Research article

Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative

  • Received: 18 April 2022 Revised: 15 June 2022 Accepted: 17 June 2022 Published: 30 June 2022
  • MSC : 34A08, 34A12, 34B15, 47H10

  • The point of this work was to analyze and investigate the sufficient conditions of the existence and uniqueness of solutions for the nonlinear fuzzy fractional Volterra Fredholm integro-differential equation in the frame of the Atangana-Baleanu-Caputo fractional derivative methodology. To begin with, we give the parametric interval form of the Atangana-Baleanu-Caputo fractional derivative on fuzzy set-valued functions. Then, by employing Schauder's and Banach's fixed point procedures, we examine the existence and uniqueness of solutions for fuzzy fractional Volterra Fredholm integro-differential equation with the Atangana-Baleanu-Caputo fractional operator. It turns out that the last interval model is a combined arrangement of nonlinear equations. In addition, we consider results by applying the Adams Bashforth fractional technique and present two examples that have been numerically solved using graphs.

    Citation: Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad. Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative[J]. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876

    Related Papers:

  • The point of this work was to analyze and investigate the sufficient conditions of the existence and uniqueness of solutions for the nonlinear fuzzy fractional Volterra Fredholm integro-differential equation in the frame of the Atangana-Baleanu-Caputo fractional derivative methodology. To begin with, we give the parametric interval form of the Atangana-Baleanu-Caputo fractional derivative on fuzzy set-valued functions. Then, by employing Schauder's and Banach's fixed point procedures, we examine the existence and uniqueness of solutions for fuzzy fractional Volterra Fredholm integro-differential equation with the Atangana-Baleanu-Caputo fractional operator. It turns out that the last interval model is a combined arrangement of nonlinear equations. In addition, we consider results by applying the Adams Bashforth fractional technique and present two examples that have been numerically solved using graphs.



