260 (2014), 68–77. doi: 10.1016/j.cam.2013.09.039
![]() |
1. | Bhuban Chandra Deuri, Marija V. Paunović, Anupam Das, Vahid Parvaneh, Ali Jaballah, Solution of a Fractional Integral Equation Using the Darbo Fixed Point Theorem, 2022, 2022, 2314-4785, 1, 10.1155/2022/8415616 | |
2. | Nihar Kumar Mahato, Sumati Kumari Panda, Manar A. Alqudah, Thabet Abdeljawad, An existence result involving both the generalized proportional Riemann-Liouville and Hadamard fractional integral equations through generalized Darbo's fixed point theorem, 2022, 7, 2473-6988, 15484, 10.3934/math.2022848 | |
3. | Fahim Uddin, Faizan Adeel, Khalil Javed, Choonkil Park, Muhammad Arshad, Double controlled $ M $-metric spaces and some fixed point results, 2022, 7, 2473-6988, 15298, 10.3934/math.2022838 | |
4. | N. K. Mahato, 2023, Chapter 16, 978-981-99-0596-6, 219, 10.1007/978-981-99-0597-3_16 | |
5. | Rahul Rahul, Nihar Kumar Mahato, Mohsen Rabbani, Nasser Aghazadeh, EXISTENCE OF THE SOLUTION VIA AN ITERATIVE ALGORITHM FOR TWO-DIMENSIONAL FRACTIONAL INTEGRAL EQUATIONS INCLUDING AN INDUSTRIAL APPLICATION, 2023, 35, 0897-3962, 10.1216/jie.2023.35.459 | |
6. | Nihar Kumar Mahato, Bodigiri Sai Gopinadh, , 2024, Chapter 15, 978-981-99-9545-5, 339, 10.1007/978-981-99-9546-2_15 | |
7. | An Enhanced Darbo-Type Fixed Point Theorems and Application to Integral Equations, 2024, 11, 2395-602X, 120, 10.32628/IJSRST24116165 |