This manuscript was originally built to establish some coupled common fixed point results for rational contractive mapping in the framework of b-metric spaces. Thereafter, the existence and uniqueness of the boundary value problem for a singular coupled fractional differential equation of order ν via coupled fixed point techniques are discussed. At the last, some supportive examples to illustrate the theoretical results are presented.
Citation: Hasanen A. Hammad, Watcharaporn Chaolamjiak. Solving singular coupled fractional differential equations with integral boundary constraints by coupled fixed point methodology[J]. AIMS Mathematics, 2021, 6(12): 13370-13391. doi: 10.3934/math.2021774
[1] | Hasanen A. Hammad, Hüseyin Işık, Hassen Aydi, Manuel De la Sen . Fixed point approach to the Mittag-Leffler kernel-related fractional differential equations. AIMS Mathematics, 2023, 8(4): 8633-8649. doi: 10.3934/math.2023433 |
[2] | Sumaiya Tasneem Zubair, Kalpana Gopalan, Thabet Abdeljawad, Nabil Mlaiki . Novel fixed point technique to coupled system of nonlinear implicit fractional differential equations in complex valued fuzzy rectangular $ b $-metric spaces. AIMS Mathematics, 2022, 7(6): 10867-10891. doi: 10.3934/math.2022608 |
[3] | Kumara Swamy Kalla, Sumati Kumari Panda, Thabet Abdeljawad, Aiman Mukheimer . Solving the system of nonlinear integral equations via rational contractions. AIMS Mathematics, 2021, 6(4): 3562-3582. doi: 10.3934/math.2021212 |
[4] | Madeaha Alghanmi, Shahad Alqurayqiri . Existence results for a coupled system of nonlinear fractional functional differential equations with infinite delay and nonlocal integral boundary conditions. AIMS Mathematics, 2024, 9(6): 15040-15059. doi: 10.3934/math.2024729 |
[5] | Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with $ \mathcal{ABC} $ fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071 |
[6] | Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704 |
[7] | Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176 |
[8] | Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880 |
[9] | Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of $ \psi $-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122 |
[10] | Salma Noor, Aman Ullah, Anwar Ali, Saud Fahad Aldosary . Analysis of a hybrid fractional coupled system of differential equations in $ n $-dimensional space with linear perturbation and nonlinear boundary conditions. AIMS Mathematics, 2024, 9(6): 16234-16249. doi: 10.3934/math.2024785 |
This manuscript was originally built to establish some coupled common fixed point results for rational contractive mapping in the framework of b-metric spaces. Thereafter, the existence and uniqueness of the boundary value problem for a singular coupled fractional differential equation of order ν via coupled fixed point techniques are discussed. At the last, some supportive examples to illustrate the theoretical results are presented.
The science of fractional differentiation is related to many engineering disciplines because its basis is based on differential equations that have a long history in chemistry, polymer rheology electrodynamics, physics and aerodynamics. Derivatives of fractional order are also included in mathematical simulations of structures and processes [1,2,3]. More broadly, differential equations of fractional order often become means of multiple perspectives on control systems, fluid dynamics, and so on.
Another reason for the importance of studying fractional order differential equations is that the fractional order models are more accurate than the correct order models and they also seem to have a greater degree of freedom. To learn more recent results about this branch, we cite [4,5,6,7,8,9,10,11,12,13].
The integral boundary stipulations play a prominent role in many applications such as thermo-elasticity, population dynamics, problems with blood flow and underground water supply. To obtain a full and comprehensive explanation of the terms of integral boundaries, we direct the reader to certain recent publications [14,15,16,17,18,19,20,21,22,23,24].
The fixed point technique is one of the final modeling methods for many fields. In engineering, it is used to achieve solutions or search for more effective results. In general, this method has become one of the best methods used in modern mathematics, especially functional analysis. This method relates to the existence, uniqueness and characteristics of a specified operator's fixed points.
One of the very important discoveries of this technique is the Banach contraction principle [25], as it contributed greatly to spread after exploring generalized metric areas that were greatly enamored by the authors in the field of fractional differential equations. For further clarification, see [7,10,26,27,28,29].
The notion of coupled fixed points (CFPs) was introduced in 1987 by Guo and Lakshmikantham [30] and applications to it were recounted by Bhaskar and Lakshmikantham [31] who were able to study the monotone property and applied the theoretical results to find a unique solution to periodic boundary value problems (BVPs). In abstract spaces, a lot of authors generalized this concept and obtained pivotal results and more applications. For more details, see [32,33,34,35,36,37].
Coupled fixed points are not only an abstract definition but have many vital applications in some models of economics such as equilibrium in duopoly markets and variational principle, for instance, see [1,38].
In the framework of b-metric space (bMS), our main aim of this paper is to establish some common CFP results for two rational contractive mappings under mild conditions. The theoretical results are applied to discuss the existence and uniqueness of the solution for a singular coupled fractional differential equation (CFDE) of order ν in the form of:
{cΘνz(τ)+Ξ(τ,z(τ),w(τ))=0,τ∈(0,1),cΘνw(τ)+Ξ(τ,w(τ),z(τ))=0,τ∈(0,1),Λ′′′(0)=Λ′′(0)=0,Λ′=Λ(1)=α∫10Λ(θ)dθ, | (1.1) |
where Λ∈C[0,1]×C[0,1] and given by Λ(τ)=(z(τ),w(τ)), ν∈(3,4), α∈(0,2), cΘν is the Caputo fractional derivative and Ξ may be singular at z=0 and w=0.
The concept of bMSs initiated by Czerwik [40] in the year 1993, as a generalization of ordinary metric spaces. Just it's multiplying the constant b at the right-hand side of the triangle inequality.
Definition 2.1. A b-metric on a nonempty set Ω is a function μb:Ω×Ω→R+ such that for all a1,a2,a3∈Ω and a constant b≥1, the hypotheses below hold:
i. μb(a1,a2)=0 if and only if a1=a2;
ii. μb(a1,a2)=μb(a2,a1);
iii. μb(a1,a3)≤b[μb(a1,a2)+μr(a2,a3)].
The pair (Ω,μb) is called bMS with parameter b.
Example 2.1. [41] Let ℓp(0<p<1)={{ai}∈R:+∞∑i=1|ai|p<∞} and μb:ℓp×ℓp→R+ be a function described as μb(a1,a2)=(+∞∑i=1|ai1−ai2|p)1p, where a1={ai1}; a2={ai2}∈ℓp. Then (ℓp,μb) is a bMS with b=21p.
Example 2.2. [41] Let Lp(0<p<1) be the space of all real continuous functions a(τ), τ∈[0,1] so that 1∫0|a(τ)|pdτ≤∞ and μb:Lp×Lp→R+ be a function described as μb(a1,a2)=(1∫0|a1(τ)−a2(τ)|pdτ)1p, for each a1,a2∈Lp. Then (Lp,μb) is a bMS with b=21p.
Definition 2.2. [41] Let (Ω,μb) be a bMS, the sequence {ai} in Ω is called:
(i) convergent to a∈Ω if for each ε>0, there exists Q(ε)∈N so that μr(ai,a)<ε for all i≥Q(ε) and we write limi→+∞ai=a;
(ii) a Cauchy sequence if for each ε>0, there exists Q(ε)∈N so that μr(ai,aj)<ε for all i,j≥Q(ε).
If every Cauchy sequence in Ω converges in Ω, then a bMS is called complete.
It should be noted that in a bMS, a convergent sequence has a unique limit and every convergent sequence is Cauchy.
Definition 2.3. [42] Assume that Υ,Ξ:Ω×Ω→Ω are two mappings on a bMS (Ω,μb), the pair (a1,a2)∈Ω×Ω is called:
i. a CFP of Υ if a1=Υ(a1,a2) and a2=Υ(a2,a1);
ii. a coupled coincidence point of Υ and Ξ if Υ(a1,a2)=Ξ(a1,a2) and Ξ(a2,a1)=Υ(a2,a1);
iii. a common CFP of Υ and Ξ if a1=Υ(a1,a2)=Ξ(a1,a2) and a2=Ξ(a2,a1)=Υ(a2,a1).
