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1. Introduction

Throughout this paper, k is assumed to be an algebraically closed field of characteristic 0, and all
matrices, vector spaces, algebras and Hopf algebras are assumed to be over k.

Roughly speaking, the concept of Hopf algebras is still valid under taking the linear duals. This
elementary point of view suggests to us that structures of the dual are effective when we deal with
certain problems on a Hopf algebra. The most basic definition of the dual for a Hopf algebra H would
be the finite dual H° described by Heyneman and Sweedler [11], which is also a Hopf algebra over the
same base field. Of course, there are a number of relationships between H and H°, and this motivates
the authors to consider the structure of duals for varieties of Hopf algebras.

Of course it is known that when H is a finite-dimensional Hopf algebra, its dual Hopf algebra H*
has the same dimension as well as similar or dual properties with H. Indeed, the structures of H are
determined conversely by those of H*. However for an infinite-dimensional Hopf algebra H, its finite
dual H° might be much too large (or small) to be studied easily. This motivates us to consider some
kinds of dual Hopf algebras H*® for certain (infinite-dimensional) Hopf algebras H, where the original
evaluation is replaced by Hopf pairings H* ® H — k. Our primary goal is to formulate such Hopf
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pairings for noetherian affine Hopf algebras H of finite GK-dimensions, such that:

(HP1) The pairing is non-degenerate;
(HP2) H*® and H are both affine and noetherian;
(HP3) GKdim(H*) = GKdim(H).

Meanwhile, we wish that some properties of H* and H would be dual to each other (such as (HP4)
in Section 6.2), which should be noted in different situations. Finally, H* would be better to exist
uniquely for any given H under our assumptions. In this paper, we try to establish the desired Hopf
pairings for affine prime regular Hopf algebras H of GK-dimension one. For this purpose, the finite
dual H° of each H is determined, and afterwards H* would be chosen as a suitable Hopf subalgebra of
H°.

However, it is not easy to determine the structure of H® for a Hopf algebra H in general, especially
for infinite-dimensional ones. Of course, the most direct way to get H° is by definition. For this, recall
that H° is the Hopf algebra generated by f € H* which vanish on an ideal I C H of finite
codimension. This means that we need a description of all finite codimensional ideals which is
impossible in general. To the authors’ knowledge, there are two other ways to get H° if H is good
enough. One is applying the well-known Cartier-Konstant-Milnor-Moore’s theorem [20] if H happens
to be commutative. The related idea and method were generalized further (see [7]
and [21, Chapter 9]). Another one is applying representation theoretical way if the representation
category Rep-H of finite dimensional modules happens to be very nice (see [27]).

In the literature, significant progress has been made in classifying infinite dimensional noetherian
Hopf algebras of low Gelfand-Kirillov dimensions (GK-dimension for short). The program of
classifying Hopf algebras of GK-dimension one was initiated by Lu, Wu and Zhang [18]. Then the
second author found a new class of examples about prime regular Hopf algebras of GK-dimension
one [16]. Brown and Zhang [5] made further efforts in this direction and classified all prime regular
Hopf algebras of GK-dimension one under an extra hypothesis. In 2016, Wu, Ding and the second
author [32] removed this hypothesis and gave a complete classification of prime regular Hopf algebras
of GK-dimension one, in which some non-pointed Hopf algebras were found. Recently, the second
author classified prime Hopf algebras of GK-dimension one satisfying two certain conditions [17].
For Hopf algebras H of GK-dimension two, Goodearl and Zhang [10] gave a classification of the case
when H is a domain satisfying Exty,(k, k) # 0. For those with vanishing Ext-groups, some interesting
examples were constructed by Wang, Zhang and Zhuang [29]. The progress can also be found in a
survey by Brown and Zhang [6]. As for Hopf algebras of GK-dimensions three and four, all
connected ones were classified by Zhuang [33] and Wang, Zhang and Zhuang [30] respectively.

Our main interest in this paper is to deal with the affine prime Hopf algebras of GK-dimension one,
whose detailed structures are recalled in Section 2.1. An interesting fact is that all affine prime regular
Hopf algebras are commutative-by-finite [3], that is, a finite module over a normal commutative Hopf
subalgebra. This suggests that we have a chance to get the finite duals of affine prime regular Hopf
algebras of GK-dimension one explicitly. Actually, Ge and the second author use this observation
together with some other techniques to determine the finite dual of the infinite dihedral group algebra
kD, recently [9]. In addition, after finishing this paper we realized that A. Jahn and M. Couto already
considered this question along this line in their theses [8, 12].

This paper is to develop the idea and techniques in [9] further and as the main result we get the
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finite duals of all the affine prime regular Hopf algebras of GK-dimension one in terms of generators
and relations. Now let us recall in our notations that there are five kinds of such Hopf algebras listed
in [32]:

kix], k[x™], kDw, Tw(n,v,&), B, w,y), D(m,d,&).

Since the finite duals of k[x], k[x, x"'] and kD,, are known, it remains for us to determine the latter
three kinds of Hopf algebras. Our main result is:

Theorem 1.1. (1) As a Hopf algebra, T(n,v,&)° is isomorphic to the Hopf algebra Tu-(n,v,&)
constructed in Subsection 3.1.

(2) As a Hopf algebra, B(n,w,vy)° is isomorphic to the Hopf algebra B,(n,w,?y) constructed in
Subsection 4.1.

(3) As a Hopf algebra, D(m,d, &)° is isomorphic to the Hopf algebra D.(m,d, &) constructed in
Subsection 5.1.

These three claims are presented respectively as Theorems 3.4, 4.4, and 5.7. In brief, our
computation for finite dual H° starts with properties of certain polynomial or Laurent polynomial
subalgebra P, by which we figure cofinite left ideals of H. Then we construct some key elements in
H° and determine their relations under Hopf operations. Finally it is proved that these elements
generate H° with desired relations.

Using our descriptions of finite duals, we find that for an affine prime regular Hopf algebra H one
can always get a Hopf algebra H* such that there is a non-degenerate Hopf pairing (see Majid [19]
for the definition) between H and H*. The definition can also be found as Definition 6.1 in this paper.
Some properties of H*® are listed in the following.

Proposition 1.2. (1) All Hopf algebras (kD.)*, Tw(n,v,&)*, B(n,w,y)* and D(m,d,¢)* have GK-
dimension one and are minimal under inclusion relation;
(2) As algebras, (kDy)® is regular while T (n, v, £)*, B(n, w,y)* and D(m,d, &)* are not for n,m > 2.

Proposition 1.2 is a direct consequence of Propositions 6.4 and 6.5. Through the pairing we
constructed and this proposition, we get two observations: 1) For each affine prime regular Hopf
algebra H of GK-dimension one, we get a quantum group in the sense of Takeuchi [28] naturally (see
Remark 6.8 for details); 2) We give a counterexample to an infinite-dimensional analogous version of
the semisimplicity result by Larson and Radford [14] which states that for a finite-dimensional Hopf
algebra H, H is semisimple if and only if H* is so.

After we finished the present paper, we found the nice preprint [4] written by K.A. Brown, M. Couto
and A. Jahn. They refined the results in [8, 12] and determined the structures of the finite dual of affine
commutative-by-finite Hopf algebras. As the Hopf algebras of GK-dimension one considered in this
paper are affine commutative-by-finite, the conclusions gotten in [4] can apply to our case directly. We
remark that a number of formulas obtained in Sections 3-5 in our paper were essentially the same as
those in [4, Section 7.5]. As pointed out in [4], the results in [4] and the present paper are largely
complementary. Indeed, we can use our results to answer a question appeared in [4, Remarks 7.1(3)]
(see Remark 5.1 in detail).

The organization of this paper is as follows: We gather in Section 2 necessary concepts and
techniques, including the classification result for H, some equivalent definitions of H° for
computation, and invertible matrices used for later proofs. Sections 3-5 are devoted to giving the
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structures for T (n, v, £)°, B(n,w,y)° and D(m,d, £)° respectively. Finally in Section 6, constructions
and related properties of desired non-degenerate Hopf pairings on kD, Tw(n,v,&), B(n,w,y) and
D(m, d, &) are studied. We pose a question at the last section too.

Notation

We end this section by introducing some notations used in this paper. Let | 7] stand for the floor

function, that is, for any natural numbers m, n, | ** | denotes the biggest integer which is not bigger than
m

' Moreover, let n be a positive integer. We usually denote condition 0 < i < n — 1 simply by “i € n”.
This can be referred to some convention in set theory that n = {0,1,--- ,n — 1} as a set. Moreover,
the cartesian product of {0,1,--- ,m — 1} and {0, 1,--- ,n — 1} are denoted by m X n, which is always
ordered lexicographically.

Another notation which will be used is that: for an algebra H, we write I <, H if I is a left ideal of

H, and denote the principal left ideal generated by h € H by (h).
2. Preliminaries

In this section, we recall the classification result on affine prime regular Hopf algebras of GK-
dimension one and give necessary tools and results for the determination of their finite duals. About
general background knowledge, the reader is referred to [21, 26] for Hopf algebras and [35, 18] for
exposition about noetherian Hopf algebras.

2.1. The classification result

At first, let us recall the classification of affine prime regular Hopf algebras of GK-dimension one
given in [32, Theorem 8.3].

Lemma 2.1. Any prime regular Hopf algebra of GK-dimension one must be isomorphic to one of the
following:

(1) Connected algebraic groups of dimension one: k[x] and k[x*'];

(2) Infinite dihedral group algebra kD,

(3) Infinite dimensional Taft algebras T (n, v, €), where n, v are integers satisfying 0 <v < n-—1, and
& is a primitive nth root of 1;

(4) Generalized Liu’s algebras B(n,w,7y), where n, w are positive integers and 7y is a primitive nth
root of 1;

(5) The Hopf algebras D(m,d, £), where m,d are positive integers satisfying (1 + m)d is even and € is
a primitive 2mth root of 1.

Detailed structures of T, (n, v, &), B(n, w,y) and D(m, d, £) are recalled as follows:

Definition 2.2. Let n be a positive integer, 0 < v < n — 1, and &€ be a primitive nth root of 1. As an
algebra, T (n,v,§) is generated by g and x with relations

n

g' =1, xg=é&gx
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Then T (n,v,&) becomes a Hopf algebra with comultiplication, counit and antipode given by

Ag)=g®g, AX)=10x+x0g", &g =1, &x)=0,
S@=¢" S =-¢"¢""x

Definition 2.3. Let n and w be positive integers, and y be a primitive nth root of 1. As an algebra,
B(n, w,7y) is generated by x*', g and y with relations

xax ' =x'x=1, xg=gx, xy=yx,
Y8 = VY8Y,

YVi=1-x“=1-g".
Then B(n, w,y) becomes a Hopf algebra with comultiplication, counit and antipode given by

Ax)=x®x, A(g)=g®g, A)=10y+y®g,
ex)=¢g(g =1, &y =0,
S=x", S@=¢" SomH==y"¢g"y

Definition 2.4. Let m,d be positive integers such that (1 + m)d is even and & a primitive 2mth root of
unity. Define
w:=md, y:= &,

As an algebra, D(m, d, £) is generated by x*', g, y and ug, u,, - - - , u,,_ with relations

xx ' =x'x=1, gx=xg, yx=xy,
yg=7vgy, y'=1-x=1-g",
wix = X wg, yup = Qi = ExXwry, wig = y'x*guy,
(—1)_j§_j)’@ if%dﬁb@m ooy g i+j<m=2)
uii = (—1)"6"72?12 Ly—5dyieig (i+j=m—1)
g

(=D)7ETy ;x_Hde¢i“'¢m—1¢0"'¢m—2—jyi+j_mg (i+j=zm)

where ¢; := 1 -y "'x? and i, j € m.
Then D(m,d, &) becomes a Hopf algebra with comultiplication, counit and the antipode given by

Ax) =x®x, A(g=g®g AQY)=y®g+1®Yy,
Aw) = By v u; @ xMghu,
e(x) =¢e(g) =e(up) =1, e@y) =¢e(u) =0,
S@=x"' S@=¢g" SO=—-yg"'=-y"g"y
S () = (=1yigly "5 xidritomd gneizty,

foriemand1 <l <m-1.

2.2. Finite dual for Hopf algebras

In this subsection, we recall the concept of finite dual of a Hopf algebra, and list some lemmas
in order to compute finite duals for the cases we are concerned with. The definition of finite dual is
well-known and can be found in [26, Chapter 6] or [21, Chapter 9], for example.
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Definition 2.5. Let H be a Hopf algebra over k and denote its dual space by H*. The finite dual of H
is defined as
H°® :={f € H" | f vanishes on a cofinite ideal I < H}.

It is well-known that H° has a Hopf algebra structure naturally [21, Theorem 9.1.3]. We want to
simplify H° a little. It is not hard to see that H° has the following alternative description: Let 7 be the
family of all the cofinite left ideals of H. Then by [21, Lemma 9.1.1], we have H® = },.; [, where
I+ ={f € H | f(I) = 0}. Therefore, we have

Lemma 2.6. Let 1 be a subset of I. Suppose for any I € I, there exist some I\, 1,--- ,1, € Iy such
that 2 1; € 1. Then H° = Y7, I

Proof. The condition implies that for any / € 7, there exist some Iy, I»,--- ,1,, € T such that })/, I;" =
(N~ )" 2 I*. Thus
H =Y I"C ) I*CH,
Iel Iely
and the claim is then verified. O

Now we turn to a common feature of Hopf algebras in our cases. Specifically:

e For the remaining of this subsection, we assume that H is a Hopf algebra which is a finitely
generated right module over some subalgebra P, such that P is a polynomial algebra k[x] or a
Laurent polynomial algebra k[x*!].