    加载中


    [1] A. Araraa, M. Benchohraa, N. Hamidia, J. Nieto, Fractional order differential equations on an unbounded domain, Nonlinear Anal.-Theor., 72 (2010), 580–586. http://dx.doi.org/10.1016/j.na.2009.06.106 doi: 10.1016/j.na.2009.06.106
    [2] H. Beyer, S. Kempfle, Definition of physically consistent damping laws with fractional derivatives, ZAMM, 75 (1995), 623–635. http://dx.doi.org/10.1002/zamm.19950750820 doi: 10.1002/zamm.19950750820
    [3] K. Diethelm, N. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. http://dx.doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
    [4] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [5] D. Dubois, H. Prade, Towards fuzzy differential calculus part 1: integration of fuzzy mappings, Fuzzy Set. Syst., 8 (1982), 1–17. http://dx.doi.org/10.1016/0165-0114(82)90025-2 doi: 10.1016/0165-0114(82)90025-2
    [6] D. Dubois, H. Prade, Towards fuzzy differential calculus part 2: integration on fuzzy intervals, Fuzzy Set. Syst., 8 (1982), 105–116. http://dx.doi.org/10.1016/0165-0114(82)90001-X doi: 10.1016/0165-0114(82)90001-X
    [7] M. Puri, D. Ralescu, Differentials for fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552–558. http://dx.doi.org/10.1016/0022-247X(83)90169-5 doi: 10.1016/0022-247X(83)90169-5
    [8] M. Puri, D. Ralescu, Fuzzy random variables, J. Math. Anal. Appl., 114 (1986), 409–422. http://dx.doi.org/10.1016/0022-247X(86)90093-4
    [9] N. Ahmad, A. Ullah, A. Ullah, S. Ahmad, K. Shah, I. Ahmad, On analysis of the fuzzy fractional order Volterra-Fredholm integro-differential equation, Alex. Eng. J., 60 (2021), 1827–1838. http://dx.doi.org/10.1016/j.aej.2020.11.031 doi: 10.1016/j.aej.2020.11.031
    [10] R. Agarwal, V. Lakshmikantham, J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72 (2010), 2859–2862. http://dx.doi.org/10.1016/j.na.2009.11.029 doi: 10.1016/j.na.2009.11.029
    [11] R. Agarwal, S. Arshad, D. O'Regan, V. Lupulescu, Fuzzy fractional integral equations under compactness type condition, Fract. Calc. Appl. Anal., 15 (2012), 572–590. http://dx.doi.org/10.2478/s13540-012-0040-1 doi: 10.2478/s13540-012-0040-1
    [12] T. Allahviranloo, S. Salahshour, S. Abbasbandy, Explicit solutions of fractional differential equations with uncertainty, Soft Comput., 16 (2012), 297–302. http://dx.doi.org/10.1007/s00500-011-0743-y doi: 10.1007/s00500-011-0743-y
    [13] M. Mazandarani, A. Kamyad, Modified fractional Euler method for solving fuzzy fractional initial value problem, Commun. Nonlinear. Sci., 18 (2013), 12–21. http://dx.doi.org/10.1016/j.cnsns.2012.06.008 doi: 10.1016/j.cnsns.2012.06.008
    [14] M. Mazandarani, M. Najariyan, Type-2 fuzzy fractional derivatives, Commun. Nonlinear. Sci., 19 (2014), 2354–2372. http://dx.doi.org/10.1016/j.cnsns.2013.11.003 doi: 10.1016/j.cnsns.2013.11.003
    [15] V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Set. Syst., 265 (2015), 63–85. http://dx.doi.org/10.1016/j.fss.2014.04.005 doi: 10.1016/j.fss.2014.04.005
    [16] T. Allahviranloo, A. Armand, Z. Gouyandeh, Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, J. Intell. Fuzzy Syst., 26 (2014), 1481–1490. http://dx.doi.org/10.3233/IFS-130831 doi: 10.3233/IFS-130831
    [17] N. Hoa, H. Vu, T. Duc, Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach, Fuzzy Set. Syst., 375 (2019), 70–99. http://dx.doi.org/10.1016/j.fss.2018.08.001 doi: 10.1016/j.fss.2018.08.001
    [18] N. Hoa, H. Vu, A survey on the initial value problems of fuzzy implicit fractional differential equations, Fuzzy Set. Syst., 400 (2020), 90–133. http://dx.doi.org/10.1016/j.fss.2019.10.012 doi: 10.1016/j.fss.2019.10.012
    [19] R. Agarwal, D. Baleanu, J. Nieto, D. Torres, Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3–29. http://dx.doi.org/10.1016/j.cam.2017.09.039 doi: 10.1016/j.cam.2017.09.039
    [20] S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear. Sci., 17 (2012), 1372–1381. http://dx.doi.org/10.1016/j.cnsns.2011.07.005 doi: 10.1016/j.cnsns.2011.07.005
    [21] N. Hoa, Fuzzy fractional functional integral and differential equations, Fuzzy Set. Syst., 280 (2015), 58–90. http://dx.doi.org/10.1016/j.fss.2015.01.009 doi: 10.1016/j.fss.2015.01.009
    [22] M. Mazandarani, A. Kamyad, Modified fractional Euler method for solving fuzzy fractional initial value problem, Commun. Nonlinear. Sci., 18 (2013), 12–21. http://dx.doi.org/10.1016/j.cnsns.2012.06.008 doi: 10.1016/j.cnsns.2012.06.008
    [23] S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equationsby fuzzy Laplace transforms, Commun. Nonlinear. Sci., 17 (2012), 1372–1381. http://dx.doi.org/10.1016/j.cnsns.2011.07.005 doi: 10.1016/j.cnsns.2011.07.005
    [24] A. Ahmadian, S. Salahshour, C. Chan, Fractional differential systems: a fuzzy solution based on operational matrix of shifted Chebyshev polynomials and its applications, IEEE T. Fuzzy Syst., 25 (2017), 218–236. http://dx.doi.org/10.1109/TFUZZ.2016.2554156 doi: 10.1109/TFUZZ.2016.2554156
    [25] A. Ahmadian, F. Ismail, S. Salahshour, D. Baleanu, F. Ghaemi, Uncertain viscoelastic models with fractional order: a new spectral tau method to study the numerical simulations of the solution, Commun. Nonlinear. Sci., 53 (2017), 44–64. http://dx.doi.org/10.1016/j.cnsns.2017.03.012 doi: 10.1016/j.cnsns.2017.03.012