For the convenience of the reader, we present some definitions and necessary lemmas from the theory of fractional analysis.
Definition 2.4. [43] The Caputo derivative of fractional order ν>0, n−1<ν<n, n∈N, for the function z(τ):[0,∞)→R is described as
CΘνz(τ)=1Γ(n−ν)τ∫0zn(θ)(τ−θ)ν−n+1dθ,n=[ν]+1, |
where [ν] represents the integer part of the real number ν.
Definition 2.5. [43] For a function z(τ):[0,∞)→R, the Riemann–Liouville fractional integral of order ν is described as
Iνz(τ)=1Γ(ν)τ∫0(ν−θ)ν−1z(θ)dθ,ν>0, |
provided that an integral exists.
Lemma 2.1. [44] Consider ν>0, then
IνCΘνz(τ)=z(τ)−C0−C1τ−C2τ2−...−Cn−1τn−1, |
where Ci∈R, i=0,1,2,...,n−1, n=[ν]+1.
Lemma 2.2. [1] If ν>0 and α>0, then
i. cΘντα−1=Γ(α)Γ(α−ν)τα−ν−1, for α>n;
ii. cΘντk=0, for k=0,1,...,n−1.
Theorem 3.1. Assume that (Ω,μr) is a complete bMS with a coefficient r(=b)≥1 and let the mappings Υ,Ξ:Ω×Ω→Ω satisfy
μr(Υ(ρ,a),Ξ(σ,b))≤λμr(ρ,σ)+μr(a,b)2+τ[1+μr(ρ,Υ(ρ,a))]μr(σ,Ξ(σ,b))(1+μr(ρ,σ)+μr(a,b))+ζμr(σ,Υ(ρ,a))μr(ρ,Ξ(σ,b))(1+μr(ρ,σ)+μr(a,b)). | (3.1) |
for all ρ,a,σ,b∈Ω and λ,τ,ζ≥0 with rλ+τ<1 and λ+ζ<1.
Then there is a unique common CFP of Υ and Ξ.
Proof. Assume that ρ0,a0∈Ω is arbitrary points. Describe the sequences {ρ2i+1}+∞i=0, {a2i+1}+∞i=0, {ρ2i+2}+∞i=0 and {a2i+2}+∞i=0 as
ρ2i+1=Υ(ρ2i,a2i),a2i+1=Ξ(a2i,ρ2i), ρ2i+2=Ξ(ρ2i+1,a2i+1) and a2i+2=Ξ(a2i+1,ρ2i+1), |
for all i=0,1,2,..., then by (3.1), we have
μr(ρ2i+1,ρ2i+2)=μr(Υ(ρ2i,a2i),Ξ(ρ2i+1,a2i+1))≤λμr(ρ2i,ρ2i+1)+μr(a2i,a2i+1)2+τ[1+μr(ρ2i,Υ(ρ2i,a2i))]μr(ρ2i+1,Ξ(ρ2i+1,a2i+1))1+μr(ρ2i,ρ2i+1)+μr(a2i,a2i+1)+ζμr(ρ2i+1,Υ(ρ2i,a2i))μr(ρ2i,Ξ(ρ2i+1,a2i+1))1+μr(ρ,σ)+μr(a,b)=λμr(ρ2i,ρ2i+1)+μr(a2i,a2i+1)2+τ[1+μr(ρ2i,ρ2i+1)]μr(ρ2i+1,ρ2i+2)1+μr(ρ2i,ρ2i+1)+μr(a2i,a2i+1)+ζμr(ρ2i+1,ρ2i+1)μr(ρ2i,ρ2i+2)1+μr(ρ2i,ρ2i+1)+μr(a2i,a2i+1)=λμr(ρ2i,ρ2i+1)+μr(a2i,a2i+1)2+τ[1+μr(ρ2i,ρ2i+1)]μr(ρ2i+1,ρ2i+2)1+μr(ρ2i,ρ2i+1)+μr(a2i,a2i+1)≤λμr(ρ2i,ρ2i+1)2+λμr(a2i,a2i+1)2+τμr(ρ2i+1,ρ2i+2), |
this implies that
μr(ρ2i+1,ρ2i+2)≤λ2(1−τ)μr(ρ2i,ρ2i+1)+λ2(1−τ)μr(a2i,a2i+1). | (3.2) |
By following the same approach, we can write
μr(a2i+1,a2i+2)≤λ2(1−τ)μr(a2i,a2i+1)+λ2(1−τ)μr(ρ2i,ρ2i+1). | (3.3) |
Adding (3.2) and (3.3), we get
μr(ρ2i+1,ρ2i+2)+μr(a2i+1,a2i+2)≤λ(1−τ)(μr(ρ2i,ρ2i+1)+μr(a2i,a2i+1))=ρ(μr(ρ2i,ρ2i+1)+μr(a2i,a2i+1)), |
where 0<ρ=λ(1−τ)<1.
Also, we can write
μr(ρ2i+2,ρ2i+3)≤λ2(1−τ)μr(ρ2i+1,ρ2i+2)+λ2(1−τ)μr(a2i+1,a2i+2). | (3.4) |
Similarly,
μr(a2i+2,a2i+3)≤λ2(1−τ)μr(a2i+1,a2i+2)+λ2(1−τ)μr(ρ2i+1,ρ2i+2). | (3.5) |
Adding (3.4) and (3.5), we have
μr(ρ2i+2,ρ2i+3)+μr(a2i+2,a2i+3)≤λ(1−τ)(μr(ρ2i+1,ρ2i+2)+μr(a2i+1,a2i+2))=ρ(μr(ρ2i+1,ρ2i+2)+μr(a2i+1,a2i+2)), |
Continuing with the same previous approach, we find repeatedly that, for all i≥0,
μr(ρi,ρi+1)+μr(ai,ai+1)≤ρ(μr(ρi−1,ρi)+μr(ai−1,ai))≤ρ2(μr(ρi−2,ρi−1)+μr(ai−2,ai−1))≤⋯≤ρi(μr(ρ0,ρ1)+μr(a0,a1)). | (3.6) |
Now, if μr(ρi,ρi+1)+μr(ai,ai+1)=Λi, then (3.6) is reduces to
Λi≤ρΛi−1≤ρ2Λi−2≤⋯≤ρiΛ0. |
For j>i, we get
μr(ρi,ρj)+μr(ai,aj)≤r(μr(ρi,ρi+1)+μr(ai,ai+1))+⋯+rj−i(μr(ρj,ρj+1)+μr(aj,aj+1))≤rρiΛ0+r2ρi+1Λ0+⋯+rj−iρj−1Λ0<rρi(1+(rρ)+(rρ)2+...)Λ0=(rρi1−rρ)Λ0→0 as i→+∞. |
This proves that {ρi} and {ai} are Cauchy sequences in Ω. The completeness of Ω leads to there are ρ,a∈Ω so that limi→+∞ρi=ρ and limi→+∞ai=a.
Now, we claim that ρ=Υ(ρ,a) and a=Υ(a,ρ). Suppose that the contradiction, that is ρ≠Υ(ρ,a) and a≠Υ(a,ρ) so that μr(ρ,Υ(ρ,a))=ℓ1>0 and μr(a,Υ(a,ρ))=ℓ2>0.
Consider
ℓ1=μr(ρ,Υ(ρ,a))≤r(μr(ρ,ρ2i+2)+μr(ρ2i+2,Υ(ρ,a)))=rμr(ρ,ρ2i+2)+rμr(Ξ(ρ2i+1,a2i+1),Υ(ρ,a))=rμr(ρ,ρ2i+2)+rλμr(ρ,ρ2i+1)+μr(a,a2i+1)2+rτ[1+μr(ρ,Υ(ρ,a))]μr(ρ2i+1,Ξ(ρ2i+1,a2i+1))(1+μr(ρ,ρ2i+1)+μr(a,a2i+1))+rζμr(ρ2i+1,Υ(ρ,a))μr(ρ,Ξ(ρ2i+1,a2i+1))(1+μr(ρ,ρ2i+1)+μr(a,a2i+1))=rμr(ρ,ρ2i+2)+rλμr(ρ,ρ2i+1)+μr(a,a2i+1)2+rτ[1+μr(ρ,Υ(ρ,a))]μr(ρ2i+1,ρ2i+2)(1+μr(ρ,σ)+μr(a,b))+rζμr(ρ2i+1,Υ(ρ,a))μr(ρ,ρ2i+2)(1+μr(ρ,ρ2i+1)+μr(a,a2i+1)). | (3.7) |
Passing i→+∞ in (3.7), we have ℓ1≤0, which is a contradiction. This conclude that μr(ρ,Υ(ρ,a))=0, i.e., ρ=Υ(ρ,a), similarly, one can obtain that a=Υ(a,ρ). It follows similarly that ρ=Ξ(ρ,a) and a=Ξ(a,ρ).
For uniqueness: Assume that (˜ρ,˜a)∈Ω×Ω is a different common CFP of Υ and Ξ. Then
μr(ρ,˜ρ)=μr(Υ(ρ,a),Ξ(˜ρ,˜a))≤λμr(ρ,˜ρ)+μr(a,˜a)2+τ[1+μr(ρ,Υ(ρ,a))]μr(˜ρ,Ξ(˜ρ,˜a))(1+μr(ρ,˜ρ)+μr(a,˜a))+ζμr(˜ρ,Υ(ρ,a))μr(ρ,Ξ(˜ρ,˜a))(1+μr(ρ,˜ρ)+μr(a,˜a))=λμr(ρ,˜ρ)+μr(a,˜a)2+τ[1+μr(ρ,ρ)]μr(˜ρ,˜ρ)(1+μr(ρ,˜ρ)+μr(a,˜a))+ζμr(˜ρ,ρ)μr(ρ,˜ρ)(1+μr(ρ,˜ρ)+μr(a,˜a))≤λμr(ρ,˜ρ)2+λμr(a,˜a)2+ζμr(ρ,˜ρ), |
this yields
μr(ρ,˜ρ)≤(λ2−λ−2ζ)μr(a,˜a). | (3.8) |
By the same manner, one can write
μr(a,˜a)≤(λ2−λ−2ζ)μr(ρ,˜ρ). | (3.9) |
Adding (3.8) and (3.9), one sees that
μr(ρ,˜ρ)+μr(a,˜a)≤(λ2−λ−2ζ)(μr(ρ,˜ρ)+μr(a,˜a)), |
this leads to, (2−2λ−2ζ)(μr(ρ,˜ρ)+μr(a,˜a))≤0, since λ+ζ<1, then we have (μr(ρ,˜ρ)+μr(a,˜a))=0. This is only achieved when ρ=˜ρ and a=˜a. Therefore, (ρ,a) is a unique common CFP of Υ and Ξ.
If we put Υ=Ξ in the above theorem, we get the result below.
Corollary 3.1. Assume that (Ω,μr) is a complete bMS with a coefficient r≥1 and let the mapping Υ:Ω×Ω→Ω verifies
μr(Υ(ρ,a),Υ(σ,b))≤λμr(ρ,σ)+μr(a,b)2+τ[1+μr(ρ,Υ(ρ,a))]μr(σ,Υ(σ,b))(1+μr(ρ,σ)+μr(a,b))+ζμr(σ,Υ(ρ,a))μr(ρ,Ξ(σ,b))(1+μr(ρ,σ)+μr(a,b)). |
for all ρ,a,σ,b∈Ω and λ,τ,ζ≥0 with rλ+τ<1 and λ+ζ<1.
Then there is a unique CFP of Υ.
The following Corollary is very important in the next section (applications).
Corollary 3.2. Let (Ω,μr) be a complete bMS with a coefficient r≥1 and let the mapping Υ:Ω×Ω→Ω verifies
μr(Υ(ρ,a),Υ(σ,b))≤λμr(ρ,σ)+μr(a,b)2, | (3.10) |
for all ρ,a,σ,b∈Ω and λ≥0 with rλ<1.Then Υ has a unique CFP.
Proof. Just put Υ=Ξ and τ=ζ=0 in Theorem 3.1, we get the proof.
Theorem 3.2. Suppose that (Ω,μr) is a complete bMS with a coefficient r≥1 and let the mappings Υ,Ξ:Ω×Ω→Ω verify
μr(Υ(ρ,a),Ξ(σ,b))≤{λμr(ρ,σ)+μr(a,b)2+τμr(ρ,Υ(ρ,a))μr(σ,Ξ(σ,b))Q+ζμr(σ,Υ(ρ,a))[1+μr(ρ,Ξ(σ,b))]1+μr(ρ,σ)+μr(a,b),if Q≠0,0if Q=0, |
for all ρ,a,σ,b∈Ω, where
Q=Q(ρ,a,σ,b)=r(μr(σ,Υ(ρ,a))+μr(ρ,Ξ(σ,b))+μr(ρ,σ)+μr(a,b)), |
and λ,τ,ζ≥0 with r(λ+τ+ζ)<1. Then Υ and Ξ have a unique common coupled fixed point.
Proof. Let ρ0,a0∈Ω be an arbitrary points. Define the sequences {ρ2i+1}+∞i=0, {a2i+1}+∞i=0, {ρ2i+2}+∞i=0 and {a2i+2}+∞i=0 by
ρ2i+1=Υ(ρ2i,a2i),a2i+1=Ξ(a2i,ρ2i), ρ2i+2=Ξ(ρ2i+1,a2i+1) and a2i+2=Ξ(a2i+1,ρ2i+1), |
for all i=0,1,2,.... Consider
Q1=Q(ρ2i,a2i,ρ2i+1,a2i+1)≠0 and Q2=Q(a2i,ρ2i,a2i+1,ρ2i+1)≠0. |
Then
μr(ρ2i+1,ρ2i+2)=μr(Υ(ρ2i,a2i),Ξ(ρ2i+1,a2i+1))≤λμr(ρ2i,ρ2i+1)+μr(a2i,a2i+1)2+τμr(ρ2i,Υ(ρ2i,a2i))μr(ρ2i+1,Ξ(ρ2i+1,a2i+1))Q1+ζμr(ρ2i+1,Υ(ρ2i,a2i))[1+μr(ρ2i,Ξ(ρ2i+1,a2i+1))]1+μr(ρ2i,ρ2i+1)+μr(a2i,a2i+1)=λμr(ρ2i,ρ2i+1)+μr(a2i,a2i+1)2+τμr(ρ2i,ρ2i+1)μr(ρ2i+1,ρ2i+2)r(μr(ρ2i,ρ2i+2)+μr(ρ2i,ρ2i+1)+μr(a2i,a2i+1))+ζμr(ρ2i+1,ρ2i+1)[1+μr(ρ2i,ρ2i+2)]1+μr(ρ2i,ρ2i+1)+μr(a2i,a2i+1)≤λμr(ρ2i,ρ2i+1)2+λμr(a2i,a2i+1)2+τμr(ρ2i,ρ2i+1), |
Hence, one can write
μr(ρ2i+1,ρ2i+2)≤(2τ+λ2)μr(ρ2i,ρ2i+1)+λ2μr(a2i,a2i+1). | (3.11) |
Similarly, one can easily prove via assumption Q2≠0 that