We would note in subsequent sections that this assumption holds for all affine prime regular Hopf
algebras of GK-dimension one. This assumption helps us to figure all the cofinite left ideals of H:

Lemma 2.7. For any left ideal I <, H, I is cofinite in H if and only if IN P # 0.

Proof. Note that whenever P is k[x] or k[x*!], IN P is an ideal of P and thus a principal ideal generated
by some polynomial g(x) € P. It follows that

INP+£0 < ¢qx)#0 <= 1IN Piscofinite in P.
If I is cofinite in H, then the following relations of k-vector spaces
H/ID>P+1D]I=P/(INP)

implies that P/(I N P) must be finite-dimensional. In other words, I N P # 0 holds.

Conversely if I N P # 0, then clearly P/(I N P) is finite-dimensional, and so is (P + I)/I. However,
the assumption above this lemma implies that H = )", h;P for some hy, hy,--- ,h,, € H. As I is a left
ideal of H, we can know that (P + I)/I is a finite-dimensional subspace of the quotient left H-module
H/I, and

H/I = Z hi(P + /1)
i=1
holds. It follows that H/I is also finite-dimensional. O
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Combining Lemmas 2.6 and 2.7, in order to compute H°, it is sufficient to find enough appropriate
polynomials p(x)’s, such that each I € 7 must contain some principal left ideal (p(x)). Concerning our
cases of T (n,v,&), B(n,w,y) and D(m, d, £), we can choose such p(x)’s respectively as follows.

Lemma 2.8. Let H be an example from any of the above three classes of Hopf algebras. Let I € I,
and m, n be positive integers.

(1) There is a polynomial p(x) € P = k[x]| with form:

N

pe) = | Jo = 2. 2.1)

a=1

for some N > 1, r, € N and distinct A, € Kk, such that I contains the cofinite left ideal generated
by p(x) in H;
(2) There is a polynomial p(x) € P = k[x*'] with form:

N
p( = | | = a2 (2.2)
a=1

for some N > 1, r, € N and distinct A, € k*, such that I contains the cofinite left ideal generated
by p(x) in H;
(3) There is a polynomial p(x) € P = k[x*'] with form:

N
p() = @ = 1@+ 17| e = a0 - a7ty (23)

a=1

for some N > 1, r',r'",r, € N, and A, € k* \ {1} which are distinct and not inverses of each
other, such that I contains the cofinite left ideal generated by p(x) in H.

Proof. We prove (2) for example, since (1) and (3) hold according to the same reason. It can be known
from the proof of Lemma 2.7 that /N P is a principal ideal of P generated by some non-zero polynomial
q(x). Without loss of generality, assume that

q(x) = (x = ) (x = o) - - - (x = )

for some M > 1 and py, s, - -+, puy € k*. Now define a polynomial

p(x) = (X" = p)(X" = p13) -+ (X" = ),

which gives the desired form (2.2). Since g(x) | p(x), I contains the left ideal of H generated by p(x)
in H. O

This lemma suggests us to consider the following subfamilies 7, C 7 respectively.

Corollary 2.9. Let m,n be positive integers.

(1) For P = Kk[x], denote
To={(x"-AD)")<yH| A€k, reN}.

If 1) satisfies the condition in Lemma 2.6, then H° = ;.7 (H/I)*;
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(2) For P = k[x*'], denote
To={((x"-D)<;H|A1€k", re N}

If 1 satisfies the condition in Lemma 2.6, then H° = ), (H/I)*;
(3) For P = k[x*'], denote

To = {((x" = D (" + DN (" =)' = A7) < H | A€ k™ \ {£1), r € N},

If 1) satisfies the condition in Lemma 2.6, then H° = ;.7 (H/I)".

We end this subsection by providing the following lemma on the intersection of principal left ideals
in7:

Lemma 2.10. Let N be a positive integer, and let P be k[x] or k[x*'].  Suppose that
q1(x), q2(x), - -+ ,gn(x) € P are coprime with each other. Then

N N
(@) = (] | 2a)

a=1 a=1
as left ideals in H.
Proof. It is sufficient to prove the case when N = 2. First there exist p;(x), p2(x) € P such that
q1(X)p1(x) + g2(x)pa(x) = 1.

Now for any & € (g;(x)) N (g2(x)), we have h = h;q(x) = hyg,(x) for some hy, h, € H. Then

hy = hy(qi(xX)p1(x) + @2(X)p2(x)) = hagi(X)p1(x) + hig1(x)pa(x)
= (hap1(x) + hi p2(x))q1 (%),
and thus & = hyg(x) = (hap1(x) + by p2(x))q1(x)q2(X) € (q1(x)g2(x)). |

2.3. Invertibility of matrices

The following primary fact on the Kronecker products is required, which is well-known in matrix
theory.

Lemma 2.11. (/) Let 'y and I'; be finite totally ordered sets, and their Cartesian product I'y X I'; be
ordered lexicographically. Then for any two square matrices

A=(ay|i.i €Ty) and B=(by;|j.j €T
over k, A and B are both invertible if and only if their Kronecker product
(airbip | G, ), (@', ) €Ty XT)
is invertible;
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(2) Let ny, ny, -+, ny, be positive integers. Then the square matrices
Y (9 BT
Ay = (a. | Tk T enk) (1 <k<m
ikl
over k are all invertible, if and only if their Kronecker product

@ 2 (m) T . . .

(cl,v,,,.,laiz,i,2 cea | iy i), (B, 0,0 1) €1y Xg X X nm)
is invertible.

A generalized version of above lemma is also required, and we provide a proof for convenience.

Lemma 2.12. Let 'y and I, be finite totally ordered sets, and their Cartesian product I'y X I'; be
ordered lexicographically. Suppose A := (a;; | i,i" € I'y) is invertible. Then the following matrix

C:= (ai,i/bi’,j,j’ |G, J) €T FZ)

is invertible, if and only if By := (b,v, il hJ € F2) is invertible for each i’ € I'y.

Proof. For clarity, denote the cardinalities of sets by m := |I'j| and n := |[';|. Clearly, C can be divided
into blocks of order m:
C = (a,;l-/Y,v | i i’ € Fl) .

Denote A™! := (a;; | i,i’ € I'y), then Kronecker product of A~! and I, (the identity matrix of order n)
can be written as a block matrix
(@i, |i,i" €Ty), (2.4)

which is invertible according to Lemma 2.11. One can directly verify that the product of (2.4) and C is
equal to

Ei,kak,i’Bi’ i, ey | = (51',1'/31" |i,i eTy),
kel

and the claim is followed. |

Within the work of [9], they proved the invertibility of a certain form of matrices. This plays
a crucial role on the process of constructing (kD,,)°. Our construction for D(m,d, €)° in this paper
would also rely on this fact. However, we provide here another form of that result for simplicity.

Lemma 2.13. ( /9, Corollary 2]) Let r be a positive integer, and A € k* \ {x1}. The 2r X 2r matrix
(A2 + €)' | (e, 9), (€, s €2 % 7) (2.5)
is invertible.

Proof. Denote M := 2r — 1. It follows from [9, Corollary 2] that the 2r X 2r matrix

1 0 ‘e 0 1 0 .- 0

A A .- A At A7t ‘.- A1

2022 o 22 2 o L I

/13 3/13 .. 3r—l/l3 /1—3 3/1—3 .. 3r—1/1—3 (26)
MMM MM M M I
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is invertible, which can be obtained from the transpose of (2.5) through elementary operations of type 2.
Thus (2.5) is also invertible. |

This result has a slightly generalized version, which is required in this paper as well:
Corollary 2.14. Let r be a positive integer, and A € k* \ {x1}. Then:

(1) The 2r X 2r matrix
(/l(—l)f'(2s/+e’)(a T e/)s | (e, s), (6,, S/) €2 x I’) 2.7

is invertible for any a € k;
(2) The 2r X 2r matrix

(/l(—l)f(b+25’+e’)(a +2¢ + el)s | (6, S), (6,, S,) €2 % I") (28)

is invertible for any a € k and b € Q.

Proof. (1) Denote M := 2r — 1. Firstly, (2.6) can be obtained from the following matrix through
elementary column operations of type 3:

1 a e a™! 1 a e a™!
A (@a+DA2 - @+D'a o aY @+Datt o @+ 1y'at!
2 @+ o @+ 1 @+ar o (@+'az?
A @+ - @+ 27 @+ - @+3)a | (2.9
M g+ MM @+ MYTIAM M @+ M)A o (g MYTIATM

The process is by deleting powers of A or A~! with coefficients containing a, from the rth column to
the 2nd column, and the 2rth column to the (# + 1)th column. Thus (2.9) is also invertible.

However, (2.7) can be obtained from the transpose of (2.9) through elementary operations of type 2.
This implies the invertibility of (2.7).

(2) The similar argument follows that (2.8) can be obtained from the transpose of the following
matrix through elementary column operations:

b artb - a1 b al™® - alah
/lb+1 (a + 1)/lb+l ((l + l)r‘fl/lbﬂ /l—(bH) (a+ 1)/{—(b+l . (u + l)r‘fl/lf(bﬂ)
/lh+2 (tl + 2)/1}74-2 .. (a + 2)r—] ﬂh+2 /1_(,)+2) (Ll + 2)/{—(h+2) . (a + z)r—] /1—(}74-2)
b+3 (a +3)ab+3 (a+3)~ 1203 A-6+3) (a+3)re+d (a+3)~ 170+
/lb;M (a+ M)/lerM o (a+ M)‘r—l/lerM I(;AM) (a+ M)'/l—(mM) (a + My =1 -+M
and this matrix has the same determinant as (2.9). O

2.4. Combinatorial notions

We end this section by listing two other concepts for later use. The one is the well-known quantum
binomial coefficients for a parameter g € k*, which is defined as

o, =
k), k=K,

for integers [ > k > 0, where !, := 1,2,---l,and [, ;== 1+ g+ -+ 4" .
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The other one is a part of the second Stirling number (see (13.13) in [15]), written as

D (; )(—1)"%5, (2.10)

t=0

which is in fact zero if 0 < s < r.
3. The finite dual of infinite-dimensional Taft algebra 7., (n, v, ¢)

This section is devoted to providing the structure of 7 (n, v, £)°, which is isomorphic to the Hopf
algebra T..-(n,v, &) constructed by generators and relations in Subsection 3.1. For the purpose, we
choose certain elements in 7 (n,v,€)° and study their properties in Subsection 3.2. The desired
isomorphism is shown in Subsection 3.3 finally.

3.1. The Hopf algebra T (n, v, &)

Let n be a positive integer, 0 < v < n—1 and £ be a primitive nth root of 1. For simplicity we denote

m:= m. The Hopf algebra T (n, v, €) is constructed as follows. As an algebra, it is generated by

Y, ek), Q, F|, F, with relations

lP/lllP/lz = \P/11+/129 lIIO = 1’ Qn =1, F’]’Vl = 09
Q‘P,}ZTQQ, FQQ:QFQ, FlngvQFl,
FZ\P/l:lIJ/lFZ» FllIJ/l:\P/lFl’ F1F2:F2F1

for all A, Ay, A, € k. The comultiplication, counit and antipode are given by

AQ)=QQ, A(F)=18F,+F ®Q,
m—1

A(FZ) =1F, +F, Q"+ ZFEk] ®QkF£m—k]’
k=1
(n/m)—1 el

A= Y (Pin@Wis)1 @1+ ) FlloQ ™),
c=0 k=1
Q) = 8(¥)) = 1. &(Fy) = &(F2) =0,
(nfm)-1
S(Q) = Qn—l’ S(Fl) = _é‘:_VQn—lFl, S(Fz) = —Fz, S(\P/l) = Z \P—ﬂf’mfgc,
c=0

for A € k, where ng] = ﬁF]f forl <k<m-1,and
Got= (1L + QN + £ 4ok £ (e € nfm).
n

The fact that Tw-(n,v,&) is a Hopf algebra would be stated and proved in Subsection 3.3 as
Theorem 3.4(1). Here we note that

W Q'FSFi | A€k, jen, seN, [ €m)

is a linear basis, due to an application of the Diamond lemma [2].
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3.2. Certain elements in T (n, v, &)°

Let n be a positive integer, 0 < v < n — 1, and &€ be a primitive nth root of 1. According to the
definition of T (n, v, ) recalled in Definition 2.2, we know that it has a linear basis {g/x' | j € n, [ €

N}. Denote m := m, and then &" is a primitive mth root of 1. We define following elements in
To(n,v,&)":
Yo g'x e Z S, w:gx > 808, Ey:g/x = 61, Ey:glx o 6 (3.1)
u=0

for any j € n,/ € N and 1 € k. We remark that these definitions make sense for all j € Z as well due
to a direct computation.

One can verify that i, vanishes on the principal left ideal (x™ — 1) for any A € k; w vanishes on
(x); E, vanishes on (x"*!); E| vanishes on (x?). Clearly, these left ideals are cofinite in Tw.(n, v, &), and
hence all the elements in (3.1) lie in T (n, v, £)°.

Lemma 3.1. Following equations hold in T (n,v,&)°:
'7[//11'7[//12 = w/11+/12, l/’O = 1, (L)n = 1, E’ln = 0,
wyy =Y, Eyw=wk, Ew=E§wk,
Expa = yaEr, Ewa=yaE, E\E,=EE,

forall A, 4y, 4, € k.

