In this paper, some coupled coincidence point theorems for two mappings established using rational type contractions in the setting of partially ordered $ \mathscr{G}- $metric spaces. Moreover, supporting examples are provided to strengthen our obtained results. By considering $ \mathscr{G}- $metric space, we propose a fairly simple solution for a system of nonlinear integral equations by using fixed point technique.
Citation: Kumara Swamy Kalla, Sumati Kumari Panda, Thabet Abdeljawad, Aiman Mukheimer. Solving the system of nonlinear integral equations via rational contractions[J]. AIMS Mathematics, 2021, 6(4): 3562-3582. doi: 10.3934/math.2021212
In this paper, some coupled coincidence point theorems for two mappings established using rational type contractions in the setting of partially ordered $ \mathscr{G}- $metric spaces. Moreover, supporting examples are provided to strengthen our obtained results. By considering $ \mathscr{G}- $metric space, we propose a fairly simple solution for a system of nonlinear integral equations by using fixed point technique.
[1] | M. Abbas, W. Sintunavarat, P. Kumam, Coupled fixed point of generalized contractive mappings on partially orderedG-metric spaces, Fixed Point Theory Appl., 2012 (2012), 31. doi: 10.1186/1687-1812-2012-31 |
[2] | T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379–1393. doi: 10.1016/j.na.2005.10.017 |
[3] | S. Chandok, W. Sintunavarat, P. Kumam, Some coupled common fixed points for pair of mappings in partially ordered G-metric spaces, Math. Sci., 7 (2013), 14. doi: 10.1186/2251-7456-7-14 |
[4] | K. Charkrabarti, Coupled fixed point theorems with rational type contractive condition in a partially ordered G-metric space, J. Math., 2014 (2014), 785357. |
[5] | V. S. Chouhan, R. Sharma, Coupled ixed point Theorems for rational contractions in partially ordered G-metric spaces, Int. J. Math. Sci. Appl., 6 (2016), 743–754. |
[6] | B. S. Choudhury, P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput. Modell., 54 (2011), 73–79. doi: 10.1016/j.mcm.2011.01.036 |
[7] | H. S. Ding, L. Li, Coupled fixed point theorems in partially ordered cone metric spaces, Filomat 25 (2011), 137–149. |
[8] | E. Karapinar, A. Ravi Paul, Further Remarks on G-metric spaces, Fixed Point Theory Appl., 154 (2013), 1–19. |
[9] | E. Karpinar, P. Kumam, I. M. Erhan, Coupled ixed point theorems on partially ordered G-metric spaces, Fixed Point Thory Appl., 2012 (2012), 174. doi: 10.1186/1687-1812-2012-174 |
[10] | E. Karapinar, N. V. Luong, N. X. Thuan, T. T. Hai, Coupled coincidence points for mixed monotone operators in partially ordered metric spaces, Arab. J. Math., 1 (2012), 329–339. doi: 10.1007/s40065-012-0027-0 |
[11] | V. Lakshmikantham, L. Ciric, Coupled fixed point theorems for nonlinearcontractions in partially ordered metric spaces, Nonlinear Anl., 70 (2009), 4341–4349. doi: 10.1016/j.na.2008.09.020 |
[12] | G. Meenakshi, A. Madhu, C. Renu, Common Fixed Point Results in G-metric spaces and Applications, Int. J. Comput. Appl., 43 (2012), 38–42. |
[13] | Z. Mustafa, Some new common fixed point theorems under strict contractive conditions in G-metric spaces, J. Appl. Math., (2012), 248397. |
[14] | Z. Mustafa, H. Obiedat, A fixed point theorem of Reich in G-Metric Spaces, CUBO A Math. J., 12 (2010), 83–93. |
[15] | Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorem for mapping on complete G-Metric Spaces, Fixed Point Theory Appl., (2008), 189870. |
[16] | Z. Mustafa, W. Shatanawi, M. Bataineh, Existence of Fixed Point Results in G-Metric Spaces, Int. J. Math. Math. Sci., (2009), 283028. |
[17] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297. |
[18] | Z. Mustafa, B. Sims, Some remarks concerning D-metric spaces, Paperpresented at the international conference on fixed point theory and applications, Valencia Spain, 2004,189–198. |