μr(a2i+1,a2i+2)≤(2τ+λ2)μr(a2i,a2i+1)+λ2μr(ρ2i,ρ2i+1). | (3.12) |
By adding (3.11) to (3.12), we find that
μr(ρ2i+1,ρ2i+2)+μr(a2i+1,a2i+2)≤(τ+λ)[μr(ρ2i,ρ2i+1)+μr(a2i,a2i+1)]. |
Put Q3=Q(ρ2i+2,a2i+2,ρ2i+1,a2i+1)≠0, then we get
μr(ρ2i+2,ρ2i+3)=μr(Υ(ρ2i+1,a2i+1),Ξ(ρ2i+2,a2i+2))≤λμr(ρ2i+1,ρ2i+2)+μr(a2i+1,a2i+2)2+τμr(ρ2i+1,Υ(ρ2i+1,a2i+1))μr(ρ2i+2,Ξ(ρ2i+2,a2i+2))Q3+ζμr(ρ2i+2,Υ(ρ2i+1,a2i+1))[1+μr(ρ2i+1,Ξ(ρ2i+2,a2i+2))]1+μr(ρ2i+1,ρ2i+2)+μr(a2i+1,a2i+2)=λμr(ρ2i+1,ρ2i+2)+μr(a2i+1,a2i+2)2+τμr(ρ2i+1,ρ2i+2)μr(ρ2i+2,ρ2i+3)r(μr(ρ2i+1,ρ2i+3)+μr(ρ2i+1,ρ2i+2)+μr(a2i+1,a2i+2))+ζμr(ρ2i+2,ρ2i+2)[1+μr(ρ2i+1,ρ2i+3)]1+μr(ρ2i+1,ρ2i+2)+μr(a2i+1,a2i+2)≤λμr(ρ2i+1,ρ2i+2)2+λμr(a2i+1,a2i+2)2+τμr(ρ2i+1,ρ2i+2), |
this leads to
μr(ρ2i+2,ρ2i+3)≤(2τ+λ2)μr(ρ2i+1,ρ2i+2)+λ2μr(a2i+1,a2i+2). | (3.13) |
Similarly, one can easily prove via assumption Q4=Q(a2i+2,ρ2i+2,a2i+1,ρ2i+1)≠0 that
μr(a2i+2,a2i+3)≤(2τ+λ2)μr(a2i+1,a2i+2)+λ2μr(ρ2i+1,ρ2i+2). | (3.14) |
By adding (3.13) to (3.14), we can write
μr(ρ2i+2,ρ2i+3)+μr(a2i+2,a2i+3)≤(τ+λ)[μr(ρ2i+1,ρ2i+2)+μr(a2i+1,a2i+2)]. |
Continuing with the same scenario for all i≥0, we get
μr(ρi,ρi+1)+μr(ai,ai+1)≤(τ+λ)[μr(ρi−1,ρi)+μr(ai−1,ai)]=σ[μr(ρi−1,ρi)+μr(ai−1,ai)], |
where σ=τ+λ<1. Now if, μr(ρi,ρi+1)+μr(ai,ai+1)=ϖi, then
ϖi≤σϖi−1≤σ2ϖi−2≤...≤σiϖ0, |
Suppose that for j.i∈N∪{0} so that j>i, then
μr(ρi,ρj)+μr(ai,aj)≤r(μr(ρi,ρi+1)+μr(ai,ai+1))+⋯+rj−i(μr(ρj,ρj+1)+μr(aj,aj+1))≤rσiϖ0+r2σi+1ϖ0+⋯+rj−iσj−1ϖ0<rσi(1+(rσ)+(rσ)2+...)ϖ0=(rσi1−rσ)ϖ0→0 as i→+∞. |
this proves that the two sequences {ρi} and {ai} are Cauchy. Because Ω is complete, then there exist ρ,a∈Ω so that limi→+∞ρi=ρ and limi→+∞ai=a.
Now, we show that ρ=Υ(ρ,a) and a=Υ(a,ρ). Suppose the opposite, that is ρ≠Υ(ρ,a) and a≠Υ(a,ρ) so that μr(ρ,Υ(ρ,a))=ℓ1>0 and μr(a,Υ(a,ρ))=ℓ2>0.
Consider
ℓ1=μr(ρ,Υ(ρ,a))≤r(μr(ρ,ρ2i+2)+μr(ρ2i+2,Υ(ρ,a)))=rμr(ρ,ρ2i+2)+rμr(Ξ(ρ2i+1,a2i+1),Υ(ρ,a))=rμr(ρ,ρ2i+2)+rλμr(ρ,ρ2i+1)+μr(a,a2i+1)2+rτμr(ρ,Υ(ρ,a))μr(ρ2i+1,Ξ(ρ2i+1,a2i+1))r(μr(ρ2i+1,Υ(ρ,a))+μr(ρ,Ξ(ρ2i+1,a2i+1))+μr(ρ,ρ2i+1)+μr(a2i+1,a))+rζμr(ρ2i+1,Υ(ρ,a))[1+μr(ρ,Ξ(ρ2i+1,a2i+1))]1+μr(ρ,ρ2i+1)+μr(a,a2i+1)=rμr(ρ,ρ2i+2)+rλμr(ρ,ρ2i+1)+μr(a,a2i+1)2+τμr(ρ,Υ(ρ,a))μr(ρ2i+1,ρ2i+2)(μr(ρ2i+1,Υ(ρ,a))+μr(ρ,Ξ(ρ2i+1,a2i+1))+μr(ρ,ρ2i+1)+μr(a2i+1,a))+rζμr(ρ2i+1,Υ(ρ,a))[1+μr(ρ,ρ2i+2)](1+μr(ρ,ρ2i+1)+μr(a,a2i+1)). | (3.15) |
Letting i→+∞ in (3.15), we get ℓ1≤rζμr(ρ,Υ(ρ,a))=rζℓ1, this leads to (1−rζ)ℓ1≤0, so either rζ≥1, this contradicts the condition r(λ+τ+ζ)<1, or ℓ1≤0 and this contradicts the condition ℓ1>0. Thus, in both cases we have a contradiction. This implies that μr(ρ,Υ(ρ,a))=0, i.e., ρ=Υ(ρ,a), similarly, one can obtain that a=Υ(a,ρ). It follows similarly that ρ=Ξ(ρ,a) and a=Ξ(a,ρ).
For uniqueness: Assume that (˜ρ,˜a)∈Ω×Ω is a different common CFP of Υ and Ξ. Then
μr(ρ,˜ρ)=μr(Υ(ρ,a),Ξ(˜ρ,˜a))≤λμr(ρ,˜ρ)+μr(a,˜a)2+τμr(ρ,Υ(ρ,a))μr(˜ρ,,Ξ(˜ρ,˜a))r(μr(˜ρ,Υ(ρ,a))+μr(ρ,Ξ(˜ρ,˜a))+μr(ρ,˜ρ)+μr(a,˜a))+ζμr(˜ρ,Υ(ρ,a))[1+μr(ρ,Ξ(˜ρ,˜a))]1+μr(ρ,˜ρ)+μr(a,˜a)=λμr(ρ,˜ρ)+μr(a,˜a)2+τμr(ρ,ρ)μr(˜ρ,˜ρ)r(μr(˜ρ,ρ)+μr(ρ,˜ρ)+μr(ρ,˜ρ)+μr(a,˜a))+ζμr(˜ρ,ρ)[1+μr(ρ,˜ρ)](1+μr(ρ,˜ρ)+μr(a,˜a))≤λμr(ρ,˜ρ)2+λμr(a,˜a)2+ζμr(ρ,˜ρ), |
this implies that
μr(ρ,˜ρ)≤(λ2−λ−2ζ)μr(a,˜a). | (3.16) |
By the same method, one can obtain
μr(a,˜a)≤(λ2−λ−2ζ)μr(ρ,˜ρ). | (3.17) |
By adding (3.16) to (3.17), one can write
μr(ρ,˜ρ)+μr(a,˜a)≤(λ2−λ−2ζ)(μr(ρ,˜ρ)+μr(a,˜a)), |
this implies that, (2−2λ−2ζ)(μr(ρ,˜ρ)+μr(a,˜a))≤0, since λ+ζ<1, then we have (μr(ρ,˜ρ)+μr(a,˜a))=0. This is only holds when ρ=˜ρ and a=˜a. Therefore, (ρ,a) is a unique common CFP of Υ and Ξ.