Proof. Note that

/

: : [ . ;
Agx)=(g®gl(1®x+x®g") = Z (k) glxk @ gtk
=0 \'/¢&

We prove the lemma by checking values at the basis elements g/x' (j € n, [ € N):

u

E um j A j+imy  (u—i)m
6l,um . <l///l| ’ g]xlm><¢/127 g]H -x( ) >
m &

i=0

<l,//,11 lr///h’ gjxl> =

u u\ y ‘
6l,um (l)/lll/lg = <l///11+/lz’ g]xl>’

Wo.g'x) = Z(Slﬂmou = 60 = {(&,8'x),

u=0
(@, 82) =" S, M)W, &2

u=0

= > W g3 K, g7 = (W, '),

u=0
(Erw,g'xy = 01u(Er, g/X"Ww, 8""™) = 0w, g/NE2, g/x™) = (WEs, g'x'),
<E1w9gj-xl> = 51,1<El9gjx><wagj+v> = 6l,l§v<wagj><El9gjx> = <§VwElagjxl>a
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i - (l/t+ l)m | .m j+my .um
(Exry, /Xy = Zél,(wl)m( ) (Ea, &' X")(rp, 77 X"™)
u=0 m &
(u+ l)m um umy
= Z5z(u+1)m( ) (Wi, /X" WEq, g™ X"y = (YaEa, g'x'),
um |
J um + 1 Jj ]+v um
(v, ') = Zaz,umﬂ L] (B g g
u=0 &

N um + 1 , _ .
= Zal,umﬂ( ) (Wa, /X" NE, 7" x) = (Y, g'x).
um &

u=0

Also, we find by induction on k € n and k" € m that

(W, g/x'y = §,0(f gy = 80w, g = 6,08,

<E’1<"gjxl> — 51’](/(](1,) <E1,ng><E]f,_], gj+vxk’—1>
e
) k,’ <Ek' Jj+v k’—1>
LK —( Din , 87X
‘ "~ Dle ,
= o (k’k—.i)!g" Ellj - ;é B g™ = o = Gukle.
Thus " =1 and ET" = 0 hold.
Furthermore if denote E[k I kTEk we verify that for any k" e m, k, jenand/ € N,

WEN, gxly = S, ¢/ NEN), g2 = 608,

qoo um+ k’ ,
('J’AwkEEk],g]xl> 251 um+k’( um ) W g xum><wkE£k],gj+umvxk>
f\

u gjk
Z Stamrie A"€X.
u=0

If we denote Egs] = %E; for s > 1, followings can be obtained by induction:
j sm j N j+my _ (s—1)m
<Es,gjxl> — 6l,xm( m) (Ez,gjxmeé 1,g1+ x( 1) >
&
— 6l,xms<EA2Y_l, gj+mvx(s—l)m>
) <E2,gj+mvxm><E;—2’gj+2mvx(s—2)m>
&

= OanS(s — IXEY 2, g™ x2my = oo = 5,

K j
<E£Y], gjx > = 6l,sn’
Wl i sm+ k' ; K 1%
<E£S]E5 ]a gjx> = 5l,sm+k,( sm <E£S]7gjxsm><E5 ] j+smv > - 5lsm+k’a
é_‘v

(WEYEN, /Xy = m( @ XEYEN g x) = S
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Lemma 3.2. Following equations hold in T(n,v,&)°:

Aw)=ww, AE)=1QE, +E,Qw,
m—1
ANE)=10E,+E,® "+ Z Egk] ® wkEEm—k]’
k=1
(n/m)-1

m—1
A(”/’/l) = Z (w/lé‘mc ® [/I/IO'C)(I [0 1 + AZ Egk] ® wkEgm—k])’
=0 k=1

gw)=¢eW) =1, &k =e(Ey) =0,
(n/m)—1
S =", S(E) =60 EL S(E) = ~Ea SW)= ), Yoienoe
c=0

for A € k, where EE"] = k!%vE’ffor l<k<m-1, and
o= T(l FEMWN 4 EICWPM o g MY (e € nfm).
n

Proof. Note that (g/x')(g/ x") = &/'lgi*/'x*V (j, j € n, I,I' € N). We also prove the lemma by checking
values at each g/x' ® g/ x'".

(, &g Xy = Gy o = 50806108 = (WO w, g/ @ g K,
(E\, &g X0y = §1,0E" = 80001 + 61,167 0
(IQE +E® w,gjxl ®gj'xll>,

m—1
i Il il o ik
(B2, &g X" = Oprmé’ = 81000 m + O1mOr o™ + Z 0101 15"
k=1
m—1
(I1QE,+E,@w" + Z EEk] ® wkEEm_k],g-’xl ® g/ ).
k=1

It is not hard to find that for each ¢ € n/m, j € nand [/ € N:

W0, g'x'y = { ?”—0 Orumd”, i j = c (mod n/m);

otherwise.
Now compute that
ATy i1
W &gy = N S "€
u=0
) m—1
’ ! ’ 1 0 k
= Z (6l,um61’,u’m/lu+u g} o+ Z 6l,um+k61’,u’m+(m—k)/lu+u i fj (e ))

uu’=0 k=1

-1

3

" , - ! ik
Z 6l,um(ﬂé:] m)u Z 51’,u’m/lu +4 Z 6l,um+k(}€ﬂ m)u Z 61’,u'm+(m—k)/lu é‘:]
u=0 u'=0 uw'=0

1 u=0

>~
Il
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m—1

k K y o
Wagrn ® Y2+ 2D W EN @ a0 BV, gl @ g7 i)
k=1

(n/m)—1 m—1
(D Wi ® Y+ A Y W EY @ o o E" ™), g/x! @ g7 )
c=0 k=1
(n/m)—1 m—1 . .
( Z Waeme @ Yo )(1® 1+ A Z EM @ o E"H), ol @ g7 x').
c=0 k=1

The expressions of the counit and the antipode are clear. O

3.3. The generation problem

Proposition 3.3. As an algebra, T(n,v,£)° is generated by ¥, w, E, and E| for A € k.
Proof. Clearly T (n, v, &) has a polynomial subalgebra P = k[x]. Choose

To={((x" =) <; T(n,v,&) | 1€ k, r e N}.

First for any cofinite left ideal I of T (n, v, €), according to Lemma 2.8(1), there must be some non-zero
polynomial

N
p(x) = | | = 4.

a=1
for some N > 1, r, € N and distinct A, € k, which generates a cofinite left ideal contained in /. It can
be known by Lemma 2.10 that

N
()@ =)™ = (pGx) C 1
a=1

as left ideals of T (n,v,€), and thus Lemma 2.6 or Corollary 2.9(1) can be applied to obtain that
Teo(n,v,8)° = Yier,(Teo(n, v, §)/1)".

Now we try to prove that for each I € 7, the subspace (Tw(n,v,€&)/I)" can be spanned by some
products of ¥, w, E;, E (4 € k). Specifically, suppose I = ((x™ — 2)"") for some r € N and A € k, and
we aim to show that

W' ESE! | jen, s€nr, [ €m) (3.2)

is a linear basis of n’mr-dimensional space (Tw (1, v, &)/1)".
Evidently I = k{g/x/(x™ — Ay | j € n, 1 € N}. Also, To(n,v,&)/I has a linear basis

(gX (X" =) jen, lem, senr),

and hence dim((Tw(n, v, &)/D)*) = dim(Tw(n,v,&)/I) = n>mr. Next we show that all elements in (3.2)
vanish on /. Recall that

ESE : g/ x v Spguu (em, s, €N, j €n).

[s] 1 _
E2 El B S! 'l!&‘v

Therefore, for any j, j’ € n, s e nr,l € mand I’ € N, we have
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W EVVEW, g7 X (X" — 2y

— <lp/l(,()]E£S]EEI], (ntr)g]’ xl'+tm(_/l)nr—t>

1=0
_ i nr /l"r_t jE[s]E[l] A J A +tm
= DT W @ WEE AT X))
=0
- (nr ar— [+1tm 7 (—sym\ g, jpls [ +(—s)my I+sm
= 2, Jovron (t—s)m) W 872N EYE, g7 A
i=s g
= M (M)evrs | agorsaom
—i\t \t—s
.. nr nr l
= Qss, &0 1"
ié Z(; (1) (S)
siox (nr— s
= 56, &0 - = 0.
rié ;(I_S)( )

In other words, (w/lwags]E 5”, I) = 0 forany j € n, s € nr and [ € m, which follows that the elements
in (3.2) belong to I+ = (T (n,v,&)/1)".
Finally we prove that the elements in (3.2) are linearly independent. Choose a lexicographically

ordered set of elements {g/ x' ™" € To(n,v,€) | (j,5',1I') € n X nr x m}. Our goal is to show that the

n*mr X n*mr square matrix

A = ((l!//la)ngs]Egl],gj’x]/+s’m> | (J, s, l), (j/’ S,, l/) € nxXnrx m)
is invertible, which would imply the linear independence of (3.2). We try to compute
(ll’/leEgs]EEl], gjlxl,”/m) = ® ijgs]EEI], A(gj’xl’ﬂ’m))_
One finds that (y,w’ EQ”EE”, g/ x'+my = 0if s > s’. Otherwise when s < §’,
<$/leE£S]E£l], gj'xl'+s’m>

[+ s'm b . . ,
— 6[/,1((5‘, B s)m <l///l’ gj x(s —A)m><w]E£s]Egl]g] +(s —s)mvxl+sm>
&

5,,,(s )AS’—ng'f.
s
The computation follows that the matrix A is the Kronecker product of following three invertible

matrices:

e a Vandermonde matrix (&/7 | j, j' € n),
e an nr X nr upper triangular matrix with entries (i )/1“"‘“ for s < s’, and
e an identity matrix matrix (6, | [,I' € m).
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Thus A is invertible by Lemma 2.11, and hence (3.2) is a basis of (T (n, v, &)/1)*. We conclude that

Ta(nv,€)° = > (T, v,/ = kiy, ' ESE; | 1€k, jen, seN, [ €m).
IGIO

Theorem 3.4. (1) T (n,v, &) constructed in Subsection 3.1 is a Hopf algebra;
(2) As a Hopf algebra, Tw(n,v,&)° is isomorphic to Twe(n, v, &).

Proof. Consider the following map

O: Twe(n,v,8) = To(n,v,6)°, Yoy, Q- 0, Fi > Ey, Fy o Es,
where A € k. This is an epimorphism of algebras by Lemma 3.1 and Proposition 3.3. Furthermore,
® would become an isomorphism of Hopf algebras with desired coalgebra structure and antipode, as

long as it is injective (since T (7, v, £)° 1s in fact a Hopf algebra).
In order to show that © is injective, it is enough to show the linear independence of

W' ESE\ | A€k, jen, seN, [ em)

in T (n,v,£)°. By the linear independence of elements in (3.2), we only need to show that any finite
sum of form

N N
DTl v, /(" = 2" )" = D (" = 22)")* (3.3)
a=1 a=1
is direct as long as 4,’s are distinct from each other. But this is clear:

(" = )" O (" = A" = (" = )™ O [ (@ = 21

a#a’ a#a’
= (@ =2 0 =Mt = 1= + (|-
a#a’ a#a’

= Tu(nv.&)* = 0.
O
Remark 3.5. As a special case, the connected algebraic groups of dimension one H; = k[x] is equal

to T (1,0, 1). Therefore, Theorem 3.4 gives H,°, which is well-known (see [21, Example 9.1.7] for
example).

4. The finite dual of generalized Liu’s algebra B(n, w,y)

The concept and definition of a generalized Liu’s algebra B(n, w,y) is given in [5, Section 3.4]. In
this section, we use the same procedure as Section 3 to determine the structure of B(n, w,y)°.
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4.1. The Hopf algebra B,(n, w,y)

Let n and w be positive integers, and 7y be a primitive nth root of 1. For convenience, Ao always
denotes an mth root of A € k* for a positive integer m throughout the paper.
The Hopf algebra B,(n, w, y) is constructed as follows. As an algebra, it is generated by
b 4 i, Fy, F, (/l“‘ /l"E]k*)

PN
(where the parameters of W are meant to range through {(a,8) € k* X k* | «® = B"}) with relations

Y: 1 W1 =¥ 11 11 \Pm:l, F?ZO,

2

Fy, F{¥ 1 1 = 1'% |

1
1548 s %Fl, F\Fy, = F,F, + Fl

1 1 1 1
for /li, /15, A7, 47,45, A5 € k*. The comultiplication, counit and antipode are given by

AF)=1®F +F ®Y,,, A(Fz):1®F2+F2®1—nZIF[k]®‘Pk Fir 4,
. k=1

AP =Wy 1@, %)(1®1+(1—/1)ZF“‘]®‘I’ JFIH,

s 1 1) =1 &) =elF)=0

S(Fy) = -y 1F1, S(F) =~F, SW 1 1))=Y 2

for A, An € k*, where ng] = Fiforl <k<n-1.
Y
The fact that B.(n,w,?y) is a Hopf algebra would be stated and proved in Subsection 4.3 as
Theorem 4.4(1). Let n7 be a primitive wth root of 1. Here we note that

¥, %‘P’ ‘I” FSF’ | A5, An are fixed roots of A € k*, i€ w, jen, seN, I €n)

w

is a linear basis, due to an application of the Diamond lemma [2].

4.2. Certain elements in B(n, w, y)°

Let n and w be positive integers, and y be a primitive nth root of 1. According to the definition of
B(n, w,y) recalled in Definition 2.3, we know that it has a linear basis {x'g/y’ | i € w, j € Z, I € n}.
Define following elements in B(n, w, y)*:

U XY o SR AR, Ey Xy o b Extxighy o G0(— + D) (4.1)
@ w n

foranyi € w, j€Z,l € nand /lﬁ, An € k*. We remark that these definitions make sense for all i € Z
as well.

One can verify that ¢ 1 1 vanishes on the principal left ideal (¢" — 4) for any Ao, i € k' E,
vanishes on ((g" — 1)?); E; vanishes on (g" — 1). Therefore, these elements lie in B(n, w, y)°.
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Lemma 4.1. Following equations hold in B(n, w,y)°:

=1,
lpM]J A'llwaw AL w(/l“/l“’)(/l /l" > Y =

1
Exp p =¥ wEa Exn 1 =0 0

1 1 1 1
for all X5, A5, A2, A0, 0%, 4 € K,
Proof. Note that

n_
1_0’

1
lE], E\E, = E,E, + —E,
A n

/

o ~ ; I\ . .
A(xlgjyl) = (x®x)'(g®g)1(1 ®y +y®g)l — Z (k) ngjyk ®XgJ+kyl —k

k=0

We prove the lemma through checking their values on the basis x'g’y’ (i € w, j € Z, | € n):

,Xghy = Sy
= Y.

W1, x'glyy =

1 1,
w A%
1

PN
gl
~

= 3=
~

“s\—
I\);‘.—.

1 11,
/lw/lw/lln/ln

<E21r///l$,/1%7xigjyl> =

’)(l//

gy>,

. ioiJod
gy = §0dv AL A A

1,
AN
2

Siol'l = (&,x'gly"),
010(E2, Xigjxl//ﬁﬁ ,x'g’)

0=+ Hasas

= 5l,o<lﬂﬁﬁ,Xi8j><E2,Xigj> = W1 AlEz,xgjyl%

(Ew s s X'gh) =

SCEL XMW 1 4eX'g ) = Guds A

Jj+l

= VoA = 6y 1L Ve, Xgly)

(E\E,, xigjyl> =

1
= 51,1(— + —) +0,1—
w n n

LEI > xigjyl>,

j+1

811(E1, X' g'yXEy, X'g™ !y = 511(— + T)

o o 1 o
= 051(E,, xlgijl, Xlé”)’) + 51,1;<E1, x’g’y)

1 ..
= (ELE, + —Elaxlgjyl>-
n

Similar to the case in Lemma 3.1, it can be found by induction on k € n that

(E}, x'gy'y = 8,4k,

and thus E} = 0.

Furthermore if denote E| [kl

Wy WEVL XN = 6y s X eINEY, Xighy) = Gps A0

AIMS Mathematics

] E" we can also verify that for any /li, A ek*and k € n,

(4.2)
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Lemma 4.2. Following equations hold in B(n, w,y)°:

n—1
A(El) =1 ®E1 + El ®¢1,y9 A(EZ) =1® E2 + E2 ®1- Z Egk] ®$§,7E5n_k],
k=1
n—1
AW, ) =W pey Ddel+(1- A)Z EW gyt EH)
k=1

eW,y 3) =1, s(E)=eE)=0
S(ED =~y Wi Er, S(E)=~Es, SO 1) =¥,a0

for /15,/1% e k*, where EEk] = k%E’ffor 1<k<n-1.
Y

Proof. Note that (x'g/y))(x" g/ y') = y/Ix* g*i'y*!' (i,i" € w, j,j € Z, I,I' € n). We also prove the
lemma through checking their values on the basis x'g/y' ® x” g/'y" .

<E ,y]l i+i ]+] l+l/>

i+i JH+J n+l

§YY + Sy ery? (Ey, X g7y
= Suray = 810001 + 811600y
= (1®E +E ®y1,,x¥g/y ®x'g/y"),
<E2,7 1 i+l ]+j l+l’>
= Y S pr ol Eay X g7y + 81y p (B, X7 g — xIHT gi*i iy

= Suray NE x

i+ j+ )
= 51,051/,0( + " )
z+z j+j’ i+i j+j+n
+014p Y’ ( - - )
n w n
o n-1
i+ 4 ,
= 0,007, o( )+ Z 81401 iy’ (= 1)
n =)
n—1
= 0,007, o(— —) + 510(— + )51' 0~ Z 61400 ns ¥’
=1
n—1
= (1ek+Eel- Y ENeyl Bl Yoy ox'g),
=1

and

(l/, 7,Jl i+i’ ]+j l+l/>
/l /l ’
- 51+l,0<l//ﬁl /ll’ l+l ]+]>+5l+l’n7 <l//,1 An ’x g’” xi+i/gj+j/+n>)
= 6l+l’ ()/ll ; /l]-:'j + 5l+l/ n'y (/ll-H /l n — /l ) /l m )
J*/

= 61000045 AT 4 Sy (1 - AT AT

+ i+’ jri

n—-1

= (OuAE AN 0ASAT) + (1 = ) Y GAT AN G AZATY)
k=1
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n—1
k k e NI I R AN
= W p®Uu p+ U=y tENey b BN xigh @ x gy,
k=1
The expressions of the counit and the antipode are clear. O

4.3. The generation problem

Proposition 4.3. As an algebra, B(n,w,7y)° is generated by .1 1, Ey and E; for Ao, s € k*.
Proof. Clearly B(n, w,7y) has a Laurent polynomial subalgebra P = k[g*!]. Choose
Zo={((g"- ") < Bn,w,y) | 1€ k*, r e NL.

At first for any cofinite left ideal I of B(n,w,y), according to Lemma 2.8(2), there must be some
non-zero polynomial

N
p(e) = [ " - )
a=1

for some N > 1, r, € N and distinct 4, € k*, which generates a cofinite left ideal contained in /. It can
be known by Lemma 2.10 that

N
(" = 1)) = (pgn € 1

a=1
as left ideals of B(n,w,7y), and thus Lemma 2.6 or Corollary 2.9(2) can be applied to obtain that
B, w,7)° = Ser, (B, w,9)/1)".
Now we try to prove that for each I € 1, the subspace (B(n,w,y)/I)* can be spanned by some
products of %%ﬁ,Ez,El (Ao, An € k).
For the purpose, suppose I = ((g" — 2)") for some r € N and A € k*. Let i be a primitive wth root of
1, and 4w, A+ be fixed roots of A respectively. We aim to show that

{lﬁﬁ A%‘ﬁ;Jw{,yE;Ei liew, jeEn, ser, l€n} 4.3)

is a linear basis of wn?r-dimensional space (B(n, w,y)/I)".
Evidently I = k{x'g/(g" — 1)’y | i € w, j € Z, | € n}, since g" is central. Also, B(n,w,y)/I has a
linear basis
{xigj(g" - /l)syl licw, jen, ser, | €n},

and hence dim((B(n, w,y)/I)*) = dim(B(n, w,y)/I) = wn*r. Next we show that all elements in (4.3)
vanish on /. Recall that

1 - -/ 4 o o ’
EE” = [!_Ell cx' gl yl =0y, () €z, LI €n).
'Y

Therefore, for any s € r, [,I' € n,i’ € w and j’ € Z, and for arbitrary roots A and A7 of A, we have
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Wy pBSEV X g (@ =0y (4.4)

r

= (Y. 7E E[l] (r)xi’gj’wlt(_/l)r t l’>
/l A1 t
=0
C r - s i j4nt I
= > (t)(—ﬂ)’ Wy B @ EVLAG g Y)
t=0
S ()( DYy B X g EY X g
=0
oy
=0

Jj +nt

2

I ()( B (w

— r % % - r _ r—t - s 1 J_‘, U S—U
= 6,52 Z(t)( 1) Z(u)(w+ )

)’

=0 u=0
v i (s\ i (T o
:5,’wjn oy Ly B Yo P
P52 Z(u)(w+n) Z(Z)( 1yt
u=0 =0
= 0,

since );_, (;)(—1)“’#“” = 0 when s — u < r is a part of the second Stirling number (2.10).
In other words, (¥ el A%EjEY],D = 0 for any s € r, [ € n, and arbitrary roots /15,/1% of A. It follows

that the elements in (4.3) belong to I+ = (B(n, w, y)/1)*, as /lini and /l%yj are still roots of A.

Finally we prove that (4.3) are linearly independent. Choose a lexicographically ordered set of
elements {x" g/ *"y" € B(n,w,y) | (i', j’,s',I') € w X n x r X n}. Our goal is to show that the n’r x n*r
square matrix

= (W W] EBEM X g Y G s DG s 1) € o xnx rx )
is invertible for fixed Aw, A, which would imply the linear independence of (4.3). We try to compute

. N 7 tesnt l .
<¢A$,A%¢;7,1¢{,yE;E£],X’ gj +s5 ny y = <w/1$ni,/l%ny5 ®E£],A(x gj +s5'n )>

= Srs B X TNED, X T
i’ j+sn

= oo Ayl ”"(— )’
w n
= 61/ /l“’+ i 7]” ')/JJ ( ] + S,)S,
(,() n

and observe that det(A) equals to

1 (w-Dw (n=Dn l n

(/la )}’H’T (/l )w /l(x)n

" det (5,/ oyl (— - s’)s).
n
However, there are following two facts:
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e The matrix (5,77 v | (i, j,]), (7, j,I') € w X n X n) is invertible by Lemma 2.11, since it is the
Kronecker product of three invertible matrices;
e For each (7, j') € w X n, the matrix ((g + ’; +5')* | 5,8 € r)is an invertible Vandermonde matrix.

Thus (51/,177”’)/”'(5 + ]; + 5 | (G, 4,80, j,s',I') € wxnXxrxn)is invertible according to
Lemma 76762.12, which follows that A is invertible. As a consequence, (4.3) is a basis of
(B(n, w,y)/1)".

Therefore,

Bn,w,7)° = ) (Bn,w, /)" =kiy , 4 ESE} | 15,4 €', s €N, [ en).
IE[O

Theorem 4.4. (1) B,(n,w,7y) constructed in Subsection 4.1 is a Hopf algebra;
(2) As a Hopf algebra, B(n, w,7y)° is isomorphic to B,(n, w,7y).

Proof. Consider the following map

©: B:(n,w,y) = Bn,w,y)", ¥ Sy, Fio Ey Fao By,

&an
where 1v,A» € k*. This is an epimorphism of algebras by Lemma 4.1 and Proposition 4.3.
Furthermore, ® would become an isomorphism of Hopf algebras with desired coalgebra structure and
antipode, as long as it is injective (since B(n, w,y)° is in fact a Hopf algebra).

In order to show that @ is injective, we aim to show the linear independence of

W W, BE 1€k, icw, jen, seN, len)

in B(n, w,y)°, where A and An are fixed roots of each A € k. By linear independence of elements in
(4.3), we only need to show that any finite sum of form

N N
D BN/ = ) = > (8" = A)N* (4.5)
a=1 a=1
is direct, as long as A,,’s are distinct from each other. But this is clear:
(8" = )" N (8" = )] (4.6)
a#a’

(8" = ) O I )((g" = 2

a#a’

(@ = 2 0 (] ] =" = (" = W) +(] @ = 21

ata’ ata’

B(n,w,y)" = 0.

O

Remark 4.5. As a special case, the connected algebraic groups of dimension one H, = k[g*!] is equal
to B(1, 1, 1). Therefore, Theorem 4.4 gives H,° which is well-known too (see [21, Example 9.2.7] for
example).
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Remark 4.6. Let us contrast the structure of B(n,w,7y)° with the Hopf algebra introduced in [1]:
Choose a set I := {(a,) € k* X k* | @” = "}. Then a particular case of the Hopf algebra

1
D = D(n, Y (A )(ﬂﬁ,,ﬁ)el’ D

defined in [1, Theorem 3.4] is generated by u, x, a*! (/li, = k*) with relations

FERE

1
A An
/ll
uaﬂ%,/l% - ag% L u, a/lé,,l%x - nxa/lé,,l%’
ai 1a1 1=a1 1d1 1
w n w n w n w n
AT AN AP AL AP AP AT

1 1 1 1
as an algebra for /ﬁ,/l%,/ll“,/lf,/lz“,/l; € k*. The comultiplication, counit and antipode on D is
defined by

Au)=u®u, A(x)=u®x+x1,

n—1
1
+1 _ _ a1 —k_ k +1 +1
Aaty D=(@1+(1-2 );k!y(n_k)!yx" e Nat eat )
e =1, ex) =0, e@) )=1,
_ .n-1 _ _ -1 +1 — ¥1
Sw=u"", Sx)=-u"""x, S(aﬁﬁ) aﬁﬁ

for Aw, A» € k*. Denote by D the quotient Hopf algebra of ® modulo the ideal generated by

1 1 1 1
—a 1 1 11 (/l“’,/lf,/lé’,/lSE]k*).

611,1—1, U—ay,, a 11 11 11
AB AT AP AP AT

1 1d
w n
7.4

It can be found that D is isomorphic to the Hopf subalgebra of B(n,w,y)° generated by
l/’ﬁ e E, (/li,/l% € k*) via the isomorphism

w,}ﬁ N = aﬁ I x> E; (ﬂi,/l% c ]k*)
5. The finite dual of D(m, d, &)

We apply the same way used Sections 3 and 4 to give structure of D(m, d, £)° in this section.

5.1. The Hopf algebra D.(m,d, &)

Let m and d be positive integers such that (1 + m)d is even, and & be a primitive 2mth root of 1.