[19] | H. K. Nashine, Coupled common fixed point results in ordered G-metric spaces, J. Nonlinear Sci. Appl., 1 (2012), 1–13. |
[20] | T. Abdeljawad, E. Karapınar, S. K. Panda, N, Mlaiki, Solutions of boundary value problems on extended-Branciari b-distance, J. Inequalities Appl., 2020 (2020), 103. doi: 10.1186/s13660-020-02373-1 |
[21] | C. Ravichandran, S. K. Panda, K. S. Nisar, K. Logeswari, On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions, Chaos, Solitons Fractals, 139 (2020), 110012. doi: 10.1016/j.chaos.2020.110012 |
[22] | S. K. Panda, E. Karapınar, A. Atangana, A numerical schemes and comparisons for fixed point results with applications to the solutions of Volterra integral equations in dislocatedextendedb-metricspace, Alexandria Eng. J., 59 (2020), 815–827. doi: 10.1016/j.aej.2020.02.007 |
[23] | S. K. Panda, T. Abdeljawad, C. Ravichandran, Novel fixed point approach to Atangana-Baleanu fractional and $L^{p}$-Fredholm integral equations, Alexandria Eng. J., 59 (2020), 1959–1970. doi: 10.1016/j.aej.2019.12.027 |
[24] | S. K. Panda, Applying fixed point methods and fractional operators in the modelling of novel coronavirus 2019-nCoV/SARS-CoV-2, Res. Phys., 19 (2020), 103433. |
[25] | S. K. Panda, T. Abdeljawad, C. Ravichandran, A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method, Chaos, Solitons Fractals, 130 (2020), 109439. doi: 10.1016/j.chaos.2019.109439 |
[26] | S. K. Panda, A. Tassaddiq, R. P. Agarwal, A new approach to the solution of non-linear integral equations via various $F_{Be}$-contractions, Symmetry, 11 (2019), 206. doi: 10.3390/sym11020206 |
[27] | T. Abdeljawad, R. P. Agarwal, E. Karapınar, P. S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space, Symmetry, 11 (2019), 686. doi: 10.3390/sym11050686 |
[28] | S. K. Panda, O. Alqahtani, E. Karapınar, Some fixed-point theorems in b-dislocated metric space and applications, Symmetry, 10 (2018), 691. doi: 10.3390/sym10120691 |
[29] | V. Vijayakumar, U. Ramalingam, S. K. Panda, K. S. Nisar, Results on approximate controllability of Sobolev type fractional stochastic evolution hemivariational inequalities, Numer. Methods Partial Differ. Equations, (2020), 22690. |
[30] | V. Vijayakumar, S. K. Panda, K. S. Nisar, H. M. Baskonus, Results on approximate controllability results for second-order Sobolev-type impulsive neutral differential evolution inclusions with infinite delay, Numer. Methods Partial Differ. Equations, (2020), 22573. |
[31] | S. K. Panda, C. Ravichandran, B. Hazarika, Results on system of Atangana-Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems, Chaos, Solitons Fractals, (2020), 110390. |
[32] | M. Asif, I. Khana, N. Haidera, Q. Al-Mdallalb, Legendre multi-wavelets collocation method for numerical solution of linear and nonlinear integral equations, Alexandria Eng. J., 59 (2020), 5099–5109. doi: 10.1016/j.aej.2020.09.040 |
[33] | A. Babakhani, Q. Al-Mdallal, On the existence of positive solutions for a non-autonomous fractional differential equation with integral boundary conditions, Comput. Methods Differ. Equations, (2020). |
[34] | Q. M. Al-Mdallal, Monotone iterative sequences for nonlinear integro-differential equations of second order, Nonlinear Anal.: Real World Appl., 12 (2011), 3665–3673. doi: 10.1016/j.nonrwa.2011.06.023 |
[35] | Q. M. Al-Mdallal, Boundary value problems for nonlinear fractional integro-differential equations: theoretical and numerical results, Adv. Differ. Equations, 2012 (2012), 18. doi: 10.1186/1687-1847-2012-18 |
[36] | M. I. Syam, Q. M. Al-Mdallal, M. N. Anwar, An efficient numerical algorithm for solving fractional higher-order nonlinear integrodifferential equations, Abstr. Appl. Anal., 2015 (2015), 616438. |