Citation: Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf. Sparse control of alignment models in high dimension[J]. Networks and Heterogeneous Media, 2015, 10(3): 647-697. doi: 10.3934/nhm.2015.10.647
[1] | S. Ahn, H.-O. Bae, S.-Y. Ha, Y. Kim and H. Lim, Application of flocking mechanism to the modeling of stochastic volatility, Math. Models Methods Appl. Sci., 23 (2013), 1603-1628. doi: 10.1142/S0218202513500176 |
[2] | R. G. Baraniuk and M. B. Wakin, Random projections of smooth manifolds, Found. Comput. Math., 9 (2009), 51-77. doi: 10.1007/s10208-007-9011-z |
[3] | M. Bongini and M. Fornasier, Sparse stabilization of dynamical systems driven by attraction and avoidance forces, Netw. Heterog. Media, 9 (2014), 1-31. doi: 10.3934/nhm.2014.9.1 |
[4] | M. Bongini, D. Kalise and M. Fornasier, (Un)conditional consensus emergence under perturbed and decentralized feedback controls, Discrete Contin. Dynam. Systems, 35 (2015), 4071-4094. doi: 10.3934/dcds.2015.35.4071 |
[5] | J. Bouvrie and M. Maggioni, Geometric multiscale reduction for autonomous and controlled nonlinear systems, in 51st IEEE Conference on Decision and Control (CDC), 2012, 4320-4327. doi: 10.1109/CDC.2012.6425873 |
[6] | M. Caponigro, M. Fornasier, B. Piccoli and E. Trelat, Sparse stabilization and control of the Cucker-Smale model, Math. Control Relat. Fields, 3 (2013), 447-466. doi: 10.3934/mcrf.2013.3.447 |
[7] | M. Caponigro, M. Fornasier, B. Piccoli and E. Trelat, Sparse stabilization and control of alignment models, Math. Models Methods Appl. Sci., 25 (2015), 521-564. doi: 10.1142/S0218202515400059 |
[8] | F. H. Clarke, Y. S. Ledyaev, E. D. Sontag and A. I. Subbotin, Asymptotic controllability implies feedback stabilization, IEEE Trans. Automat. Control, 42 (1997), 1394-1407. doi: 10.1109/9.633828 |
[9] | R. R. Coifman and M. J. Hirn, Diffusion maps for changing data, Appl. Comput. Harmon. Anal., 36 (2014), 79-107. doi: 10.1016/j.acha.2013.03.001 |
[10] | F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842 |
[11] | F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227. doi: 10.1007/s11537-007-0647-x |
[12] | S. Dasgupta and A. Gupta, An elementary proof of a theorem of Johnson and Lindenstrauss, Random Structures Algorithms, 22 (2003), 60-65. doi: 10.1002/rsa.10073 |
[13] | S. Dirksen, Dimensionality reduction with subgaussian matrices: A unified theory, arXiv:1402.3973, 2014. |
[14] | M. Fornasier, J. Haškovec and J. Vybíral, Particle systems and kinetic equations modeling interacting agents in high dimension, Multiscale Model. Simul., 9 (2011), 1727-1764. doi: 10.1137/110830617 |
[15] | M. Fornasier, B. Piccoli and F. Rossi, Mean-field sparse optimal control, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130400, 21PP. doi: 10.1098/rsta.2013.0400 |
[16] | M. Fornasier and F. Solombrino, Mean-field optimal control, ESAIM Control Optim. Calc. Var., 20 (2014), 1123-1152. doi: 10.1051/cocv/2014009 |
[17] | S.-Y. Ha, T. H. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, IEEE Trans. Automat. Control, 55 (2010), 1679-1683. doi: 10.1109/TAC.2010.2046113 |
[18] | W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, in Conference in modern analysis and probability, New Haven, Conn., 1982, Contemp. Math., 26, Amer. Math. Soc., Providence, RI, 1984, 189-206. doi: 10.1090/conm/026/737400 |