Define

w:=md, y:= &,

The Hopf algebra D.(m, d, ¢) is constructed as follows. As an algebra, it is generated by

Z , F1, F5, (15,45 € k%)

A M Xﬁ,a%
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(where the parameters of Z and X are meant to range through {(e,8) € k* x k* | o“ = g"}) with
relations

1 1Z 1 12=72Z 11 11, X1 1 X1 1=X 11 11,
w m w m w w m m w m w m w w m m
/ll ’/11 /12 ’/12 (/ll /12 )’(/ll 22 ) /11 ’/11 /12 ’/12 (/11 /12 )’(/ll 12 )
1
Z, X1 1=X11Z11=0, Z1+X1=1 F'=——-X;,,
A7A A) A7A A | | (I=y
1
Fzz/l%’/l% :Z/li,/l%Fz’ Fllei,/l% :/l’"Z/l%’/l%F],
=d 1
FZX/li/ler :X/lé/l%F% FIX)%,A% :/l“’/l’"X)%,/l%Fl,

11 1 1
for /li,/li,/l;’,/l;”,/l;,/lg” € k*. Denote FE"] = k%F’f for 1 < k < m — 1. The comultiplication is
Y
given by
A(F)=1@F +F1®(Zi,+&Xy,),

m—1

A(F2) = (Zig=Xi) @ Fa+ F,@ 1= > (Ziy = XiDF @ (Zy, + £X,,) ",

k=1
m—1
_ k] k plm—k]
A(Z/li,/ld) - Zﬂ%,ﬂ% ®Z/l$,/1‘a[ +(1 -2 Zﬂ%,A%Fl ®Z/1$’,1%Zl,yF1m
k=1
275 (1 - )6;'X X
* (1 =) ab a8 23 %
m—1
_1 [k] kxok  plm—k]
+ Qm_kXﬁJ%Fl ®X/1%]’/1%{§ X],yFlm ),
k=1
m—1
k Kk —k
A(X/lé,/l‘mi) - Zﬂ% 24 ®X/l$ W 90291 . '9/(_12/11 Y EE | ®X/11 /ldf X ngm 1
k=1
T X883 %
m—1 —
= k k —k
_90 A o 61 ...Qm_k_lxﬂé’A%EE]®Z/I%’A%1ZLYF£m ]’
k=1
d Lk %
where 15 € k* and 6y = %, 6 = 117_;,{ (I £ k < m—1). Note that 6y0; ---0,,_; = 1 — A holds

(see [13, Proposition IV.2.7]) and thus (1 - /1)0,:1 for 0 < k < m -1 is well-defined. The coproducts on
Z.1 »and X 1o for arbitrary Ao and A are given by

ALy ) = AZys )ALy + X1y
AKX y ) = EFAX Ay +EXiy),
where k is a non-negative integer such that i = /1%7" and Z; , + X, is defined to be a group-like

element.
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The counit is given by
‘9(2/1%,/1%) = 1, S(X/ﬁ’}%) = 0, S(F]) = 8(F2) =0.
The antipode is given by

S(F1) = =y (Zyy1 + €' X1 )F),

-m
S(Fy) =21 Fr + X1 Fy + > X1
m
S(Z/ﬁ,,l%) = Z/lﬁ',,z%n]’
(-mdj2 1 d
SXyp ) =4 o ¥y X 4 when An =20y

The fact that D,(m,d, &) is a Hopf algebra would be stated and proved in Subsection 5.3 as
Theorem 5.7(1). Let n7 be an primitive wth root of 1. Here we note that

i j sl i j sl
{Zﬁﬁzn,lz{,szFl’ Xﬁ,ﬁXnJX{,szFl
| /15,/1% are fixedrootsof L € k*, iew, jem, seN, [ € m}
is a linear basis, due to an application of the Diamond lemma [2].

Remark 5.1. It is asked in [4, Remarks 7.1(3)] whether the cocycle o non-trivial in the formula of [4,
Proposition 7.2(V)]:
D(m,d, &)’ = (kCo#t,Ts(m, 1, ENHEKLf] © k(K™)).

Our results can be used to find that o is trivial in fact.

5.2. Certain elements in D(m,d, £)°
Let m, d be positive integers such that (1 + m)d is even and ¢ a primitive 2mth root of unity. Define

w:=md, y:= &,
According to the definition of D(m,d, &) recalled in Definition 2.4, we know that it has a linear basis
{x'g/y!, x'g/u; | i € w, j€Z, 1€ m)by[31, Lemma 3.3] and [32, Eq 4.7]. Define following elements
in D(m,d, &)":

PP R A aeX 72 S (el
Aw AmC Xigjbtl (g O ’ X,lm,,lm ' Xigjbt[ (g (S[,()/li/lﬁ ’
xigjyll—>61,1 Xoiyl i & (L'Jrl)
Evid ) e s s Baid TS TG T 5.1)
U= 7206 xX'g'u; — 5,’0(; + E)

foranyi € w, jeZ,1l € mand /15, An € k*. We remark that these definitions make sense for all i € Z
as well, due to direct computations.
One can verify that S and X b b both vanish on the principal left ideal (g™ — A)(g" — A~1)) for

any /ﬁ, i € k*; E, vanishes on ((g" — 1)?); E, vanishes on (g" — 1). Therefore, these elements belong
to D(m,d, &)°.
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Lemma 5.2. Following equations hold in D(m,d, £)°:

é/vlv legzﬂl) A é(a?é),(ﬁaf)’ X/l“’ /1'1’/\/105 A _X(/l‘”/l‘“)(/l’”/l”’)
{ﬁ?,ﬁ{%)(ﬂz%vﬂz% =X /l‘“ A,},{M 4 1 =0, futxin=1, EY = 1 ! )m)(n,
Exlis 4k = G1b b E2s E‘Q' , = A " 'E"
Ex i b =X w B By =A4% /1'")( L osEn
E\E, = EEy + =101 Ey
S L R T |
forall Aw, An, A7, A7, 45, A5 € k™.
Proof. Note that
5 (1
A(xigjyl) _ Z (k) xigjyk ®xgj+kyl k
=0 "y

m—1
Ax'g'u) = Z YN g @ XM gy

We prove the lemma through checking their values on the basis x'g/y', x'g/u; (i € w, j€Z, I € m):

i gl
1o, xgly)
AZ.A7

((1,1 +)(1,1,X8 Ty
(Cig +x10,x8u)

(Bl X8y

<E2§/1%’/1% s Xigjul>
(Exx ) 4> X8Y) =

AIMS Mathematics

1,ng>(§

/lu) /lm

xgy)

Ls xg Mo><X

m

010(x 3

@A”w A,}ug,,xg Tuy),

4 r A,;X
<X/lll) /llil {/lﬂ)

Siol'l = (&Xigjyl%
Si01'l = (&, x'g/w),
610(E2,xg’)(§/w N L, x'gl)
01044 1o X ‘g W E,, x'g’)
0 = (¢ h B2 ¥'g/uy),
0= (X 1 E5, xigjyl),

w/lm

o
1, X'gug)
2

1,xg uo)

L, X'gly =

i i J 1
w w m m
81047 AY AT A

Xg M0> = 610/1 /1 /lm/lm

Sio(= + D)2k
w m

Ly b Eaxigy,
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i j i j iJ [ J\ i,
(Eax p o X'8w) = 610(En, X'’ uo) 1 1 X'8'uo) 51,0(;"‘%)/1“’/1’{‘

© Am
= 00,8 ko XglugNEs, X'glug) = ram Ey, X'giu),
(E A Am? xigjyl> = 0,(E, xigjy)(g/l$,ﬁ%, xing) = 5l’lﬂﬁﬂ%
= AROuAEAR = A6,y g XE NEL Xg )
= M%Qéﬁ Ey, xgiyhy,

. . l l. .
B\l s Xgu)y = 0 = (And LBy, x'gluy),
(EX oy g X8Y) = 0= (o dny 1 Enxgly),

(Evx L b xXghu) = 6,1(E, x'gu, XX L s X ug)

w L

3 A5

= (5 w m
l,l 1 _ 7/_1

&
_»y—l

=d 1 i j ioJ
= ACA6Lx L 4 X8 U E, X gl u)

= Py, B xglu),

- ,1%’/1%51’1,15/1;’} 1

o o i i+ 1
811(E1, X'g'yWEy, X'g"™y = 81(— + ]—)
w m

(ElEzaxigjyl>
i j 1
= o=+ Ly4 61—
w m m

= 0,1(Ey, X'g'NE, X'g’y) + 6 E<E1’ x'g’y)

1 o 1 o
= (ELE, + EEl,ng])/) = (EXE, + Eévl,lEl,xlg]yl%

(E1Ea, x'g'up) 811¢E1, X'g/uy ) Ea, X~ g/ ug)

i—-d j+1
1 s‘_l( AL
-y W m
&

I -yl

= (E2E, X'g'u) = (E2E, +E§1,1E1,Xlgjuz>-

= 0y

= 011(E2, X'g'uo)Ey, X'g'uy)

;o
= op(—+ i)
w m

Similarly to the case in Lemmas 3.1 and 4.1, it can be found by induction on k € n that (EX, xiglyly =
61,](]{ !7 and

(EY, Xghwy = Oy NE, X g/uy EX, X g™ wy )

3

=y BV, x g y)

= oyt

1)+ & 2 i2dj
6”(,)/(/( )+(k 2)(ﬁ)2<E11< 2,X 2dg1+2uk_2> - ...

(k—1)+(k—2)+---+1( & 1)k_1<E1,xi_(k_l)dgj+<k_1)u1>

= 0
LY 1=
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k2
k—1)+(k=2)+--+1 f k f
( )+( )+t ( _1) = Ok

= 0 = Op———.
w -y K=y
e 1" I
m _ S j— — -
Thus E] - (l_y—l)m)(l,l - (l_y—l)m)(l,] - (l_y)zn)(l,l-
It can be found in the proof above that
i il
o Lo | FEY P ou
El - k' El . i ] N L gkz 6 _ fk 6 .
'7 U T Ty TR Otk = Ty (i H Otk

Similarly to Eq (4.2), we can also verify that for any Av, A € k* and k € m,

i i i)
A B P
Aw Am ] xtg}ul — 0 ’
il
X, 1 o Yy o0 k )
Aw Am 1 lj i m
X8l = T A 0 A

Lemma 5.3. Following equations hold in D(m,d, £)°:

A(El) =1 ®El + El ® (é/l,y +§X1,7)7

m—1

AEY) = (11— x1,)®E, +E,®1 — 2(51,1 —Xl,l)Egk] ® (L1, + fxl,y)‘"”"EE”""],

=1
e(E)) = &(E,) =0,

where EIY = iE'l‘for 1 <k <m-—1. We remark that ;1 — x1,1 = (1.4 + Ex1,)™
Proof. Note that for each i,7’ € w, j, j’ € Zand [,I’ € m,

o b n et
(x'gyN(x" gy ) = X gy,
s o 'l i—i'=2d7 j+7
(x'gu)(x" g uy) = yXTTV @ wuy,
(xlgjyl)(xl gluy) = v Ly Grdrsr - Pr-18” i,

P S —U 1 i=i=2d i —dl s
X'gup(x"g'y")y = VXTI TN G - P18 upr.

We also prove the lemma by through checking their values on the basis.

(Ey, (X'gy)(x" g/ y"))
— (E] , yj’lxi+i/gj+j/yl+l’>
= Opray MEL XYy + 81y mery (EL, X gty
= Spray’l = 610001 + 611000y,
= (L1 ®LE +0E1®,,Xgy ® x"g’y,
(Ey, (X'g/u)(x" g" up))
= (ELy/ X772 oMy = S0y E XY g )
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_ i—i'=2dj _j+] ’ i—i'=2dj _j+]
= O000r 1 CE L, X Y g uguy ) + 61100 0y (E1, XY @7 ugug)
= 0100r 1(E1, uou1) + 6,101 oy’ (E1, uruo)

_ v 1
= 51,051/’1<E1’ f(po(pl oo ¢m—3yg> + 5[,151/’0’)” <El’ E¢1¢2 e ¢m_2yg>
= 51,0@/,1%(1 —y DA =y (1 =y )

+5z,151f,oyj/1(1 —y (A =y (1 =y D)y

= 81001, 167 +61107,07"
Y

1 -y

61,1)(6p,oyf")

= S + 4G
7

= i1 ®x1E +xiE ®§X1,y, X'glu ® xi/gj,MI'X
(Er, (FgYN(x" &7 up))

= (Eny 'Y $rprar - raig” wr)

= 1000 (E1, X g7 uyy + 61160 0y (E1, X ¢og? uy)

= 61000 ((E1,ur) + 8110707 (Er, dour)

3 1y €
= 010011 [ — 1=y

+ 51,151',07’](1 -

= 0y0( R Sr.1) + €611 (6r0v”)

= (L ®xiEl+ 0, E ® &y, Xey @ x g/ uy),
(Er, (X'glu)(x’ g7 "))
= (En &My iy - o8 wir)
= 010001€ (EL XY p0g uy) + 6116y 097 (Ey, x4 g7 )
= 610001E (E L, doutr) + 8110r.0y! (E1, up)

= S0 & (1 -y .

— + 01161 0’

-yt

—61.0)(Gr 07"

= i1 ®%.E +xi1E ®§1,y,xigjul®xi,gj/yl,>-

= 010011 + (1

It can be concluded that A(E}) = 1 ® Ey + E; ® ({1, + &x1,)-

(Ea, (x'g/y)(x" g/ y"))
— <E2,’)/jl i+i ]+} l+l’>
= YU (S1r ol Eay X 7Y 4 81yl Ea, X7 g — xI¥T gI¥T Yy
S
i+i N Jj ])
m

I j+j’ i+i j+j+m

= 51,051f,0(

)

I+
+0141 Y’ (
m w m
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i+ j+7
+J J
w m

m—1
= 07007 0( )+ Z 8140 miy’ (= 1)
=1

m—1

iy 1 Jj .,
= 0,00p0(— + =)+ 60(— + =)0pp — Z 81400 miy’*
w m w m k=1

m—1

= L1 ®01E+ 01 E2® ) — Z {I,IEEk] ® {If,yEEm_k], xghy' @ x'g/y),
=1
(Ep, (x'g'ur)(x" ¢ uy))
= By g )

(1+m)
——d

God1++* Pmag’ )

1 Y Ea
= 0,00r,0({E>, ZX” 2]

m—1

+ Z 6l,k61’,m—k'}/] k<E2, (_1)—m+ké_‘(m—k)2 Exl—l =2dj' - d¢k Y REE ¢k_2g]+] +1>
k=1
1 i-i-2dj (1+ i+ 1 -1
= 51051f0—[(l : S _{ m)d+ 17 ym + i
T m w 2w m 2
m—1
7 11
+ Z 6l,k61,,m—k7] k(_l)—m+ké';(m—k)2_[__(1 _ y—k—l) . (1 _ ,y—m+1)(1 _ y—l) L. (1 _ 7_k+1)]
k=1 m m
i—7 j— 7
= 01,001 0( + 1] )
w m

m=1
" 1 1 .
+ Z 6l,k61’,m_kfy] k(_ 1)—m+k§(m_k)2 -t (_ 1

_ ok
= m ml-—vy

)

i/ jl l- j
= —=0100r0(— + =) + d10(— + =)dro
w m w m
m—1 k -
g k 3 T
- OLis Or m-ky’
;(1—y‘1)~--(1—y—k) 1=y 1) (1 —y-m=h)
m—1
= <—X1’1 ®X1’1E2 +X1,1E2 ®X1,1 — ZXI,]EE]{] ® égk)(llc,yEEm—k]’ xigjul ® xi/gj,ul,>’
k=1

(E, (X'g/yN(x" " up))
= (Epy" "X ¢pdpar - brai1 8 upy)
= 61000 0(E2, X' g7 ug)

m—1
+ Z 81400 mi ¥ Ay X Gy i Pmis1 + 187 uo)
=1
i+ i+ J
= 0100 0( + 12 )
w m
m—1
y 1 _ _
+ D 0ubrny (= (1= (A =) (1)
Py
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i+ j+7J
= 61,007 0( + )
w
m—1
| m
- 51,k51’,m—k')’J k_—
kzﬂl m(1—y (1 =y2)--(1 -y nh)
o i
= 01007 0(— + =)+ 0(— + =)o
w m w m
m—1
é:m—k .
+ gkdl,k[ 51/’m_k'y1 ]
kZZ; (1 _y_l)(l —’}/_2)---(1 _y—(m—k))
m—1
= <§1,1 ®X1,1E2 + gl,lEz ®X1’1 + Z é"l’lEEk] ® gk)(]]c’yEEm_k], xigjyl ® xi/gj/ul/>’
k=1

(Ey, (X'gu)(x" g7 y"))
= (Ep, &yl x4 gy 187 )

_ i =2dj j+]
= 0100r0(E2, x g™ ug)

m—1
4 Z 5148 il MY T Ey T2 R g g 0
=1
i—=i'=2dj j+ ]
= 81001 0( + )

m

m—1
. 1
+ § 81400 il "y k(—;)(l —Y"EHA =y (1 - y)
k=1

-7 j-=7
= 01,001 0( + 1 )
w m
m—1 1 m
2N 61y L
; 1kOr m-k& Y m(1—y (1 —y2)-(1 -y

4

I ! i j
= —0500r0(— + ]—) + 010(— + i)51’,0
w m w m

m-1
* 2 5:) Al
= {X1®dEy+x1 1 Ea® 4 + mz_l)(l,lEEk] ® flf,yEEm_k], Xghy®x'gly').
k=1
It can be concluded that
AEy) = ({11 —x1)®E, + E,®1 — mZ_l({u —X1,1)E£k] ® ({1, + le,y)_erkEEm_k]-
k=1
The counit is clear. O

Lemma 5.4. Following equations hold in D(m,d, &)°:
All1y +Ex1y) = L1y +Ex1y) ® (G1y +Ex1,), &1y +Ex1,) = 1,
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and

ACp ) =L 0@ o+ (1= Z Lo w BN e, it B

(] m)d/2 1
( _/1)(0() X %A% X/l%’/l%j
m—1
- k
+ Hml_k)(é %EH@X/I
k=1
m—
Al ) = 4ib 28 ®X s a8 ~ Z el
k=1
+X/1%,/1% ®§,1%1 1%
m—1
—(m-k)d
=6y ) A 01 Oppmix
k=1
el a)=1, ey 4)=0,
where A5 € k', EY 1= L EY, and 6, = 152, 6, = 15 7““’ (I<k<m-1).
Y

Proof. We also prove the lemma through checking the1r values on the basis.

L1y + Exry (gD 7Y)
— <‘:l " ,yj’lxi+l Jj+J l+[’>
= Spro{diy, ¥ gty + Ot w1y, Y’ Myt Ity g
= 81060 = (G100 0y)
= (i1, ®4,. ¥ gy @x'gly),
L1y + X1y (FgTu) (X" g7 uy))

7] =2dj _j+j
= {1,y X g T

1 _2d 0 +m)d
= 6[ 061/ O<§l Y m l g ! ¢0¢l

el

¢m—2<g]+j+ )
71 _r 1/21 '—"—2d"—Md

01 mY {1y, (1) E %xl T,

1 i _og 7 dm o
—i—2dj-dmg 1
= 51,0@:0;(51,%)6” P72 oy Pag”T)

= 810000yt = (€807 (ESroy”)
= {éx1, ®Exi,, Xglu @ X' g/ uy),
L1y + Ex1y (XY g7 up))

i
= Exiy Y X Gpprar e raig’” T )

. g s 71 i+
= 61000 .0E0 1,y X 87 o) + Srar €1, ¥ X Gy -

= 01000 0&Y™ = (S10Y))ESr 0y”)
= ({1, ®éx,, Xgy @ x g/ uy),
L1y + Exry (Fglu)(x7 g7 y"))

AIMS Mathematics
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&% ETT

E[m k]

[m—k]

k] k
O Er

]+j +m>

X ¢l_2gj+j’+1>

: ¢m— 1 gj+j, um>
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= (Ex1y, EYXTTT N Yy P18 )
= 81000 06X 1y, X' T2 g )
0111 Q1 Y TR Gy 187 )
= 6100008y = (€8107)(Or0y))
= (1, ®0,Xguexg Y.

It can be concluded that
A((l,y + f){l,y) = (gl,y + é:)(l,y) ® (gl,y + 6)(1,7)-

Now we compute that for any Ao e k¥,

(€0 18- (gY)( 87 Y)

‘1 l r
— <{/lm /lw’,y] t+l ]+J + >
m=1
ey s 'rk s s s s
— 61’0611’()((/1% A% , xl+l gJ+J > + Z 5l,k61’,m—k<§/l$’/l% , ,y] (xl+t gj+J — xl+l gJ+J +m)>
k=1

i G+id G+i)Hd i+ (i myd

= 000r 04 Ao + Z 51401 m-ky’ (/11“ Ao —ded & )

G+ i’ (+id

= 80000 21 +(1—A)Zélk6pmk7”/l Ao

. . n m_l . . " i .,
= (GoAP AN G 0A5A %) + (1= ) Y (6145 A%)(Gp iy ™ 1527
k=1
= a®ly %+<1-J>Z€x BEV®L o EMTL Y @ gy,
€ 8 (XguD (" g up))
= L sy T g )
L pqp-am
= 0100100038 14X M oy - g’
m—1
m— m— 2 1 ll ’—(Hm) i+
0ty Ly e (C D)L VTR e By g
k=1

1 i—i’ =2dj’ _ (+myd

i =2dj 1 .d 6 d e
= 51,051f,()%/1 o (1 =y Ae)(1 =y 220) - (1 =y D8 5

[+_] ’+1)d

m—1
)2 1 z i’ Zd] _ (+myd
2w

+;61k61’m IEVATC DR m
x(1 =y ®DA8) (1 =y ™A (1 =y AB) - (1 =y S D25) 5

51,0611,01,1%,1W/1% 1 —/1[1
" 1- Ao
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m—1
+Z(5”‘6”m K= 1) mh gl k)2 1 P Sl 1-4 .
k=1 1 —y*ae
—m 1 e
— (1_/1)/1(1 )d/z[1 /mial,oél,,oﬂjﬂ%
m—1
1-y* & gmk it U= -
+ Ok Spmad @ Ao &yl
; L=y a8 L=y D) (= y D T =y D (L =y o)
(-m)d/2 m)d/Z
= (A (=D 6 OX

4 Z g L /ldE[kJ ®X/1_Ul,,l_ﬁdé‘:k/vllc,)’E&m_kJ)’
X'ghu @ X" g wy),
(s (x"gfy’><x"’gf"ul,>>
= (s MJ’ X by praaag™ ury = 0,
€ 4 (XgTup(xg"yh)
= {54 a ELYITR T gy b8 ) = 0.

It can be concluded that

Mg 1) = Gt ®ppat + (1 _1)26' BN, o

1
A Aw

(l m)d/Z

(1_/1)(90)($ d X/I—Wl/z%i

Aw

m—1
-1 k k. k —k
+ Z em—k/\/ﬂ%’/l%EE ] ®Xﬂ%’ﬂﬁd§ Xl’nyEm ]).
k=1
On the other hand,

U 8 (gH( g7y = 0,

CPEPrE (gl g wp)y =

s a8 (N g )
= Wﬁﬁ,ﬂ%,’}’j/lxi+i'¢lf¢1'+l .. '¢l’+l—1gj+j,ul+,,)
= 61,0(51/’0()(&%’1% , xi+i'gj+j’u0>

.
'k i+
+ Z5l,k5z',m—kw R X Gk Bmirt G187 o)

i G+ (+f)d

= O100r0d T AT 4 S4By AT (1= ABY(1 = 20) (1= a8

G+

= 51051/ /l /1 w
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m—1
NI 17276 IS I PR G Y B b m
E_( (1 =yae)---(1 -y )(1_7)__‘(1_)/,(_1)

gm_k i+ G+/)d

Sy mrly AT N
=y D0 =y 2=y D £y

X0k

= ({56 ®X L 4 — 6 291 01l 1 FE[]®)(A AdelyE[mfk],xigjyl®xi’gj/uzf>,

s 6 ()
= <X/1w,1 g, E Y TR Gy 187 U

_ i—i’'=-2dj _j+j
= 01,0000 |4 145X 78" ug)
m—k

~m—k). 'k i’ =2d ~d(m—k L
+Zél’kdl"m‘kwaé s E Ty TR gy by 187 o)

k=1

m—
i=i'-2dj’ (j+j)d o oy =i =2dj ~d(m=k)
= 51’051/’0/1 o A v + E 51,k51’,m—k'§: (m k)’)/]k/l w
k=1
G+

x(1 — y" Q01 = 9" * 205y (1 = Ao

G=)d  —(m=k)d

= 01000, +Z<51k51/mk§ k) ]k/lw/l v A e

X(1 = y"*1A8)(1 = " 200) (1 - %)
= 51051/ ofl%ﬂw
m
(1—y)- (1 —ymHT)

& vp i G-
X(l — —1)(1 _,y_k)él,kél’,m—k'yj Ao A v

_Z/l (1 —/l )(1 _’)//l ) ( )/’"_k‘l/li[)

(mk)d m—
<Xm/w®§ -1 d—QOZ/l o Omogo1X L AdE[k]®{/1717{1yE[ N xiglu @ x'gly!y.

It can be concluded that

k -k
A(XA%,A%) = gﬂ%,/l% OX b a4 0 p 0Ol /FE[ ] BX b a4 €% VE[m ]
k=1
X bt Bl
m—1 o
i k k
=00 ) AT OOy 2BV L alf BN
k=1
The counit is clear. O

Lemma 5.5. Following equations hold in D(m, d, &)°:

Sy +éx,) = Ly +E iy,
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S(E)) =

S(E)
S ) =
SO )

Proof. We also prove the lemma through

—)’_1(§1,y-1 + §_1X1,y-1)E1,

—-m
=By + x1Ey + X115
2m
a4zt
(1-m)d/2 —k 1 d k
Y X b when An = Aey".

checking their values on the basis.

(S(Ey),xghyy = 6.(E1, -y 'x7g7y)
= —61’1,),—]—1 — <_)’_1§1,y—1E1,Xngyl>,
(S(EY), xigjul> = (51,1 (Eq, _é-‘_l)/—j—lxi+d+%(1—m)d+2djgm—2—jul>

— _f—l,y—j—l

It can be concluded that

'3 e i i
l_y_lél,l = (—y '€ Y1 En X'glu).

S(E1) = =y (L1 +E x1,1)E].

Also,

(S(E2), x'g’y"y

810(E2, x'g™)

l J i
= bi(—+2) = (=L11Ex xghyh,
w m

(S(E), x'g'up)
= 050(

01,0(E2,

i
= Op0(—+ =
w m

It can be concluded that

s j+3 (1-m)d gm—l— j o)
[ +2dj  3(1 —m)d/2 -1-7
I ., (I -myd/ L m J)
w
j l-m I1-m .,
) = yiiky + X1.1, X8 up).
2m 2m
1-m
S(Ey) = =0aEy + x11E + o XL
m

Moreover,

(S8 1) X'

(S ) x'g'u)

51,0(4/157/1% s x_ig_j) = 51,0/1%/1%
<§/l_71 ,/l% > 'xlg]yl>’
0.

When A = /l%yk holds where & is a non-negative integer,

(SCs )Xy
(SO ) X'g"un)

AIMS Mathematics

= 0,

i+2d j+3 (1-m)d  m—1—j
010K 11 u. X2 g" up)

i+2dj  3(1-m)d/2 m—1-j
= 61’0/1 w w m

i+2dj 3(1-m)d/2 d Im—1—i
= 61’0/1 o w (/l‘“’)/ )m J
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(1-m)d/2

— io0d gy
¥y 61040 Ay
(1-m)d/2

k i
SV Xt 0 X8 up).

