The main purpose of this paper is using the elementary methods and the number of the solutions of some congruence equations to study the calculating problem of the fourth power mean of one special two-term exponential sums, and give an exact calculating formula for it.
Citation: Wenpeng Zhang, Yuanyuan Meng. On the fourth power mean of one special two-term exponential sums[J]. AIMS Mathematics, 2023, 8(4): 8650-8660. doi: 10.3934/math.2023434
The main purpose of this paper is using the elementary methods and the number of the solutions of some congruence equations to study the calculating problem of the fourth power mean of one special two-term exponential sums, and give an exact calculating formula for it.
[1] | H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 19 (2017), 75–81. |
[2] | W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. https://doi.org/10.1016/j.jnt.2013.10.022 doi: 10.1016/j.jnt.2013.10.022 |
[3] | W. P. Zhang, Y. Y. Meng, On the sixth power mean of the two-term exponential sums, Acta Math. Sin. (Engl. Ser.), 38 (2022), 510–518. http://doi.org/10.1007/s10114-022-0541-8 doi: 10.1007/s10114-022-0541-8 |
[4] | L. Chen, X. Wang, A new fourth power mean of two-term exponential sums, Open Math., 17 (2019), 407–414. https://doi.org/10.1515/math-2019-0034 doi: 10.1515/math-2019-0034 |
[5] | W. P. Zhang, H. L. Li, Elementary Number Theory, Xi'an: Shaanxi Normal University Press, 2013. |
[6] | T. T. Wang, W. P. Zhang, On the fourth and sixth power mean of mixed exponential sums, Sci. Sin. Math., 41 (2011), 265–270. https://doi.org/10.1360/012010-753 doi: 10.1360/012010-753 |
[7] | T. M. Apostol, Introduction to Analytic Number Theory, New York: Springer, 1976. |
[8] | K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, New York: Springer, 1982. |
[9] | W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation $\bmod p$, Math. Rep., 20 (2018), 73–80. |
[10] | B. C. Berndt, R. J. Evans, The determination of Gauss sums, Bull. Amer. Math. Soc., 5 (1981), 107–129. |
[11] | Z. Y. Chen, W. P. Zhang, On the fourth-order linear recurrence formula related to classical Gauss sums, Open Math., 15 (2017), 1251–1255. https://doi.org/10.1515/math-2017-0104 doi: 10.1515/math-2017-0104 |
[12] | L. Chen, On the classical Gauss sums and their properties, Symmetry, 10 (2018), 625. https://doi.org/10.3390/sym10110625 doi: 10.3390/sym10110625 |
[13] | W. P. Zhang, X. D. Yuan, On the classical Gauss sums and their some new identities, AIMS Mathematics, 7 (2022), 5860–5870. https://doi.org/10.3934/math.2022325 doi: 10.3934/math.2022325 |
[14] | A. Weil, On some exponential sums, Proc. Natl. Acad. Sci. USA, 34 (1948), 204–207. https://doi.org/10.1073/pnas.34.5.204 |
[15] | A. Weil, Basic Number Theory, Heidelberg: Springer Berlin, 1995. |