If we set Υ=Ξ in Theorem 3.2, we get the following result:
Corollary 3.3. Suppose that (Ω,μr) is a complete bMS with a coefficient r≥1 and let the mappings Υ:Ω×Ω→Ω verifies
μr(Υ(ρ,a),Υ(σ,b))≤{λμr(ρ,σ)+μr(a,b)2+τμr(ρ,Υ(ρ,a))μr(σ,Υ(σ,b))Q+ζμr(σ,Υ(ρ,a))[1+μr(ρ,Υ(σ,b))]1+μr(ρ,σ)+μr(a,b),if Q≠0,0if Q=0, |
for all ρ,a,σ,b∈Ω, where
Q=Q(ρ,a,σ,b)=r(μr(σ,Υ(ρ,a))+μr(ρ,Υ(σ,b))+μr(ρ,σ)+μr(a,b)), |
and λ,τ,ζ≥0 with r(λ+τ+ζ)<1. Then Υ has a unique common CFP.
In this part, we discuss the existence and uniqueness of the solution of the nonlinear singular CFDE in the setting of bMSs.
Here, we begin with the proof of the following lemma which demonstrate that Green's function of a FDE with integral boundary conditions.
Lemma 4.1. Given the pair (a,q)∈(C(0,1)∩L(0,1))×(C(0,1)∩L(0,1)), ν∈(3,4), α∈(0,2), such that ν≠α, the unique solution of
{cΘν(Λ(τ))+(a(τ),q(τ))=0,τ∈(0,1),Λ′′′(0)=Λ′′(0)=0,Λ′=Λ(1)=α∫10Λ(θ)dθ, | (4.1) |
is
Λ(τ)=∫10ℑ(τ,θ)(a(θ),q(θ))dθ, |
where Λ(τ)=(z(τ),w(τ)) and
ℑ(τ,θ)=1ν(2−α)Γ(ν){(ν(2−α)+2ατ(ν−1+θ))(1−θ)ν−1−ν(2−α)(τ−θ)ν−1,if 0≤θ≤τ≤1,(ν(2−α)+2ατ(ν−1+θ))(1−θ)ν−1,if 0≤τ≤θ≤1, | (4.2) |
Proof. Based on Lemma 2.1, problem (4.1) can be reduced to the equivalent integral equation
Λ(τ)=−Iν(a(τ),q(τ))+C0+C1τ+C2τ2+C3τ3=−1Γ(ν)τ∫0(τ−θ)ν−1(a(θ),q(θ))dθ+C0+C1τ+C2τ2+C3τ3. | (4.3) |
Since (z′′(0),w′′(0))=(z′′′(0),w′′′(0))=(0,0), so we get Λ′′(0)=Λ′′′(0), thus, C2=C3=0, and we can write
Λ(τ)=−1Γ(ν)τ∫0(τ−θ)ν−1(a(θ),q(θ))dθ+C0+C1τ,Λ′(τ)=−ν−1Γ(ν)τ∫0(τ−θ)ν−2(a(θ),q(θ))dθ+C1. |
Because (z′(0),w′(0))=(z(1),w(1))=(α∫10z(θ)dθ,α∫10w(θ)dθ), hence Λ′(0)=Λ(1)=α∫10Λ(θ)dθ, then one sees that
Λ′(0)=C1=α∫10Λ(θ)dθ,Λ(1)=−1Γ(ν)1∫0(1−θ)ν−1(a(θ),q(θ))dθ+C0+C1=α∫10Λ(θ)dθ, | (4.4) |
So, by (4.1), we conclude that
C0=1Γ(ν)1∫0(1−θ)ν−1(a(θ),q(θ))dθ, |
From the previous equality, we obtain that
Λ(τ)=−1Γ(ν)τ∫0(τ−θ)ν−1(a(θ),q(θ))dθ+1Γ(ν)1∫0(1−θ)ν−1(a(θ),q(θ))dθ+C1τ. | (4.5) |
By integrating both sides of Eq (4.5) from 0 to 1, one can get
1∫0Λ(τ)dτ=−1Γ(ν)1∫0τ∫0(τ−θ)ν−1(a(θ),q(θ))dθdτ+1Γ(ν)1∫01∫0(1−θ)ν−1(a(θ),q(θ))dθdτ+1∫0C1τdτ.=−1Γ(ν)1∫0(1−θ)νν(a(θ),q(θ))dθ+1Γ(ν)1∫0(1−θ)ν−1(a(θ),q(θ))dθ+C12. | (4.6) |
From (4.4) and (4.6), one can write
C1=α∫10Λ(θ)dθ=−ανΓ(ν)1∫0(1−θ)ν(a(θ),q(θ))dθ+αΓ(ν)1∫0(1−θ)ν−1(a(θ),q(θ))dθ+αC12, |
Thus, we get
C1=−2ανΓ(ν)(2−α)1∫0(1−θ)ν(a(θ),q(θ))dθ+2αΓ(ν)(2−α)1∫0(1−θ)ν−1(a(θ),q(θ))dθ. |
Substituting the values of the constants in (4.5) we obtain
Λ(τ)=−1Γ(ν)τ∫0(τ−θ)ν−1(a(θ),q(θ))dθ+1Γ(ν)1∫0(1−θ)ν−1(a(θ),q(θ))dθ+−2ατνΓ(ν)(2−α)1∫0(1−θ)ν(a(θ),q(θ))dθ+2ατΓ(ν)(2−α)1∫0(1−θ)ν−1(a(θ),q(θ))dθ=−1Γ(ν)τ∫0(τ−θ)ν−1(a(θ),q(θ))dθ+1νΓ(ν)(2−α)1∫0[α(2−α)+2ατ(ν−1+θ)](1−θ)ν(a(θ),q(θ))dθ=1νΓ(ν)(2−α)1∫0{[α(2−α)+2ατ(ν−1+θ)](1−θ)ν−α(2−α)(ν−θ)ν−1}(a(θ),q(θ))dθ+1νΓ(ν)(2−α)1∫τ[α(2−α)+2ατ(ν−1+θ)](1−θ)ν(a(θ),q(θ))dθ=∫10ℑ(τ,θ)(a(θ),q(θ))dθ, |
and this completes the proof.
The following lemma estimates the green's function ℑ(τ,θ) of FDE with integral boundary stipulations described in (4.1) on L2(0,1).
Lemma 4.2. Suppose that ν∈(3,4), α∈(0,2), such that ν≠α, then for all τ,θ∈(0,1), the Green's functions ℑ(τ,.)∈L2 verifies
∫10|ℑ(τ,θ)|2dθ<1Γ2(ν)(45+8α3|α−2|+4α29(α−2)2). |
Proof. When ν∈(3,4), α∈(0,2), such that ν≠α, there are two clarifications:
(i) For 0≤θ≤τ≤1,
|ℑ(τ,θ)|≤2ν|α−2|+2ατ(ν−1+θ)ν|α−2|Γ(ν)(1−θ)ν−1=1Γ(ν)(2+2αν|α−2|(ν−1+θ))(1−θ)ν−1. | (4.7) |
(ii) For 0≤τ≤θ≤1,
|ℑ(τ,θ)|≤ν|α−2|+2ατ(ν−1+θ)ν|α−2|Γ(ν)(1−θ)ν−1=1Γ(ν)(1+2αν|α−2|(ν−1+θ))(1−θ)ν−1≤1Γ(ν)(2+2αν|α−2|(ν−1+θ))(1−θ)ν−1. | (4.8) |
It follow from (4.7) and (4.8) that
|ℑ(τ,θ)|2≤1Γ2(ν)(4+8αν|α−2|(ν−1+θ)+4α2(ν−1+θ)2ν2(α−2)2)(1−θ)2ν−2, |
which yields
∫10|ℑ(τ,θ)|2dθ≤1Γ2(ν){∫104(1−θ)2ν−2dθ+8αν|α−2|∫10(ν−1+θ)(1−θ)2ν−2dθ+4α2ν2(α−2)2∫10(ν−1+θ)2(1−θ)2ν−2dθ}=1Γ2(ν)(42ν−1+8αν|α−2|(2ν2−2ν+12ν(2ν−1))+4α2ν2(α−2)2(2ν2−3ν+12ν(2ν−1)(2ν+1)))<1Γ2(ν)(45+8α3|α−2|+4α29(α−2)2). |
Assume that Ξ(.,z(.),w(.))∈L2 for any z,w∈C[0,1] and describe a mapping Υ:C[0,1]×C[0,1]→C[0,1] as follows:
Υ(z(τ),w(τ))=∫10ℑ(τ,θ)Ξ(θ,z(θ),w(θ))dθ, | (4.9) |
where θ→ℑ(τ,θ) is continuous from [0,1] to L2. Suppose that τn∈[0,1] with τn→τ. Because ℑ(τ,.),Ξ(.,z(.),w(.))∈L2 for any z,w∈C[0,1] and τ∈[0,1], therefore ℑ(τ,.)Ξ(.,z(.),w(.)) is integrable function. Hence, using the Lebesgue dominated convergence theorem, one can write
limn→+∞Υ(z(τn),w(τn))=limn→+∞∫10ℑ(τn,θ)Ξ(θ,z(θ),w(θ))dθ=∫10limn→+∞ℑ(τn,θ)Ξ(θ,z(θ),w(θ))dθ=∫10ℑ(τ,θ)Ξ(θ,z(θ),w(θ))dθ=Υ(z(τ),w(τ)). |
Similarly
limn→+∞Υ(w(τn),z(τn))=limn→+∞∫10ℑ(τn,θ)Ξ(θ,w(θ),z(θ))dθ=∫10limn→+∞ℑ(τn,θ)Ξ(θ,w(θ),z(θ))dθ=∫10ℑ(τ,θ)Ξ(θ,w(θ),z(θ))dθ=Υ(w(τ),z(τ)), |
this shows that Υ∈C[0,1]. Thus, the mapping Υ:C[0,1]×C[0,1]→C[0,1] is well-defined.
Suppose that μr:C[0,1]×C[0,1]→R+ is described as
μr(z,w)=supτ∈[0,1]|z(τ)−w(τ)|2, | (4.10) |
Then the pair (Ω,μr) is complete bMS with coefficient r=2.
Lemma 4.3. Assume that Υ is a mapping described as (4.8) and z,w∈C[0,1]. The pair (z(τ),w(τ)) is a solution of BVP (1.1) iff it is a CFP of Υ.
Proof. Assume that the form of a solution of BVP (1.1) is (z(τ),w(τ)). Then from Lemma 4.1, the unique solution can be described as
z(τ)=∫10ℑ(τ,θ)Ξ(θ,z(θ),w(θ))dθ, |
and
w(τ)=∫10ℑ(τ,θ)Ξ(θ,w(θ),z(θ))dθ, |
where ℑ(τ,θ) defined in (4.2). Thus, (z(τ),w(τ)) is a CFP of Υ.
Conversely, suppose that (z(τ),w(τ)) is a CFP of Υ. Since α<n−1, by Lemma 2.2, we get
cΘν(z(τ))=cΘν(∫10ℑ(τ,θ)Ξ(θ,z(θ),w(θ))dθ)=1ν(2−α)Γ(ν){cΘν[∫t0((−ν(2−α)(τ−θ)ν−1)+(ν(2−α)+2ατ(ν−1+θ))(1−θ)ν−1)Ξ(θ,z(θ),w(θ))dθ+∫1τ(ν(2−α)+2ατ(ν−1+θ))(1−θ)ν−1Ξ(θ,z(θ),w(θ))dθ]}=−Ξ(τ,z(τ),w(τ))+cΘν(τ0Γ(ν)∫10(1−θ)ν−1Ξ(θ,z(θ),w(θ))dθ+2ατν(2−α)Γ(ν)∫10(ν−1+θ)(1−θ)ν−1Ξ(θ,z(θ),w(θ))dθ=−Ξ(τ,z(τ),w(τ)) |
Similarly, one can prove that
cΘν(w(τ))=−Ξ(τ,w(τ),z(τ)). |
Hence (z(τ),w(τ)) verifies problem (1.1), further, it is easy to verify that Λ"(0)=Λ"(0)=0, Λ′=Λ(1)=α∫10Λ(θ)dθ, which implies that (z(τ),w(τ)) is a solution to problem (1.1). Because Υ is continuous and has a CFP (z(τ),w(τ)), thus (z(τ),w(τ)) is a continuous solution for the given BVP.
In order to study the existence and uniqueness solution for the BVP (1.1), we propose the following theorem.
Theorem 4.1. Suppose that ν∈(3,4) and
λ=1Γ2(ν)(45+8α3|α−2|+4α29(α−2)2)<1, | (4.11) |
holds foe any α∈(0,2), α≠ν. Let Ξ(.,z(.),w(.)) be a function in L2 for any z,w∈C[0,1] and for any z∗,w∗∈C[0,1] the inequality below holds
|Ξ(θ,z(θ),w(θ))−Ξ(θ,z∗(θ),w∗(θ))|2≤|z(θ)−z∗(θ)|2+|w(θ)−w∗(θ)|22,θ∈[0,1], | (4.12) |
Then the mapping Υ has a unique CFP, which is a unique solution to the BVP (1.1).
Proof. Based on the Cauchy–Schwarz inequality, the mapping Υ given in (4.9) and Lemma 4.2, one can write
|Υ(z(τ),w(τ))−Υ(z∗(τ),w∗(τ))|2=|∫10ℑ(τ,θ)[Ξ(θ,z(θ),w(θ))−Ξ(θ,z∗(θ),w∗(θ))]dθ|2≤(∫10|ℑ(τ,θ)|2dθ)(∫10|Ξ(θ,z(θ),w(θ))−Ξ(θ,z∗(θ),w∗(θ))|2dθ)≤1Γ2(ν)(45+8α3|α−2|+4α29(α−2)2)(∫10|z(θ)−z∗(θ)|2+|w(θ)−w∗(θ)|22dθ)=λ(∫10|z(θ)−z∗(θ)|2+|w(θ)−w∗(θ)|22dθ). |
Taking the supremum over [0,1], we have
μr(Υ(z,w),Υ(z∗,w∗))≤λμr(z,z∗)+μr(w,w∗)2. |
Hence the contractive stipulation (3.10) of Corollary 3.2 is fulfilled, then the mapping Υ have a unique CFP. Thus, by Lemma 4.3 the BVP (1.1) has a unique solution in C[0,1].
This part is devoted to support the theoretical results, where some illustrative examples are presented.
Example 5.1. Assume that Ω=R and Υ,Ξ:R×R→R are two mappings defined by
Υ(a1,a2)=(a1)2(a2)2 and Ξ(a1,a2)=43(a1+a2), |
for all a1,a2∈R, then (0,0), (1,2) and (2,1) are coupled coincidence points of Υ and Ξ.
Example 5.2. Let Ω=R and Υ,Ξ:R×R→R be two mappings described as
Υ(a1,a2)=a1+a2−a1a2−sin(a1−a2) and Ξ(a1,a2)=a1+a2+cos(a1+a2), |
for all a1,a2∈R, then (0,π4) and (π4,0) are coupled coincidence points of Υ and Ξ.
Example 5.3. Let Ω=R and Υ,Ξ:R×R→R be two mappings described as
Υ(a1,a2)=a1a2 and Ξ(a1,a2)=a1+(a2−a1)2, |
for all a1,a2∈R, then (0,0) and (1,1) are common CFP of Υ and Ξ.