    [26] C. Vinothkumar, J. Nieto, A. Deiveegan, P. Prakash, Invariant solutions of hyperbolic fuzzy fractional differential equations, Mod. Phys. Lett. B, 34 (2020), 2050015. http://dx.doi.org/10.1142/S0217984920500153 doi: 10.1142/S0217984920500153
    [27] S. Hasan, M. Al-Smadi, A. El-Ajou, S. Momani, S. Hadid, Z. Al-Zhour, Numerical approach in the Hilbert space to solve a fuzzy Atangana-Baleanu fractional hybrid system, Chaos Soliton. Fract., 143 (2021), 110506. http://dx.doi.org/10.1016/j.chaos.2020.110506 doi: 10.1016/j.chaos.2020.110506
    [28] M. Al-Smadi, O. Arqub, S. Momani, Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense, Phys. Scripta, 95 (2020), 075218. http://dx.doi.org/10.1088/1402-4896/ab96e0 doi: 10.1088/1402-4896/ab96e0
    [29] M. Al-Smadi, O. Arqub, Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates, Appl. Math. Comput., 342 (2019), 280–294. http://dx.doi.org/10.1016/j.amc.2018.09.020 doi: 10.1016/j.amc.2018.09.020
    [30] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. http://dx.doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [31] M. Abdo, K. Shah, H. Wahash, S. Panchal, On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative, Chaos Soliton. Fract., 135 (2020), 109867. http://dx.doi.org/10.1016/j.chaos.2020.109867 doi: 10.1016/j.chaos.2020.109867
    [32] M. Almalahi, S. Panchal, W. Shatanawi, M. Abdo, K. Shah, K. Abodayeh, Analytical study of transmission dynamics of 2019-nCoV pandemic via fractal fractional operator, Results Phys., 24 (2021), 104045. http://dx.doi.org/10.1016/j.rinp.2021.104045 doi: 10.1016/j.rinp.2021.104045
    [33] M. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of impulsive problems under Mittag-Leffler power law, Heliyon, 6 (2020), e05109. http://dx.doi.org/10.1016/j.heliyon.2020.e05109 doi: 10.1016/j.heliyon.2020.e05109
    [34] N. Sene, Analysis of a four-dimensional hyperchaotic system described by the Caputo-Liouville fractional derivative, Complexity, 2020 (2020), 8889831. http://dx.doi.org/10.1155/2020/8889831 doi: 10.1155/2020/8889831
    [35] N. Sene, Qualitative analysis of class of fractional-order chaotic system via bifurcation and Lyapunov exponents notions, J. Math., 2021 (2021), 5548569. http://dx.doi.org/10.1155/2021/5548569 doi: 10.1155/2021/5548569
    [36] K. Owolabi, Z. Hammouch, Mathematical modeling and analysis of two-variable system with noninteger-order derivative, Chaos, 29 (2019), 013145. http://dx.doi.org/10.1063/1.5086909 doi: 10.1063/1.5086909
    [37] K. Owolabi, Behavioural study of symbiosis dynamics via the Caputo and Atangana-Baleanu fractional derivatives, Chaos Soliton. Fract., 122 (2019), 89–101. http://dx.doi.org/10.1016/j.chaos.2019.03.014 doi: 10.1016/j.chaos.2019.03.014
    [38] K. Owolabi, J. Gómez-Aguilar, B. Karaagac, Modelling, analysis and simulations of some chaotic systems using derivative with Mittag-Leffler kernel, Chaos Soliton. Fract., 125 (2019), 54–63. http://dx.doi.org/10.1016/j.chaos.2019.05.019 doi: 10.1016/j.chaos.2019.05.019
    [39] K. Owolabi, A. Atangana, Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative, Chaos Soliton. Fract., 126 (2019), 41–49. http://dx.doi.org/10.1016/j.chaos.2019.06.001 doi: 10.1016/j.chaos.2019.06.001
    [40] K. Owolabi, E. Pindza, Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives, Chaos Soliton. Fract., 127 (2019), 146–157. http://dx.doi.org/10.1016/j.chaos.2019.06.037 doi: 10.1016/j.chaos.2019.06.037
    [41] Z. He, A. Abbes, H. Jahanshahi, N. Alotaibi, Y. Wang, Fractional-order discrete-time SIR epidemic model with vaccination: chaos and complexity, Mathematics, 10 (2022), 165. http://dx.doi.org/10.3390/math10020165 doi: 10.3390/math10020165
    [42] F. Jin, Z. Qian, Y. Chu, M. ur Rahman, On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative, J. Appl. Anal. Comput., 12 (2022), 790–806. http://dx.doi.org/10.11948/20210357 doi: 10.11948/20210357
    [43] M. Khan, S. Ullah, M. Farhan, The dynamics of Zika virus with Caputo fractional derivative, AIMS Mathematics, 4 (2019), 134–146. http://dx.doi.org/10.3934/Math.2019.1.134 doi: 10.3934/Math.2019.1.134
    [44] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Set. Syst., 230 (2013), 119–141. http://dx.doi.org/10.1016/j.fss.2012.10.003 doi: 10.1016/j.fss.2012.10.003
    [45] T. Allahviranloo, B. Ghanbari. On the fuzzy fractional differential equation with interval Atangana-Baleanu fractional derivative approach, Chaos Soliton. Fract., 130 (2020), 109397. http://dx.doi.org/10.1016/j.chaos.2019.109397 doi: 10.1016/j.chaos.2019.109397
    [46] A. Granas, J. Dugundji, Fixed point theory, New York: Springer Science, 2003. http://dx.doi.org/10.1007/978-0-387-21593-8
    [47] K. Deimling, Nonlinear functional analysis, Berlin: Springer, 1985. http://dx.doi.org/10.1007/978-3-662-00547-7
    [48] W. Yu, R. Jafari, Modeling and control of uncertain nonlinear systems with fuzzy equations and Z-number, New York: John Wiley, 2019. http://dx.doi.org/10.1002/9781119491514
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1496) PDF downloads(116) Cited by(6)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog