In this manuscript, we investigated the coincidence points, best proximity points, and fixed-points results endowed with $ F $-contraction within the realm of suprametric spaces. The proximal point results obtained in this work show that our investigation is not purely theoretical; fundamental findings were supplemented with concrete examples that demonstrate their practical ramifications. Furthermore, this paper focuses on boundary value problems (BVPs) related to nonlinear fractional differential equations of order $ 2 < \varpi \leq 3 $. By cleverly translating the BVP into an integral equation, we obtained conditions that confirm the existence and uniqueness of fixed points under $ (\mathscr{F}_{\tau })_{F_{\mathscr{P}}} $-contraction. A relevant part of this work is the approximation of the Green's function, which is critical in proving the existence and uniqueness of solutions. Our work not only adds to the current body of knowledge but also provides strong approaches for dealing with hard mathematical problems in the field of fractional differential equations.
Citation: Haroon Ahmad, Om Prakash Chauhan, Tania Angelica Lazăr, Vasile Lucian Lazăr. Some convergence results on proximal contractions with application to nonlinear fractional differential equation[J]. AIMS Mathematics, 2025, 10(3): 5353-5372. doi: 10.3934/math.2025247
In this manuscript, we investigated the coincidence points, best proximity points, and fixed-points results endowed with $ F $-contraction within the realm of suprametric spaces. The proximal point results obtained in this work show that our investigation is not purely theoretical; fundamental findings were supplemented with concrete examples that demonstrate their practical ramifications. Furthermore, this paper focuses on boundary value problems (BVPs) related to nonlinear fractional differential equations of order $ 2 < \varpi \leq 3 $. By cleverly translating the BVP into an integral equation, we obtained conditions that confirm the existence and uniqueness of fixed points under $ (\mathscr{F}_{\tau })_{F_{\mathscr{P}}} $-contraction. A relevant part of this work is the approximation of the Green's function, which is critical in proving the existence and uniqueness of solutions. Our work not only adds to the current body of knowledge but also provides strong approaches for dealing with hard mathematical problems in the field of fractional differential equations.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
[2] | K. Kuratowski, S. Banach, Sur la mesure de la classe des ensembles parfaits, Fund. Math., 4 (1922), 302–311. |
[3] | S. Saks, Theory of the integral, Monografje Matematyczne, Warszawa, 1935. |
[4] | G. Rozenblyum, Sur une classe de suites totalement boréliennes et les propriétés des ensembles boréliens, Bull. Acad. Pol. Sci., Sér. Sci. Math., Astron. Phys., 5 (1957), 353–358. |
[5] | I. A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30 (1989), 26–37. |
[6] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform., Univ. Ostrav., 1 (1993), 5–11. |
[7] |
T. Kamran, M. Samreen, Q. U. L. Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
![]() |
[8] |
M. Berzig, First results in suprametric spaces with applications, Mediterr. J. Math., 19 (2022), 226. https://doi.org/10.1007/s00009-022-02148-6 doi: 10.1007/s00009-022-02148-6
![]() |
[9] | M. Berzig, Nonlinear contraction in $b$-suprametric spaces, arXiv: 2304.08507, 2023. https://doi.org/10.1007/s41478-024-00732-5 |
[10] | S. K. Panda, R. P. Agarwal, E. Karapınar, Extended suprametric spaces and Stone-type theorem, 2023. |
[11] |