Example 5.4. Let Ω=[0,∞). Define μr:[0,∞)×[0,∞)→R+ by
μr(ρ,σ)=(ρ−σ)2, for all ρ,σ∈Ω. |
Then (Ω,μr) is bMS with r=2. Define the mappings Υ,Ξ:Ω×Ω→Ω as follows:
Υ(ρ,σ)={ρ−σ4,if ρ>σ,0,if ρ≤σ, and Ξ(ρ,σ)={ρ−σ5,if ρ>σ,0,if ρ≤σ, |
To fulfill the rational contractive condition (3.1) of Theorem 3.1, we consider the cases below:
(i) If ρ>a>σ>b, then Υ(ρ,σ)=ρ−σ4 and Ξ(ρ,σ)=ρ−σ5. Consider
μr(Υ(ρ,a),Ξ(σ,b))=(Υ(ρ,a)−Ξ(σ,b))2=(ρ−a4−σ−b5)2≤(ρ−a)216+(σ−b)225≤((ρ−σ)+(σ−a))216+((σ−a)+(a−b))216≤(ρ−σ)216+(a−b)216, since σ<a=18((ρ−σ)2+(a−b)22)=λ(ρ−σ)2+(a−b)22=λμr(ρ,σ)+μr(a,b)2≤λμr(ρ,σ)+μr(a,b)2+τ[1+μr(ρ,Υ(ρ,a))]μr(σ,Ξ(σ,b))(1+μr(ρ,σ)+μr(a,b))+ζμr(σ,Υ(ρ,a))μr(ρ,Ξ(σ,b))(1+μr(ρ,σ)+μr(a,b)). |
Hence for any value of τ and ζ with λ=18 so that λ+τ<1 and λ+ζ<1, we find that the condition (3.1) holds.
(ii) If ρ≤a≤σ≤b, then Υ(ρ,σ)=0 and Ξ(ρ,σ)=0. It is a trivial case. Thus, all requirements of Theorem 3.1 are fulfilled and (0,0) is a unique common CFP of Υ and Ξ.
Example 5.5. Let Ω={0,1}. Consider a b−metric μr:Ω×Ω→R+ by
μr(ρ,σ)=23(ρ−σ)2, for all ρ,σ∈Ω. |
Then (Ω,μr) is bMS with parameter r=2. Define the mappings Υ,Ξ:Ω×Ω→Ω by Υ(ρ,σ)=ρσ4 and Ξ(ρ,σ)=ρσ3, for all ρ,σ∈Ω. It is easy to conclude that the stipulation (3.1) of Theorem 3.1 is fulfilled with λ=38, τ=15 and ζ=25. Hence (0,0) is a unique common CFP of Υ and Ξ.
Example 5.6. Consider the BVP of fractional order below:
cΘ72z(τ)+Ξ(τ,z(τ),w(τ))=0,τ∈(0,1), | (5.1) |
where Ξ described as
Ξ(τ,z(τ),w(τ))={12√z(τ)−w(τ),if −1≤z,w<1,12√z(τ)+w(τ),otherwise, |
which is a singular at z=0=w, with the stipulations
Λ′′′(0)=Λ′′(0)=0,Λ′=Λ(1)=13∫10Λ(θ)dθ, |
for each Λ∈[0,1]×[0,1]. It is clear that the solution of the differential equation of fractional order (5.1) can be satisfied to fulfill the integral equations below:
z(τ)=∫10ℑ(τ,θ)Ξ(θ,z(θ),w(θ))dθ, |
and
w(τ)=∫10ℑ(τ,θ)Ξ(θ,w(θ),z(θ))dθ, |
where ℑ(τ,θ) is given by
ℑ(τ,θ)=635Γ(72){(356+23τ(52+θ))(1−θ)52−356(τ−θ)52,if 0≤θ≤τ≤1,(356+23τ(52+θ))(1−θ)52,if 0≤τ≤θ≤1, | (5.2) |
here α=13 and ν=72, which verify the assumption (4.11). It follows from Lemma 4.2 that
λ=∫10|ℑ(τ,θ)|2dθ<64225π×304225≈0.1223<1. | (5.3) |
Based on Green's funtion (5.2) and the the related mapping Υ described in (4.9), one can write
|Υ(z(τ),w(τ))−Υ(z∗(τ),w∗(τ))|2=|∫10ℑ(τ,θ)[Ξ(θ,z(θ),w(θ))−Ξ(θ,z∗(θ),w∗(θ))]dθ|2≤(∫10|ℑ(τ,θ)|2dθ)(∫10|Ξ(θ,z(θ),w(θ))−Ξ(θ,z∗(θ),w∗(θ))|2dθ) (by Cauchy-Schwarz inequality)=λ∫10|Ξ(θ,z(θ),w(θ))−Ξ(θ,z∗(θ),w∗(θ))|2dθ, |
where λ<1 and
|Ξ(θ,z(θ),w(θ))−Ξ(θ,z∗(θ),w∗(θ))|={|√14(z(θ)−w(θ))−14(z∗(θ)−w∗(θ))|, if z,w,z∗,w∗∈[−1,1),|√14(z(θ)+w(θ))−14(z∗(θ)+w∗(θ))|, if z,w,z∗,w∗∈(−∞,−1)∪[1,+∞),|√14(z(θ)−w(θ))−14(z∗(θ)+w∗(θ))|, if z,w∈[−1,1),z∗,w∗∈(−∞,−1)∪[1,+∞),|√14(z(θ)+w(θ))−14(z∗(θ)−w∗(θ))|, if z,w∈(−∞,−1)∪[1,+∞),z∗,w∗∈[−1,1). |
Now, for z,w,z∗,w∗∈[−1,1), one sees that
|Υ(z(τ),w(τ))−Υ(z∗(τ),w∗(τ))|2≤λ∫10|√14(z(θ)−w(θ))−14(z∗(θ)−w∗(θ))|2dθ,=λ4∫10|(z∗(θ)−w∗(θ))−(z(θ)−w(θ))(z(θ)−w(θ))(z∗(θ)−w∗(θ))|dθ≤λ2∫10|(z∗(θ)−z(θ))+(w(θ)−w∗(θ))(z(θ)−w(θ))(z∗(θ)−w∗(θ))|dθ≤λ∫10(|z∗(θ)−z(θ)|2+|w(θ)−w∗(θ)|22)dθ. |
By taking the supremum over τ∈[0,1] and put into account the metric distance (4.10), one can write
μr(Υ(z,w),Υ(z∗,w∗))≤λμr(z,z∗)+μr(w,w∗)2. |
By the same manner, one can show the other selections. Thus, by Corollary 3.2, we conclude that the mapping Υ described in (4.9) has a unique CFP. So we expect a unique solution to the BVP (1.1) in C[0,1].
The authors declare that they have no conflict of interest.
This research project was supported by the Thailand Science Research and Innovation Fund and the University of Phayao (Grant No. FF64-UoE002).