It can be concluded that

S ) = Lot
(1-m)d/2

_ 1 d
S(,\(ﬁ’ﬁ) = A © yk)(ﬁﬁﬂ when An = Aok,

5.3. The generation problem

Proposition 5.6. As an algebra, D(m,d, £)° is generated by $oi b X b hs Evand E; for Ao, An € k",
Proof. Clearly D(m,d, &) has a Laurent polynomial subalgebra P = k[g*']. Choose
To={((g" = 1)), ((¢"+ 1)), (&" =V (g" = A)) < D(m,d,&) | A € k" \ {1}, r e N}.

At first for any cofinite left ideal I of D(m,d, &), according to Lemma 2.8(3), there must be some
non-zero polynomial

N
p(®) = (" = 1"+ 1) | [(€" = A)"(g" = ;)
a=1

for some N > 1, ¥, r”’,r, € N and distinct A, € k* \ {1} which are not inverses of each other, such
that p(g) generates a cofinite left ideal contained in /. It can be known by Lemma 2.10 that

=(p(g) cl

N
(@ = DHN (" + D7) [ﬂ«g’" - )" = ™)
a=1

as left ideals of D(m,d,¢), and thus Lemma 2.6 or Corollary 2.9(3) can be applied to obtain that

D(m,d,&)° = Xjer,(D(m,d, &)/ D)".
Now we try to prove that for each I € 7, the subspace (D(m,d,&)/I)* can be spanned by some
products of £, 1 E,, E, (/li, i € k*). For simplicity, we always denote

,/1;}7 ’X,lé,/l% ’

| Xighyl e 5l,oﬂéxlé
’ xigjul (g 61,0/15/1#

where 1w, 1 € k*. Note that %% wﬁ &= %% 1 always holds. Moreover, let n be an
1 2 72 1

2

1
m

1 1
1 AP

primitive wth root of 1.
We continue to show the spanning by a discussion on the form of I € J:
Case 1. Suppose I = ((g" — )" (g™ — A71)") for some r € N and A € k* \ {1}. Let i, An be some

fixed roots of A respectively. In this case we aim to show that

{lﬁﬁv

le
w) A

e Gy + X)) Gy + €1, ESE| | e €2, i€ w, ke2m, ser, [ €m) (5.2)
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is a linear basis of 4wm?r-dimensional space (D(m, d, &)/I)*. We remark that (5.2) is linearly equivalent
to

{{/l(_ﬂlj)e ﬂ#ﬁ;,l({,yE;ElD X e A#X;,lX{,yEgEll le€2, icw, jem, ser, l€m). (5.3)

Evidently
I=K{xg (g - (" -1y, X @ -0 - Yulicw, jeZ lem),
since yg" = g™y and u;g" = g7"u; for each i € m. Also, D(m,d, &)/I has a linear basis
Weg/(@" = V(" =AY, X (@ = V(@ =AY licw, je2m, ser lem),

and hence dim((D(m, d, &)/1)*) = dim(D(m, d, £)/1) = 4wm?r. Next we show that all elements in (5.3)
vanish on /. We make computations for any s € r, [,I’ € m and j' € Z, especially for arbitrary roots Ao
and A of A: Clearly

G wBELXY g (@ = D)'w) = 0, (54)
X BELXE (" =Y = 0, (5.5)
and
W BELX g @ =) = 0 (5.6)
due to the same reason as Eq (4.4). Similarly,
X wESELX 878" = ) up) (5.7)

w

r

r - -
= ,LESE{,Z(I))C’ g M=) "uy)

t=0

= (;)(—/1)"’05 b b B3 ® ELAGT g7 uy)
=0
= 6y )( ~0" 0 X g M uo)EY, X g u)
t=0
¢ +mt ¢
- o ()( Sy s Ly E
— m ~ (1-y™)
¢ N o8\ L T e
= 5 A5 A b —+ =)
gy Z(): (-1) Z(; =+
— 6 é":lz Ar/li/ﬂj/i § (I_+J_)u2 r (_1)r—tts—u
B l”l(l—y‘l)l H\ul'w m’ I\t

since );_, (;)(—1)"’ t* = (0 when s — u < ris a part of the second Stirling number (2.10).
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Of course, these equations still hold if we substitute Ao and A by A% and A7 respectively. As a
conclusion, all elements in (5.3) as well as (5.2) belong to I = (D(m,d, £)/1)*.

Finally we prove that (5.2) are linearly independent. Choose a lexicographically ordered set of
elements {h, v r € Dim,d, &) | (e',7,k', s',1") € 2 X w X 2m X r X m}, where

1/11 x g 2 25 m+e’m l when 2 | k';
he’,i’,k’,S’J’ = (1- y’l)l i KL mre'm /
X ‘g™ uy, when 2 {Kk'.

Our goal is to show that the 4wm?r X 4wm?r square matrix

A = ((%#’Agf Gt + X0 iy + E1) ESE B oo )
| (e,i,k,s,D),(e,i,k',s",I') €2XwX2mXrXm)

is invertible for fixed /1%, A , which would imply the linear independence of (5.2) as well as (5.3). We
make following computations: When 2 | k',

; ks gl
v e (G +xn) Gy + Ex1y) EXEY he e i)

1 . v
U S +2s'm+e’m [
R )
Y

i sk sl
e by Bk,

-

v K ’ ’ 1
S +2s'm+ 1
O cve e E5, XN gTTHM—(F X
Ao A my I,

4 ’ ’
S42s'm+e’'m 1
g? y)

’

el K onay o bk
61/,1/1(_1) (Gt 125 +e )nu é:kk (_ + — +2¢ + e/)s.
w 2m

When 2 1 £/,

W e e G+ X)) Gy + €010 BB he o)

—1\/
; (=) Kolyo
= <X/l ( I)FXUI(';‘:XI 7) E E T_x g +25'm+e’ mul>
s i’ Kol yodm+e'm (1 B _l)l [ i’ 4 1+25’m+e’m
= 51’, (l)e f E s X > é‘: <E , X ul>
eci! K -1 ’ .oy ’ l -
— 51”1/1(—1) (5+%5,, +2s'+e )nu fkk (_ + 3 + 2S, + el)s'
m
One concludes that
eci’ K1 ) cr ’ i, k’ 1
A = (51,51/1(—1) (G+L7J;+25 +e )77” é:k (_ + I__J_ + 2sl + el)s
w 2 m

| (e,i,k,s,D), (e, i",k',s', ') €2 X wX2mXrXm).

However, there are following two facts:

e The matrix (6pm" &% | (i,k, 1), (i, k', I') € w X 2m X m) is invertible by Lemma 2.11, since it is
the Kronecker product of three invertible matrices;
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e For each (i, k') € w X 2m, the matrix
o e P K] PN roo
A w7 n (—+|=]—+25+€) | (e,5),(e',s)e2xr
w 2 °m

is invertible by Corollary 2.14(2).

Thus A is invertible according to Lemma 2.12, and (5.2) or (5.3) is a basis of (D(m, d, &)/1)*.
Case 2. Suppose I = ((g" — 1)") for some r € N. In this case we aim to show that

(&1 +xn) Gy + €)' ESE| i€ w, k €2m, s€r, €m) (5.8)

is a linear basis of 2wm?r-dimensional space (D(m, d, &)/I)*. We remark that (5.8) is linearly equivalent
to

{{;g{yE;E{, )(f“)({’yEgE{ licw, jem, ser, l€m). (5.9
Evidently
I=K{xg/(g" = 1)y, x'g/(¢" - Du|licw, jeZ, | em)

since yg" = g"y and u;g™ = g7"u; for each i € m. Also, D(m,d, £)/1 has a linear basis
Weg/(@" =Y, ¥g/(@" - D'wlicw, jem, ser lem),

and hence dim((D(m, d,&)/1)*) = dim(D(m,d,&)/I) = 2wm?r. Similar computations to Egs (5.4) to
(5.7) follows that all elements in (5.9) vanish on /, and hence all elements in (5.9) as well as (5.8)
belong to I+ = (D(m,d, &)/1)*.

Finally we prove that (5.8) are linearly independent. Our goal is to show that the 2wm?*r X 2wm?r
square matrix

A = (G + X)) (i + EX) ESEY  hoy o o)
| (i,k,s, D), k',s",l') € wX2mXrxm)
4 kK1
= (5,,177” 5= 128 | Gk, 5, D), (LK, 8, 1) € X 2m X 7 X m)
w 2°m
is invertible. This is true due to the same argument in the proof of Proposition 4.3 that A is invertible
there.

Case 3. Suppose I = ((g" + 1)") for some r € N. Let (-1)s,(~1)= be some fixed roots of —1
respectively. In this case we aim to show that

Wt op Gt X0 Gy + E0) BSE) | i€ w, ke 2m, ser, €m) (5.10)

is a linear basis of 2wm?r-dimensional space (D(m,d,&)/I)*. We remark that (5.10) is linearly
equivalent to

i ] sl i 0 opsplg o .
s b, BB X L ChxnxiErE i€ w, jem, ser, l € m}. (5.11)

m

Evidently
I=kix'g/(g" + 1)y, ¥g/(@" + Dulicw, jeZ, l€m),
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since yg" = g"y and u;g™ = g7"u; for each i € m. Also, D(m,d, £)/I has a linear basis
/(@ + %Y, X @+ D'wlicw, jem, ser, lem),

and hence dim((D(m, d, &)/1)*) = dim(D(m, d,&)/I) = 2wm?r. Similar computations to Eqgs (5.4) to
(5.7) follows that all elements in (5.11) vanish on /, and hence all elements in (5.11) as well as (5.10)
belong to I+ = (D(m,d, &)/1)".

Finally we prove that (5.10) are linearly independent. Our goal is to show that the 2wm?r X 2wm?r
square matrix

A = (<w(_1)% ,(_1)% (g?],l +X7],1)l({1,7 + gXl,)/)kEéEé 9 hO,i’,sz’,l’)
| (i,k,s,0), (@, k',s",I') € wX2mXrxm)
il ! ’ i ’ ’ k, 1
= (DTG N (= 4 | )~ 4 28')°
w 2°m
| (i,k,s,0), (", k', s", ') € wX2mXrXm)
is invertible. This is true due to the same argument in the proof of Proposition 4.3 that A is invertible

there.
We summarize three cases above in a result that

Dim,d,&)° = (D(m,d, &)1
IEIQ
= K WBE), X, 4BE 25,07 e K, s €N, [em).

Theorem 5.7. (1) D.(m,d, ) constructed in Subsection 5.1 is a Hopf algebra;
(2) As a Hopf algebra, D(m, d, £)° is isomorphic to D,(m, d, &).

Proof. Consider the following map

® : D,m,d,¢) — D(m,d, &),

Zﬂé’ﬂ% = 4/1%,/1%’ Xﬂﬁ,ﬂ% H)(ﬂ%’/l%’ Fl = El’ F2 — EZ’

where 1w, 1n € k*. Thisis a epimorphism of algebras by Lemma 5.2 and Proposition 5.6. Furthermore,
® would become an isomorphism of Hopf algebras with desired coalgebra structure and antipode, as
long as it is injective (since D(m, d, £)° is in fact a Hopf algebra).

In order to show that ® is injective, we aim to show the linear independence of

(ot b 44l ESES, X b b XoX1, EBEN | A€K, icw, jem, seN, l€m)
in D(m,d, £)°, where As and A= are fixed roots of each A € k*. By linear independence of elements in

(5.3), (5.9) and (5.11), we only need to show that
This is due to the fact that any finite sum of form
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(D(m,d, £)/((g" = D)’ + (D(m, d, )/((¢" + 1))’
N

+ ) (Dm,d, O)/((g" = )" (8" = .Y
a=1

N
= (@ = D) H @+ D)+ ) (@ = )@ = D)
a=1

is direct, as long as A,’s are distinct and not inverses of each other. The reason is the same as Eq (4.6).
O

Remark 5.8. The infinite dihedral group D, is generated by g and x with relations
2 -1

x =1, xgx=g¢,

and the finite dual of kD, is established by [9]. Note that kD, = D(1,1,—1) and thus we cover the
presentation of (kD,,)°. For our convenience, we use our notion to write (kD,,)° out: It is generated by

Ly gl s Sod!, xai gl e 8, Eyigixi e i (jeZ ke?)
for A € k*, with relations

4/11{/12 = {/11/12’ XX = Xt gﬂ]Xﬂz :X/h{/lz = Oa X1 +§] = 1’
Eryly = QiEr, Esxa = xaEo,

and

AQD) =L@ O+ xa®xat, Alxa) =L ®@xa+xa® i,
AE) = (61 —-x1)®Ex+ Er® 1,

) =1, elya) = &(Ey) =0,

S =Gy S = xa, S(E2) = (&1 —xDEs.