M. Berzig, Fixed point results in generalized suprametric spaces, Topol. Algebra Appl., 11 (2023), 20230105. https://doi.org/10.1515/taa-2023-0105 doi: 10.1515/taa-2023-0105
![]() |
[12] | S. Basha, P. Veeramani, Best proximity pair theorems for multi-functions with open fibres, J. Approx. Theory, 103 (2000), 119–129. |
[13] | S. Basha, P. Veeramani, Best approximations and best proximity pairs, Acta. Sci. Math. (Szeged), 63 (1997), 289–300. |
[14] |
A. A. Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001–1006. https://doi.org/10.1016/j.jmaa.2005.10.081 doi: 10.1016/j.jmaa.2005.10.081
![]() |
[15] |
C. D. Bari, T. Suzuki, C. Vetro, Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Anal., 69 (2008), 3790–3794. https://doi.org/10.1016/j.na.2007.10.014 doi: 10.1016/j.na.2007.10.014
![]() |
[16] |
M. Kikkawa, T. Suzuki, Some similarity between contractions and Kannan mappings, Fixed Point Theory Appl., 2008, 649749. https://doi.org/10.1155/2008/649749 doi: 10.1155/2008/649749
![]() |
[17] |
J. Anuradha, P. Veeramani, Proximal pointwise contraction, Topol. Appl., 156 (2009), 2942–2948. https://doi.org/10.1016/j.topol.2009.01.017 doi: 10.1016/j.topol.2009.01.017
![]() |
[18] |
A. Abkar, M. Gabeleh, Best proximity points for asymptotic cyclic contraction mappings, Nonlinear Anal., 74 (2011), 7261–7268. https://doi.org/10.1016/j.na.2011.07.043 doi: 10.1016/j.na.2011.07.043
![]() |
[19] | S. Basha, Best proximity points for global optimal approximate solutions, J. Global Optim., 49 (2011), 15–21. |
[20] |
S. Basha, N. Shahzad, Best proximity point theorems for generalized proximal contractions, Fixed Point Theory Appl., 42 (2012). https://doi.org/10.1186/1687-1812-2012-42 doi: 10.1186/1687-1812-2012-42
![]() |
[21] | B. Sametric, C. Vetro, P. Vetro, Fixed point theorem for $\alpha -\psi -$contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. |
[22] | M. Jleli, E. Karapinar, B. Samet, Best proximity points for generalized $\alpha -\psi -$proximal contractive type mappings, J. Appl. Math, 2013 (2013). |
[23] |
K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z., 112 (1969), 234–240. https://doi.org/10.1007/BF01110225 doi: 10.1007/BF01110225
![]() |
[24] |
S. Komal, A. Hussain, N. Sultana, P. Kumam, Coincidence best proximity points for Geraghty type proximal cyclic contractions, J. Math. Comput. Sci., 18 (2018), 98–114. https://doi.org/10.22436/jmcs.018.01.11 doi: 10.22436/jmcs.018.01.11
![]() |
[25] | A. Latif, M. Abbas, A. Hussain, Coincidence best proximity point of $\mathscr{F}_{g}$-weak contractive mappings in partially ordered metric space, J. Nonlinear Sci. Appl., 9 (2016), 2448–2457. |
[26] | W. A. Kirk, S. Reich, P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Func. Anal. Opt., 24 (2003), 851–862. |
[27] | V. Sankar-Raj, A best proximity point theorem for weakly contractive non-self-mappings, Nonlinear Anal., 2011, 4804–4808. |
[28] |
T. Suzuki, M. Kikkawa, C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Anal.-Theor., 71 (2009), 2918–2926. https://doi.org/10.1016/j.na.2009.01.173 doi: 10.1016/j.na.2009.01.173
![]() |
[29] | C. Vetro, T. Suzuki, Three existence theorems for weak contractions of Matkowski type, Int. J. Math. Stat., 2010,110–220. |
[30] |
N. Saleem, H. Ahmad, H. Aydi, Y. U. Gaba, On some coincidence best proximity point results, J. Math., 2021 (2021), 8005469. https://doi.org/10.1155/2021/8005469 doi: 10.1155/2021/8005469
![]() |
[31] |
M. Zahid, F. U. Din, M. Younis, H. Ahmad, M. Öztürk, Some results on multivalued proximal contractions with application to integral equation, Mathematics, 12 (2024), 3488. https://doi.org/10.3390/math12223488 doi: 10.3390/math12223488