H. A. Hammad would like to thank Sohag University, Egypt. W. Cholamjiak would like to thank University of Phayao, Thailand.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[2] | I. Podlubny, Fractional differential equations, Academic Press, 1999. |
[3] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach, 1993. |
[4] | R. P. Agarwal, B. Ahmad, Existence of solutions for impulsive anti-periodic boundary value problems of fractional semilinear evolution equations, Dynam. Cont. Dis. Ser. A, 18 (2011), 457–470. |
[5] | B. Ahmad, R. P. Agarwal, On nonlocal fractional boundary value problems, Dynam. Cont. Dis. Ser. A, 18 (2011), 535–544. |
[6] |
C. Bai, Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 384 (2011), 211–231. doi: 10.1016/j.jmaa.2011.05.082
![]() |
[7] | H. A. Hammad, H. Aydi, M. De la Sen, Solutions of fractional differential type equations by fixed point techniques for multi-valued contractions, Complixty, 2021 (2021), 5730853. |
[8] |
M. Cichoń, H. A. H. Salem, On the lack of equivalence between differential and integral forms of the Caputo-type fractional problems, J. Pseudo-Differ. Oper., 11 (2020), 1869–1895. doi: 10.1007/s11868-020-00345-z
![]() |
[9] |
E. Girejko, D. Mozyrska, M. Wyrwas, A sufficient condition of viability for fractional differential equations with the Caputo derivative, J. Math. Anal. Appl., 381 (2011), 146–154. doi: 10.1016/j.jmaa.2011.04.004
![]() |
[10] | H. A. Hammad, M. De la Sen, Tripled fixed point techniques for solving system of tripled fractional differential equations, AIMS Mathematics, 6 (2020), 2330–2343. |
[11] |
S. K. Ntouyas, G. Wang, L. Zhang, Positive solutions of arbitrary order nonlinear fractional differential equations with advanced arguments, Opusc. Math., 31 (2011), 433–442. doi: 10.7494/OpMath.2011.31.3.433
![]() |
[12] |
H. A. H. Salem, On functions without pseudo derivatives having fractional pseudo derivatives, Quaest. Math., 42 (2019), 1237–1252. doi: 10.2989/16073606.2018.1523247
![]() |
[13] |
H. A. Hammad, H. Aydi, N. Mlaiki, Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann-Liouville fractional integrals, and Atangana-Baleanu integral operators, Adv. Differ. Equ., 2021 (2021), 97. doi: 10.1186/s13662-021-03255-6
![]() |
[14] | M. Benchohra, J. J. Nieto, Ouahab, Second-order boundary value problem with integral boundary conditions, Bound. Value Probl., 2011 (2011), 260309. |
[15] |
M. Feng, X. Zhang, W. Ge, New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions, Bound. Value Probl., 2011 (2011), 720702. doi: 10.1186/1687-2770-2011-720702
![]() |
[16] | T. Jankowski, Positive solutions for fourth-order differential equations with deviating arguments and integral boundary conditions, Nonlinear Anal. Theor., 73 (2020), 1289–1299. |
[17] |
H. A. H. Salem, Fractional order boundary value problem with integral boundary conditions involving Pettis integral, Acta Math. Sci., 31 (2011), 661–672. doi: 10.1016/S0252-9602(11)60266-X
![]() |
[18] |
V. Todorčević, Subharmonic behavior and quasiconformal mappings, Anal. Math. Phys., 9 (2019), 1211–1225. doi: 10.1007/s13324-019-00308-8
![]() |
[19] | V. Todorčević, Harmonic quasiconformal mappings and hyperbolic type metrics, Springer International Publishing, 2019. |
[20] |
G. Wang, Boundary value problems for systems of nonlinear integro-differential equations with deviating arguments, J. Comput. Appl. Math., 234 (2010), 1356–1363. doi: 10.1016/j.cam.2010.01.009
![]() |
[21] |
H. A. Hammad, M. De la Sen, A Solution of Fredholm integral equation by using cyclic ηqs−rational contractive mappings technique in b-metric-like spaces, Symmetry, 11 (2019), 1184. doi: 10.3390/sym11091184
![]() |
[22] |
H. A. Hammad, M. De la Sen, Solution of nonlinear integral equation via fixed point of cyclic αψL-rational contraction mappings in metric-like spaces, B. Braz. Math. Soc., 51 (2020), 81–105. doi: 10.1007/s00574-019-00144-1
![]() |
[23] |
G. Wang, G. Song, L. Zhang, Integral boundary value problems for first order integro-differential equations with deviating arguments, J. Comput. Appl. Math., 225 (2009), 602–611. doi: 10.1016/j.cam.2008.08.030
![]() |
[24] |
X. Zhang, M. Feng, W. Ge, Existence result of second-order differential equations with integral boundary conditions at resonance, J. Math. Anal. Appl., 353 (2009), 311–319. doi: 10.1016/j.jmaa.2008.11.082
![]() |
[25] |
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. doi: 10.4064/fm-3-1-133-181
![]() |
[26] |
T. Abdeljawad, R. P. Agrawal, E. Karapınar, P. S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space, Symmetry, 11 (2019), 686. doi: 10.3390/sym11050686
![]() |
[27] |
B. Alqahtani, H. Aydi, E. Karapınar, V. Rakočević, A solution for Volterra fractional integral equations by hybrid contractions, Mathematics, 7 (2019), 694. doi: 10.3390/math7080694
![]() |
[28] |
N. Fabiano, N. Nikolič, S. Thenmozhi, S. Radenović, N. Cĭtaković, Tenth order boundary value problem solution existence by fixed point theorem, J. Inequal. Appl., 2020 (2020), 166. doi: 10.1186/s13660-020-02429-2
![]() |
[29] |
E. Karapinar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Differ. Equ., 2019 (2019), 421. doi: 10.1186/s13662-019-2354-3
![]() |
[30] |
D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. Theor., 11 (1987), 623–632. doi: 10.1016/0362-546X(87)90077-0
![]() |
[31] |
T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. Theor., 65 (2006), 1379–1393. doi: 10.1016/j.na.2005.10.017
![]() |
[32] |
E. Karapinar, Coupled fixed point theorems for nonlinear contractions in cone metric spaces, Comput. Math. Appl., 59 (2010), 3656–3668. doi: 10.1016/j.camwa.2010.03.062
![]() |
[33] |
V. Luong, N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal. Theor., 74 (2011), 983–992. doi: 10.1016/j.na.2010.09.055
![]() |
[34] |
H. A. Hammad, M. De la Sen, A coupled fixed point technique for solving coupled systems of functional and nonlinear integral equations, Mathematics, 7 (2019), 634. doi: 10.3390/math7070634
![]() |
[35] |
H. A. Hammad, D. M. Albaqeri, R. A. Rashwan, Coupled coincidence point technique and its application for solving nonlinear integral equations in RPOCbML spaces, J. Egypt. Math. Soc., 28 (2020), 8. doi: 10.1186/s42787-019-0064-3
![]() |
[36] | B. S. Choudhury, K. Kundu, Two coupled weak contraction theorems in partially ordered metric spaces, RACSAM Rev. R. Acad. A, 108 (2014), 335–351. |
[37] | Y. J. Cho, Z. Kadelburg, R. Saadati, W. Shatanawi, Coupled fixed point theorems under weak contractions, Discrete Dyn. Nat. Soc., 2012 (2012), 184534. |
[38] |
Y. Dzhabarova, S. Kabaivanov, M. Ruseva, B. Zlatanov, Existence, uniqueness and stability of market equilibrium on oligopoly markets, Adm. Sci., 10 (2020), 70. doi: 10.3390/admsci10030070
![]() |
[39] |
S. Kabaivanov, B. Zlatanov, A variational principle, coupled fixed points and market equilibrium, Nonlinear Anal. Model., 26 (2021), 169–185. doi: 10.15388/namc.2021.26.21413
![]() |
[40] | S. Czerwik, Nonlinear set-valued contraction mappings in b- metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1993), 263–276. |
[41] | M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Stud. U. Babes-Bol. Mat., 3 (2009), 3–14. |
[42] | T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. Theor. 65 (2006), 1379–1393. |
[43] |
Y. He, Existence and multiplicity of positive solutions for singular fractional differential equations with integral boundary value conditions, Adv. Differ. Equ., 2016 (2016), 31. doi: 10.1186/s13662-015-0729-7
![]() |
[44] | Z. Bai, T. Qiu, Existence of positive solutions for singular fractional differential equation, Appl. Math. Comput., 215 (2009), 2761–2767. |
1. | Hasanen A. Hammad, Manuel De la Sen, Involvement of the fixed point technique for solving a fractional differential system, 2022, 7, 2473-6988, 7093, 10.3934/math.2022395 | |
2. | Fahim Uddin, Faizan Adeel, Khalil Javed, Choonkil Park, Muhammad Arshad, Double controlled $ M $-metric spaces and some fixed point results, 2022, 7, 2473-6988, 15298, 10.3934/math.2022838 |