Research article Special Issues

Fixed point approach to the Mittag-Leffler kernel-related fractional differential equations

  • Received: 07 November 2022 Revised: 28 January 2023 Accepted: 01 February 2023 Published: 06 February 2023
  • MSC : 34A08, 34A12, 47H10, 54H25

  • The goal of this paper is to present a new class of contraction mappings, so-called $ \eta _{\theta }^{\ell } $-contractions. Also, in the context of partially ordered metric spaces, some coupled fixed-point results for $ \eta _{\theta }^{\ell } $-contraction mappings are introduced. Furthermore, to support our results, two examples are provided. Finally, the theoretical results are applied to obtain the existence of solutions to coupled fractional differential equations with a Mittag-Leffler kernel.

    Citation: Hasanen A. Hammad, Hüseyin Işık, Hassen Aydi, Manuel De la Sen. Fixed point approach to the Mittag-Leffler kernel-related fractional differential equations[J]. AIMS Mathematics, 2023, 8(4): 8633-8649. doi: 10.3934/math.2023433

    Related Papers:

  • The goal of this paper is to present a new class of contraction mappings, so-called $ \eta _{\theta }^{\ell } $-contractions. Also, in the context of partially ordered metric spaces, some coupled fixed-point results for $ \eta _{\theta }^{\ell } $-contraction mappings are introduced. Furthermore, to support our results, two examples are provided. Finally, the theoretical results are applied to obtain the existence of solutions to coupled fractional differential equations with a Mittag-Leffler kernel.