![]() |
[32] |
M. Younis, H. Ahmad, W. Shahid, Best proximity points for multivalued mappings and equation of motion, J. Appl. Anal. Comput., 14 (2024), 298–316. https://doi.org/10.11948/20230213 doi: 10.11948/20230213
![]() |
[33] |
H. Ahmad, M. Younis, H. Gündoǧdu, N. Barley, V. K. Patel, Proximal contractions for multivalued mappings with an application to 2D Volterra integral equations, Mathematics, 12 (2024), 3716. https://doi.org/10.3390/math12233716 doi: 10.3390/math12233716
![]() |
[34] |
M. Zahid, F. U. Din, M. Younis, H. Ahmad, M. Öztürk, Mathematical modeling of fractals via proximal F-Iterated function systems, Axioms, 13 (2024), 881. https://doi.org/10.3390/axioms13120881 doi: 10.3390/axioms13120881
![]() |
[35] |
D. Chalishajar, D. Kasinathan, R. Kasinathan, R. Kasinathan, Exponential stability, T-controllability and optimal controllability of higher-order fractional neutral stochastic differential equation via integral contractor, Chaos Soliton. Fract., 186 (2024), 115278. https://doi.org/10.1016/j.chaos.2024.115278 doi: 10.1016/j.chaos.2024.115278
![]() |
[36] |
D. Chalishajar, K. Ravikumar, K. Ramkumar, S. Varshini, On solvability and optimal controls for impulsive stochastic integrodifferential varying-coefficient model, Automatika, 65 (2024), 1271–1283. https://doi.org/10.1080/00051144.2024.2361212 doi: 10.1080/00051144.2024.2361212
![]() |
[37] |
D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory A., 2012 (2012), 1–6. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
![]() |
[38] | T. R. Rockafellar, R. J. V. Wets, Variational analysis, Springer Berlin, Germany, 2005,117. |
[39] |
A. Cabada, Z. Hamdi, Nonlinear fractional differential equations with integral boundary value conditions, Appl. Math. Comput., 228 (2014), 251–257. https://doi.org/10.1016/j.amc.2013.11.057 doi: 10.1016/j.amc.2013.11.057
![]() |
[40] |
T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal.-Theor., 65 (2006), 1379–1393. https://doi.org/10.1016/j.na.2005.10.017 doi: 10.1016/j.na.2005.10.017
![]() |
[41] |
M. Abbas, B. Ali, S. Romaguera, Fixed and periodic points of generalized contractions in metric spaces, Fixed Point Theory A., 2013 (2013), 243. https://doi.org/10.1186/1687-1812-2013-243 doi: 10.1186/1687-1812-2013-243
![]() |
[42] |
R. Batra, S. Vashistha, Fixed points of an F-contraction on metric spaces with a graph, Int. J. Comput. Math., 91 (2014), 1–8. https://doi.org/10.1080/00207160.2014.887700 doi: 10.1080/00207160.2014.887700
![]() |
[43] | R. Batra, S. Vashistha, R. Kumar, A coincidence point theorem for F-contractions on metric spaces equipped with an altered distance, J. Math. Comput. Sci., 4 (2014), 826–833. |
[44] |
M. Cosentino, P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat, 28 (2014), 715–722. https://doi.org/10.2298/FIL1404715C doi: 10.2298/FIL1404715C
![]() |
[45] |
H. A. Hammad, M. De-la-Sen, A coupled fixed point technique for solving coupled systems of functional and nonlinear integral equations, Mathematics, 7 (2019), 634. https://doi.org/10.3390/math7070634 doi: 10.3390/math7070634
![]() |
[46] | H. A. Hammad, M. De-la-Sen, Fixed-point results for a generalized almost $(s, q)$-jaggi $F$-contraction-type on b-metric-like spaces, Mathematics, 8 (2020), 63. |
[47] |
H. A. Hammad, M. De-la-Sen, H. Aydi, Generalized dynamic process for an extended multi-valued $F$-contraction in metric-like spaces with applications, Alex. Eng. J., 59 (2020), 3817–3825. https://doi.org/10.1016/j.aej.2020.06.037 doi: 10.1016/j.aej.2020.06.037
![]() |