This presentation is equivalent to that in [9, Section 3.1] and the equivalence is given through:
1 1 .
G- E(‘ﬁ/l +Ya), xaP 5(% -y (Aek’), B F,

where we used notions of [9] freely.
6. Hopf pairing and consequences

With the help of Sections 3-5, we show that there always is a non-degenerate Hopf pairing on
each affine prime regular Hopf algebra of GK-dimension one. Using such Hopf pairing, we attempt to
consider a infinite-dimensional version of some conclusions which are valid in the finite-dimensional

situation.
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6.1. Non-degenerate Hopf pairing

As mentioned in the introduction, the notion of pairing of a bialgebra or a Hopf algebra was given
by Majid [19]:
Definition 6.1. Let H and H* be Hopf algebras. A linear map (—,—) : H* ® H — k is called a Hopf
pairing (on H), if

@ = X o)X hey), Q1) (fhR) = 2 fay, i f), 1),
(i) (1,h) = (h), iv) (f, 1) =e(f),
V) {f.S8() =(S(f).h)

hold for all f, f" € H* and h,h’ € H. Moreover, it is said to be non-degenerate, if for any f € H® and
anyh € H,

(f,H) =0implies f =0, and (H*, h) = 0 implies h = 0.
Clearly, the definition follows that there are linear maps
a:H* > H, f—(f,—-) and B:H — H**, h (- h).
Furthermore, we know by (ii) in Definition 6.1 that for any f € H®,

M (@(f) = ) a(fa) @ af) € H' @ H',

where M denotes the multiplication on H, and hence the image of « is in fact contained in H° by [21,
Lemma 9.1.1].
As a conclusion, Definition 6.1 follows that there are two maps of Hopf algebras

a:H" - H°, f—>{(f,-) and B:H — H*°, h— (-, h),

which are both injective if and only if the Hopf pairing (—, —) is non-degenerate. Thus we might be able
to construct non-degenerate Hopf pairing on H, as long as the structure of finite dual H° is determined.

As examples, non-degenerate Hopf pairing on kD, Tw(n,v,¢), B(n,w,y) and D(m,d, &) are
constructed as follows, respectively.

Proposition 6.2. For each affine prime regular Hopf algebra H of GK-dimension one, we can construct
a Hopf algebra H* and a non-degenerate Hopf pairing (—,—) : H* ® H — Lk as follows: specifically,
keeping the notions used in Sections 3-5, we have:

(1) The evaluation (—, ) : (kDy)* ® kD, — k is a non-degenerate Hopf pairing, where

(kDo)* k(& \E5, x1E5 | s € N}

k(& —x1)'Es | k€2, seN} € (kD).

(2) The evaluation (—, =) : Too(n,v,&)* ® Too(n, v, &) — Kk is a non-degenerate Hopf pairing, where

To(m,v,&)° = KlW/ESE||jen, seN, lem)
= Ko'EVEY | jen, seN, lem) C To(n,v,é),

_ _n sl _ 1 sl
andm = o5, EVEY = sy ESEY
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(3) The evaluation (—,—) : B(n,w,y)* ® B(n,w,y) — k is a non-degenerate Hopf pairing, where

B(n,w,y)" = lk{l//{’yE;Ell | jen, seN, [ €n}

= ki {yE;EE” |jen, seN, len} C B(n,w,y)’,

and EV' = LE!
TN &
(4) The evaluation (—,—) : D(m,d,€)* ® D(m,d, ¢) — k is a non-degenerate Hopf pairing, where
D(m,d,&)" = k(¢ ESE\, x| ESEj|licw, jem, seN, lem)
K{(1y + Ex1,) ESEY |k € 2m, s €N, [ € m} C D(m,d,£)°.

Proof. 1t is not hard to see that all H® given above are Hopf subalgebras of the corresponding H°

and the evaluation gives a Hopf pairing. Thus the remaining task is to show that the evaluation is

non-degenerate. We only prove the non-degeneracy in (4) since the others can be proved similarly.
Clearly, the Hopf pairing (—, —) : D(m,d, ¢)* ® D(m,d, &) — k gives two Hopf algebra maps

a:D(m,d, &) - D(m,d,¢)° and B: D(m,d, &) — D(m,d, &),

and the map « is just an inclusion. Therefore, to show that (—, —) is non-degenerate, we only need to
prove the injectivity of 5. Recall that in Section 5 that D(m, d, ¢) = k{x'g’y!, x'g/w;|ic w, j€Z, | €
m}. Also,

(i + Ex1 ) ESEL xighly = 11, 6,87 (= + Ly,
Y Y 2 Y w m
12 . .
oy + E K ESEL ghuy = —2 g ek Ly Ly
’ ’ 1=y Ht = w m

hold for any K’ € 2m, s’ € N, '’ e mandi € w, j € Z, | € m. This means that we only need to show
the linear independence of

B(x'gy), B(X'g'w) i€ w, j€Z, 1 €m}C Dim,d, &)

Choose a lexicographically ordered set of elements for any positive integer N: {h;;; € D(m,d,¢) |
(i,k,s,]) € wx2mx{=N,---,N} xm}, where

ok
T xigatmyl, when 2 | k;

h-k | = NSNS
b %x’g%”’”u,, when 2 1 k.

The desired linear independence would be implied by the invertibility of the following 2wm?(2N + 1) x
2wm*(2N + 1) matrix

A = (Bhigs), 1y + fX],y)k,EngS,MN‘”E{)
| (i,k,s,0), 7, k',s", ') € wx2m X {=N,--- ,N} X m)

for any positive integer N. However,
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=
Il

{1y + Ex1 )N ES N B e ) 1 Gk 8,0, (K 8", 1) € 0 X 2m X {=N, -+ , N} X m)

’ ] k 1 a S
O (L + 5=+ 9" | k.0, K 1) € X 2m X (=N, - Ny xm)
w m

is similar to the matrix

| +1 ., .
O (L1 + SOFDyvosiao | (1 15, i), (K1, 5", 1)) € 2mx m X (=N, -+ , N} X w)
m w

k1t
= (51’,,§kk (LEJ_ + )NV L, (KU, E) € 2mxm X {(~Nw, -+, (N + Dw — 1)),
m
which is invertible according to Lemma 2.12, because of the invertibility of
10 E% | (k, 1), (K, 1) € 2m x m)

and L1
(S )= + Ly ¥ | 1 € (“New, - ,(N + Dw - 1))
2°m  w

for each k € 2m. O

For a general infinite-dimensional Hopf algebra H, there may be no H* such that there is a non-
degenerate Hopf pairing between H and H*® (see [21, Example 9.1.5(1)] for example). In fact, the
existence of non-degenerate Hopf pairings over a Hopf algebra H is equivalent to require that H is
residually finite-dimensional. Recall that an algebra H is said to be residually finite-dimensional, if
there is a family {r;} of finite-dimensional k-representations of H such that "); Ker(xr;) = 0. See [21,
Definition 9.2.8] for example.

Lemma 6.3. Let H be a Hopf algebra over an arbitrary field k. Then there is a non-degenerate Hopf
pairing (—,—) : H* ® H — k, if and only if H is residually finite-dimensional.

Proof. This is followed by [21, Proposition 9.2.10]. O

However, our constructions for H* in Proposition 6.2 satisfy further conditions, which might be
crucial in a sense. Before that, we recall in [24, Definition 15.4.4] that a non-cosemisimple pointed
Hopf algebra H is called minimal-pointed, if each of its proper Hopf subalgebras must be
cosemisimple.

Proposition 6.4. Suppose that H is any of kDo, Te(n,v, &), B(w,n,y) and D(m,d, ¢), and H® denotes
the Hopf algebra constructed in Proposition 6.2. Then H® is a minimal (under inclusion) Hopf
subalgebra of H° such that the evaluation (—,—) : H* ® H — k is a non-degenerate Hopf pairing.

Proof. Since H is infinite-dimensional, it is sufficient to show that H* is the only infinite-dimensional
Hopf subalgebra of itself.

(1) For the case when H = kD,,, we find that (kD,,)® is a minimal-pointed Hopf algebra (see [24,
Proposition 15.4.6] and [23, Proposition 2]) with the finite-dimensional coradical. Thus (kD,,)* is the
only infinite-dimensional Hopf subalgebra as desired.
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(2) For the case when H = T (n,v, &), note that K := Ik{a)f'E{ | j,l € n}is a finite-dimensional
normal Hopf subalgebra of H* = T.(n,v,£&)®. The quotient Hopf algebra H*/K*H® = k[E,] is the
polynomial Hopf algebra, which is minimal-pointed too. Therefore, any infinite-dimensional Hopf
subalgebra of T (n,v,&)* must contain the element E,. By the coproduct of E,, it follows that
T (n,v,£)* 1s a minimal infinite-dimensional Hopf algebra.

(3) The case when H = B(n, w,7) is completely similar to the case T (n, v, £), due to the facts that
K :=Kk{ {yEll | J,1 € n}is a finite-dimensional normal Hopf subalgebra, and the quotient H*/K*H* is
the polynomial Hopf algebra.

(4) The case when H = D(m,d,¢) is similar, too. Note that the finite-dimensional normal Hopf
subalgebra of D(m, d, &)® is chosen as a generalized Taft algebra k{({;, + g/\/w)"E’l | k € 2m, | € m},
and the responding quotient is also the polynomial Hopf algebra. m|

6.2. Properties of H* and Consequences

For possible future applications, we might consider Hopf pairings H* ® H — k with additional
requirements (including the non-degeneracy), which are listed as follows:

(HP1) The pairing is non-degenerate;
(HP2) H® and H are both affine and noetherian;
(HP3) GKdim(H*) = GKdim(H).
Furthermore, we might also wish H* would have certain properties dual to some of H, for examples
in this paper:
(HP4) H* is indecomposable as a coalgebra, when H is prime as an algebra.
These considerations motivate us to discuss some properties of H*® in the following. Recall that a

coalgebra is indecomposable if and only if it is link-indecomposable (see [22, Corollary 2.2]). Besides,
aring is called regular if it has finite global dimension.

Proposition 6.5. For affine prime regular Hopf algebras H of GK-dimension one, consider Hopf
algebras H® constructed in Proposition 6.2. We have:

(1) All the Hopf algebras H®* have GK-dimension one.

(2) All the Hopf algebras H* are pointed and (link-)indecomposable as coalgebras.

(3) All the Hopf algebras H® are noetherian.

(4) The Hopf algebra (kD,)*® is regular while To(n,v,&)*, B(n,w,y)* and D(m,d,£)* are not when
n,m> 2.

Proof. (1) and (2) are clear by our constructions for H®.

(3) This is because every H® constructed is a finitely generated module (on both sides) over its
noetherian subalgebra k[E;].

(4) The regularity of (kD,)*® is a direct consequence of the Hilbert Theorem on Syzygies (see [25,
Theorem 8.36] e.g.). Recall that as an algebra, (kD,,)* is generated by {; — y; and E, with relations

& —x1)* =1, Ex& —x1) = (& —x1)Es.

Clearly, (kD,,)*® is the polynomial algebra over the subalgebra

k{1, —x1} = kZ,
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with the indeterminate E, commuting with all the coefficients. However, kZ, is semisimple and hence

regular. Thus gldim((kD,,)*) = gldim(kZ,) + 1 < oo, where gldim denotes the global dimension.
Next we show that B(n, w,y)* is not regular when n > 2 and the non-regularity for 7 (n, v, &) can

be proved similarly. Recall that as an algebra, B(n, w,y)* is generated by ¢, E> and E; with relations

1
Yi, =1, E{ =0, Exfn, =y1,Er, Ewi, =wiyE, E\Er=EE + ZEI-
Note in Proposition 6.2(3) that

B(n,w,y)" = Kkiy| EsE{|jen, seN, len}
= K{EE! {’ylseN, len, jen).
Since B(n, w,y)*® is a free k(E|)-module by Poincaré-Birkhoff-Witt theorem, if B(n, w,y)® has finite
global dimension, then the projective dimension prdimy, . ,(k) < co. However, this is not possible since
k({E,) is a finite-dimensional commutative local, but not a field.
Finally, let’s show the non-regularity of D(m, d, &)°. By Proposition 6.2(4), we find that
D(m,d,&)" = K| ESE|, x1 E3E\ | jem, seN, l€m)

kig| ESEY | jem, s€N, [ em)
® kix, E3E| | jem, seN, lem)

is a direct sum of ideals. The former ideal is isomorphic to B(m, w,y)*. and thus it is not regular as a
ring when m > 2. Therefore,

gldim(D(m, d, £)°) > gldim(B(m, w,7)") = o.

Thus concluding Propositions 6.2 and 6.5, we find that

Corollary 6.6. For affine prime regular Hopf algebras H of GK-dimension one, the Hopf pairings
(—=,—) : H* ® H — k constructed in Proposition 6.2 satisfy the requirements (HP1) to (HP4).

Remark 6.7. Due to Proposition 6.4, if one verifies that H® is exactly the (link-)indecomposable
component of H° containing the unit element, then H* would be the unique Hopf subalgebra of H°
such that (HP1) to (HP4) hold.

Remark 6.8. Takeuchi [28] defined a quantum group G to be a triple (A, U, (-, —)) where (—,—) :
A® U — kis a Hopf pairing. By Proposition 6.2, for each affine prime regular Hopf algebra H of
GK-dimension one, one can get a quantum group in Takeuchi’s sense naturally.

A classical result by Larson and Radford [14, Theorem 3.3] states that a finite-dimensional Hopf
algebra H in characteristic 0 is semisimple, if and only if H* is semisimple. Note that the regularity
can be regarded as an infinite-dimensional analogue for the semisimplicity. However according to
Proposition 6.5(3), it is not true that H is regular if and only if H* is regular for a non-degenerate Hopf
pairing H* ® H — k (or a quantum group). This might be a version negating the semisimplicity result
by Larson and Radford in infinite-dimensional cases.
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Question 6.9. For a general infinite-dimensional Hopf algebra H which is residually
finite-dimensional, natural questions are: When does a minimal Hopf algebra H® forming a
non-degenerate Hopf pairing over H exist? When are such minimal Hopf algebras H* unique and of
the same GK-dimensions with H?

7. Conclusions

In this paper, we determine the finite duals H° of all the affine prime regular Hopf algebras H of
GK-dimension one. All these finite duals are given by generators and relations. In addition, we choose
respective Hopf subalgebras H*® of these H° which are also affine, noetherian and of GK-dimension
one, such that the evaluation maps (-, —) : H* ® H — k become non-degenerate Hopf pairings.
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