    加载中


    [1] H. Afshari, H. R. Marasi, H. Aydi, Existence and uniqueness of positive solutions for boundary value problems of fractional differential equations, Filomat, 31 (2017), 2675–2682. https://doi.org/10.2298/FIL1709675A doi: 10.2298/FIL1709675A
    [2] A. Ajou, M. N. Oqielat, Z. A. Zhour, S. Kumar, S. Momani, Solitary solutions for time-fractional nonlinear dispersive PDEs in the sense of conformable fractional derivative, Chaos, 29 (2019), 093102. https://doi.org/10.1063/1.5100234 doi: 10.1063/1.5100234
    [3] E. F. D. Goufoa, S. Kumar, S. B. Mugisha, Similarities in a fifth-order evolution equation with and with no singular kernel, Chaos Soliton. Fract., 130 (2020), 109467. https://doi.org/10.1016/j.chaos.2019.109467 doi: 10.1016/j.chaos.2019.109467
    [4] S. G. Samko, A. A. Kilbas, O. Marichev, Fractional integrals and derivatives: Theory and applications, Yverdon: Gordon and Breach Science Publishers, 1993.
    [5] H. A. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 5 (2021), 159. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159
    [6] K. M. Owolabi, E. Pindza, Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives, Chaos Soliton. Fract., 127 (2019), 146–157. https://doi.org/10.1016/j.chaos.2019.06.037 doi: 10.1016/j.chaos.2019.06.037
    [7] H. A. Hammad, M. Zayed, Solving systems of coupled nonlinear Atangana-Baleanu-type fractional differential equations, Boundary Value Probl., 2022 (2022), 101. https://doi.org/10.1186/s13661-022-01684-0 doi: 10.1186/s13661-022-01684-0
    [8] C. Ravichandran, K. Logeswari, F. Jarad, New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations, Chaos Soliton. Fract., 125 (2019), 194–200. https://doi.org/10.1016/j.chaos.2019.05.014 doi: 10.1016/j.chaos.2019.05.014
    [9] L. F. Avalos-Ruiza, J. F. Gomez-Aguilar, A. Atangana, K. M. Owolabi, On the dynamics of fractional maps with power-law, exponential decay and Mittag-Leffler memory, Chaos Soliton. Fract., 127 (2019), 364–388. https://doi.org/10.1016/j.chaos.2019.07.010 doi: 10.1016/j.chaos.2019.07.010
    [10] K. M. Owolabi, J. F. Gomez-Aguilar, B. Karaagac, Modelling, analysis and simulations of some chaotic systems using derivative with Mittag-Leffler kernel, Chaos Soliton. Fract., 125 (2019), 54–63. https://doi.org/10.1016/j.chaos.2019.05.019 doi: 10.1016/j.chaos.2019.05.019
    [11] H. Khan, T. Abdeljawad, J. F. Gómez-Aguilar, H. Tajadodi, A. Khan, Fractional order Volterra Integro-differential equation with Mittag-Leffler kernel, Fractals, 29 (2021), 2150154. https://doi.org/10.1142/S0218348X21501541 doi: 10.1142/S0218348X21501541
    [12] H. Tajadodi, Variable-order Mittag-Leffler fractional operator and application to mobile-immobile advection-dispersion model, Alex. Eng. J., 61 (2022), 3719–3728. https://doi.org/10.1016/j.aej.2021.09.007 doi: 10.1016/j.aej.2021.09.007
    [13] H. Tajadodi, A. Khan, J. F. Gómez-Aguilar, H. Khan, Optimal control problems with Atangana-Baleanu fractional derivative, Optim. Control Appl. Met., 42 (2021), 96–109. https://doi.org/10.1002/oca.2664 doi: 10.1002/oca.2664
    [14] T. Abdeljawad, R. P. Agrawal, E. Karapınar, P. S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space, Symmetry, 11 (2019), 686. https://doi.org/10.3390/sym11050686 doi: 10.3390/sym11050686
    [15] H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 14 (2022), 1388. https://doi.org/10.3390/sym14071388 doi: 10.3390/sym14071388
    [16] H. A. Hammad, H. Aydi, N. Mlaiki, Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann-Liouville fractional integrals, and Atangana-Baleanu integral operators, Adv. Differ. Equ., 2021 (2021), 97. https://doi.org/10.1186/s13662-021-03255-6 doi: 10.1186/s13662-021-03255-6
    [17] H. A. Hammad, M. De la Sen, Tripled fixed point techniques for solving system of tripled fractional differential equations, AIMS Math., 6 (2020), 2330–2343. https://doi.org/10.3934/math.2021141 doi: 10.3934/math.2021141
    [18] H. A. Hammad, H. Aydi, M. De la Sen, Solutions of fractional differential type equations by fixed point techniques for multi-valued contractions, Complexity, 2021 (2021), 5730853. https://doi.org/10.1155/2021/5730853 doi: 10.1155/2021/5730853
    [19] N. Fabiano, N. Nikolič, S. Thenmozhi, S. Radenović, N. Čıtaković, Tenth order boundary value problem solution existence by fixed point theorem, J. Inequal. Appl., 2020 (2020), 166. https://doi.org/10.1186/s13660-020-02429-2 doi: 10.1186/s13660-020-02429-2
    [20] H. Afshari, S. Kalantari, E. Karapınar, Solution of fractional differential equations via coupled fixed point, Electron. J. Differ. Eq., 2015 (2015), 286.
    [21] M. Shoaib, T. Abdeljawad, M. Sarwar, F. Jarad, Fixed point theorems for multi-valued contractions in b-metric spaces with applications to fractional differential and integral equations, IEEE Access, 7 (2019), 127373–127383. https://doi.org/10.1109/ACCESS.2019.2938635 doi: 10.1109/ACCESS.2019.2938635
    [22] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. Theor., 65 (2006), 1379–1393. https://doi.org/10.1016/j.na.2005.10.017 doi: 10.1016/j.na.2005.10.017
    [23] V. Lakshmikantham, L. Cirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. Theor., 70 (2009), 4341–4349. https://doi.org/10.1016/j.na.2008.09.020 doi: 10.1016/j.na.2008.09.020
    [24] B. Samet, C. Vetro, Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces, Nonlinear Anal. Theor., 74 (2011), 4260–4268. https://doi.org/10.1016/j.na.2011.04.007 doi: 10.1016/j.na.2011.04.007
    [25] W. Sintunavarat, P. Kumam, Y. J. Cho, Coupled fixed point theorems for nonlinear contractions without mixed monotone property, Fixed Point Theory Appl., 2012 (2012), 170. https://doi.org/10.1186/1687-1812-2012-170 doi: 10.1186/1687-1812-2012-170
    [26] W. Shatanawi, B. Samet, M. Abbas, Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Math. Comput. Model., 55 (2012), 680–687. https://doi.org/10.1016/j.mcm.2011.08.042 doi: 10.1016/j.mcm.2011.08.042
    [27] H. K. Nashine, B. Samet, C. Vetro, Coupled coincidence points for compatible mappings satisfying mixed monotone property, J. Nonlinear Sci. Appl., 5 (2012), 104–114. http://dx.doi.org/10.22436/jnsa.005.02.04 doi: 10.22436/jnsa.005.02.04
    [28] H. A. Hammad, M. De la Sen, A coupled fixed point technique for solving coupled systems of functional and nonlinear integral equations, Mathematics, 7 (2019), 634. https://doi.org/10.3390/math7070634 doi: 10.3390/math7070634
    [29] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal. Theor., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
    [30] M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604–608. https://doi.org/10.2307/2039421
    [31] P. Salimi, A. Latif, N. Hussain, Modified $\alpha$-$\psi$- contractive mappings with applications, Fixed Point Theory Appl., 2013 (2013), 151. https://doi.org/10.1186/1687-1812-2013-151 doi: 10.1186/1687-1812-2013-151
    [32] E. Karapinar, P. Kumam, P. Salimi, On $\alpha$-$\psi$- Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013 (2013), 94. https://doi.org/10.1186/1687-1812-2013-94 doi: 10.1186/1687-1812-2013-94
    [33] E. Karapinar, B. Samet, Generalized ($\alpha$-$\psi$)- contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012 (2012), 793486. https://doi.org/10.1155/2012/793486 doi: 10.1155/2012/793486
    [34] M. U. Ali, T. Kamran, On $(\alpha ^{\ast }, \psi)$-contractive multi-valued mappings, Fixed Point Theory Appl., 2013 (2013), 137. https://doi.org/10.1186/1687-1812-2013-137 doi: 10.1186/1687-1812-2013-137
    [35] J. Caballero, J. Harjani, K. Sadarangani, A best proximity point theorem for Geraghty-contractions, Fixed Point Theory Appl., 2012 (2012), 231. https://doi.org/10.1186/1687-1812-2012-231 doi: 10.1186/1687-1812-2012-231
    [36] M. E. Gordji, M. Ramezani. Y. J. Cho, S. Pirbavafa, A generalization of Geraghty's theorem in partially ordered metric space and application to ordinary differential equations, Fixed Point Theory Appl., 2012 (2012), 74. https://doi.org/10.1186/1687-1812-2012-74 doi: 10.1186/1687-1812-2012-74
    [37] S. H. Cho, J. S. Bae, E. Karapinar, Fixed point theorems for $ \alpha$-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2013 (2013), 329. https://doi.org/10.1186/1687-1812-2013-329 doi: 10.1186/1687-1812-2013-329
    [38] T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107. https://doi.org/10.22436/jnsa.010.03.20 doi: 10.22436/jnsa.010.03.20
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(981) PDF downloads(82) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog