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Abstract. For high dimensional particle systems, governed by smooth non-

linearities depending on mutual distances between particles, one can construct
low-dimensional representations of the dynamical system, which allow the

learning of nearly optimal control strategies in high dimension with overwhelm-

ing confidence. In this paper we present an instance of this general statement
tailored to the sparse control of models of consensus emergence in high di-

mension, projected to lower dimensions by means of random linear maps. We

show that one can steer, nearly optimally and with high probability, a high-
dimensional alignment model to consensus by acting at each switching time on

one agent of the system only, with a control rule chosen essentially exclusively
according to information gathered from a randomly drawn low-dimensional

representation of the control system.

Introduction. In view of the increasing technical ability of collection of large
amounts of time-evolving data and of potentially modeling them into high-dimensi-
onal dynamical systems, the controllability of complex multi-agent interactions has
become an actual challenge of paramount importance due to its social and econom-
ical impact. In this paper, we shall investigate the applicability of the following

Meta-theorem. For high dimensional particle systems, governed by smooth non-
linearities depending on mutual distances between particles, one can construct low-
dimensional representations of the dynamical system, which allow the learning of
nearly optimal control strategies in high dimension with overwhelming confidence.

As control is usually goal-oriented, hence highly dependent on the specific dy-
namical system, investigating the qualitative applicability of this statement in its
full generality may risk to dilute its quantitative understanding. Thus we shall prove
in this paper a specific instance of it, which conveys nonetheless all the relevant as-
pects and technical issues potentially encountered in other situations. In particular
we shall focus on alignment models inspired by the seminal work of Cucker and
Smale [10, 11]. In this class of dynamical systems the particles influence each other
according to a positive rate of communication a (‖xi(t)− xj(t)‖) depending on the
mutual distance towards the alignment of the entire group to a common conduct,

2010 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases. Dimension theory, Poincaré recurrences, multifractal analysis.
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and they read
ẋi(t) = vi(t),

v̇i(t) = 1
N

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) , i = 1, . . . , N.

The classically mentioned inspiring application is the modeling of the emergence of
a flock moving with the same velocity in a group of migrating birds. However, the
emergence of a common direction may be depending on whether the initial condi-
tions lay within a corresponding basin of attraction and such conditional pattern
formation has been fully explored, for instance, in [6, 7, 17]: denoting with

X(t) := 〈x(t), x(t)〉 − 〈x(t), x(t)〉,

V (t) := 〈v(t), v(t)〉 − 〈v(t), v(t)〉,
where for any N -dimensional vector w, w denotes the mean of its N components,
i.e.,

w =
1

N

N∑
i=1

wi,

then the following result holds.

Theorem 0.1 ([17]). If
∫∞√

X(0)
a
(√

2Nr
)
dr ≥

√
V (0), then limt→∞ V (t) = 0,

meaning that limt→∞ vi(t) = v, for all i = 1, . . . , N .

In those initial conditions where∫ ∞
√
X(0)

a
(√

2Nr
)
dr <

√
V (0),

and the convergence towards alignment is not anymore guaranteed, despite being
desirable, for instance when it comes to unanimous decisions in assemblies, one
may wonder whether the application of a parsimonious external control can lead
nevertheless to consensus emergence.

Figure 1. Steering the alignment system to a point fulfilling the
conditions of Theorem 0.1 towards consensus formation.

This issue has been recently explored in the series of papers [6, 7], where the
sparse controllability of alignment models towards consensus have been established
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(see Figure 1) regardless of the dimensionality of the problem, see also [3, 4] for
extensions and generalizations. In particular, alignment should not be interpreted
exclusively relative to motion in the three dimensional Euclidean space, but there
are several instances of “abstract alignment” which may occur in high-dimension, for
instance in [1] the authors consider an application of alignment models to predict
the collective phenomenon of asset pricing and volatilities in financial markets.
Therefore, in those circumstances where the dimensionality of the dynamics is very
high, it becomes a relevant question whether it is possible to define control strategies
of the dynamics by observing instances of the system in lower dimension.

In recent years, several techniques have been developed in order to reduce the
dimensionality of time-evolving point clouds, such as diffusion maps applied to net-
works changing in time [9] and geometric multiscale dimensionality reductions [5],
just to mention a few. Besides these perhaps involved methods based on computa-
tionally demanding nonlinear embeddings of the high-dimensional clouds in lower
dimension, Johnson–Lindenstrauss embeddings, introduced in the seminal work [18],
have the remarkable property of being simple linear operators M ∈ Rk×d preserving
the distances between points in the cloud P ⊂ Rd up to an ε-distortion:

(1− ε)‖x− x′‖ ≤ ‖Mx−Mx′‖ ≤ (1 + ε)‖x− x′‖, for all x, x′ ∈ P,
where

k ∼ ε−2 log(#P).

As Johnson–Lindenstrauss embeddings with such scaling of the low-dimension are
constructed by generating random projections, the quasi-isometry property on the
point cloud is usually stated with a certain (high) probability.

The random linear projection of high-dimensional systems governed by smooth
nonlinearities depending on mutual distances has been investigated in [14]: roughly
speaking, given a dynamical system in high-dimension d � 1 governed by locally
Lipschitz functions fi : RN×N+ → Rd

żi = fi((‖zj − z`‖)j`) ∈ Rd, i = 1, . . . , N

and its lower-dimensional counterpart

ζ̇i = Mfi((‖ζj − ζ`‖)j`) ∈ Rk, i = 1, . . . , N,

where M : Rd → Rk is a Johnson–Lindenstrauss linear embedding for k ∼
ε−2 log(N), the following finite time approximation holds

‖ζi(t)−Mzi(t)‖ ≤ CT ε, for all t ∈ [0, T ],

with high probability. If we applied such linear projections verbatim to each equa-
tion of a Cucker–Smale system, we would obtain the following approximation

d

dt
Mvi(t) =

1

N

N∑
j=1

a (‖xj(t)− xi(t)‖) (Mvj(t)−Mvi(t))

wish∼ 1

N

N∑
j=1

a (‖Mxj(t)−Mxi(t)‖) (Mvj(t)−Mvi(t)) ,

leading to the formulation of the low-dimensional system in Rk
ẏi(t) = wi(t),

ẇi(t) = 1
N

N∑
j=1

a (‖yi(t)− yj(t)‖) (wj(t)− wi(t)) , i = 1, . . . , N,
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with initial conditions (y(0), w(0)) = (Mx(0),Mv(0)). The first result of this paper,
refining and generalizing those in [14], is roughly summarized as follows.

Theorem 0.2. Let (x, v) be a solution of the d-dimensional Cucker–Smale sys-
tem for given initial values x(0), v(0) ∈ RN×d, and let M ∈ Rk×d be a Johnson–
Lindenstrauss matrix for a suitable ε > 0 distortion parameter and low dimension
k depending on the logarithm of the number of agents N . Then the k-dimensional
solution (y, w) with initial values (y(0), w(0)) = (Mx(0),Mv(0)) stays close to the
projected d-dimensional trajectory (Mx,Mv), i.e.,

‖y(t)−Mx(t)‖+ ‖w(t)−Mv(t)‖ . εeCt, t ≤ T. (1)

As we highlight in details in Section 3, not only the approximation (1) holds for fi-
nite time, but, remarkably, the lower dimensional representation also shows a rather
impressive faithfulness in terms of the asymptotic (long time) detection of collective
behavior emergence, i.e., global alignment occurs in lower dimension k if and only if
it occurs in high dimension d with high probability. The key technical tool for prov-
ing this result and the ones following is a weak form of the Johnson–Lindenstrauss
Lemma, formulated below in Lemma 2.4, valid for continuous trajectories and not
only for clouds of points. Similar results appear, to some extent in greater generality
in [2, 13], but not in the weak form we consider here.

Additionally we combine the analysis of [14] with the sparse controllability results
in [6] and show that a high-dimensional dynamical systems of Cucker–Smale type
can be nearly optimally stabilized towards consensus by means of a control strategy
completely identified by the optimal control strategy in low-dimension with high
probability. More formally we consider for a given (x(0), v(0)) the high-dimensional
controlled system

ẋi(t) = vi(t),

v̇i(t) = 1
N

N∑
j=1

a (‖xj(t)− xi(t)‖) (vj(t)− vi(t)) + uhi (t),

and its low-dimensional counterpart with initial data (y(0), w(0)) = (Mx(0),
Mv(0)), 

ẏi(t) = yi(t),

ẇi(t) = 1
N

N∑
j=1

a (‖yj(t)− yi(t)‖) (wj(t)− wi(t)) + u`i(t).

The sparse control strategies applied to the systems are defined as follows: fix θ > 0
and define for w⊥i = wi − w as well as v⊥i = vi − v

u`i =

{
−θ w⊥ι̂
‖w⊥ι̂ ‖

if i = ι̂,

0 otherwise,

uhi =

{
−θ v⊥ι̂
‖v⊥ι̂ ‖

if i = ι̂,

0 otherwise,

where ι̂ is the smallest index such that ‖w⊥ι̂ ‖ = max
j=1,...,N

‖w⊥j ‖.

Notice that the control uh is sparse (all the components are zero except one)
and defined exclusively through the following information: the index ι̂ which is
computed from the low-dimensional control problem, the consensus parameter vι̂,
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which is actually the only information to be observed in high-dimension, and the

mean consensus parameter v(t) = v(0) + 1
N

∑N
i=1

∫ t
0
uhi (s)ds, which one does com-

pute by integration and sums of previous controls. Our main result reads as follows.

Theorem 0.3. Let M ∈ Rk×d and Θ > 0. Assume that (x, v) and (y, w) are solu-
tions of the d-dimensional and k-dimensional so controlled Cucker–Smale systems
with initial values (x(0), v(0)) and (Mx(0),Mv(0)), respectively. Further assume
that M is a Johnson–Lindenstrauss matrix for a certain distortion ε > 0 and low
dimension k (which depends exponentially on the number of agents, but not on the
dimension d). Then both controlled Cucker–Smale systems

(a) stay close to each other after the projection of the high-dimensional trajecto-
ries;

(b) reach the consensus region of Theorem 0.1 in finite time, and
(c) reach the consensus region when a certain parameter of the low-dimensional

systems falls below a known threshold.

We consciously do not wish to be more detailed at this point than this rather
general and perhaps rough explanation because the precise statements appear in the
rest of the paper in a rather technical form and we wish here, in the introduction,
mainly to convey their fundamental message. Let us stress again that in our view the
content of this paper is of technical nature towards a proof of concept and we expect
our main results actually to extend similarly to other high-dimensional dynamical
systems whose nonlinearities depend smoothly on mutual Euclidean distances. We
refer to [14] for more examples of relevant dynamical systems of this type. While in
this paper we consider the sparse controllability of alignment systems for d→∞, we
mention also the related investigations towards a sparse mean-field optimal control
for N →∞ in [15, 16].

The paper is organized as follows: Section 1 presents the Cucker–Smale model
and some of its main features. Section 2 deals with Johnson–Lindenstrauss em-
beddings, which shall be used extensively to obtain low-dimensional counterparts
of Cucker–Smale models retaining all the information about the asymptotic be-
havior of the system for large times. Section 3 studies the interplay between a
high-dimensional Cucker–Smale model and the low-dimensional system obtained
via Johnson–Lindenstrauss embeddings: in particular, in Theorem 3.2 we derive
an error estimate for the approximation of the projected high-dimensional system
by the low-dimensional one. Section 4 introduces the sparse control strategy we
shall exploit to enforce alignment in the high-dimensional system using only in-
formation gathered from the low-dimensional system and presents Theorem 4.5,
the main result of this paper. In Section 5 we discuss about the appropriate size
of the dimension onto which we should project a given high-dimensional system
and the construction of suitable Johnson–Lindenstrauss embeddings fulfilling the
conditions stated in the main result. Finally, Section 6 shows a series of numeri-
cal experiments and compares the sparse control strategy to several other possible
stabilization procedures.

1. The Cucker–Smale model. In the following, we shall work in the ambient
space Rd equipped with the `d2-Euclidean norm ‖ · ‖`d2 , omitting the subscript if

the dimensionality of the norm can be retrieved from the context. Consider a
system of N agents, whose state is described by a pair (xi, vi) of vectors of Rd,
where xi represents the main state of the agent and vi its consensus parameter.
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The alignment model as presented in [17] assumes that the dynamics of the i-th
agent of the group evolves according to the following system of ordinary differential
equations 

ẋi(t) = vi(t),

v̇i(t) = 1
N

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) ,
(2)

for every i = 1, . . . , N , where a is a non-increasing positive Lipschitz function on
(0,∞). In this model, at any time every agent adjusts its consensus parameter to
match those of the other agents according to a weighted average of the differences:
how much the i-th agent will align with the j-th agent depends on the Euclidean
distance, meaning that the i-th agent is more influenced by those which are near to
him than to those which are far away from him.

As a prominent example, the Cucker–Smale models considered in the seminal
paper [10] are governed by a function a of the form

a(r) =
K

(σ2 + r2)β
, (3)

where the parameters K > 0, σ > 0, and β ≥ 0 tune the social interaction in the
group of agents.

Definition 1.1. We say that a solution (x(t), v(t)) of system (2) tends to consensus

if the consensus parameter vectors tend to the mean v = 1
N

∑N
i=1 vi, namely if

lim
t→+∞

‖vi(t)− v(t)‖`d2 = lim
t→+∞

∥∥v⊥i (t)
∥∥
`d2

= 0

for every i = 1, . . . , N .

Notice that v(t) = v(0) is a conserved quantity for a system of the type (2), but
later we shall consider below controlled systems for which v(t) is eventually time
dependent.

Given a solution (x(t), v(t)) of system (2), we reformulate the convergence to
consensus by means of the following quantities

X(t) := B(x(t), x(t)) =
1

2N2

N∑
i,j=1

‖xi(t)− xj(t)‖2,

V (t) := B(v(t), v(t)) =
1

N

N∑
i=1

‖v⊥i (t)‖2,

(4)

where for u = (u1, . . . , uN ), ũ = (ũ1, . . . , ũN ) ∈ (Rd)N

B(u, ũ) =
1

2N2

N∑
i,j=1

〈ui − uj , ũi − ũj〉

is a bilinear form on the space (Rd)N , and 〈·, ·〉 denotes the usual scalar product on
Rd.

If we denote with

V =
{
v ∈ (Rd)N | v1 = . . . = vN ∈ Rd

}
,

V⊥ =

{
v ∈ (Rd)N |

N∑
i=1

vi = 0

}
,
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then (Rd)N = V ⊕V⊥ with respect to the scalar product B, hence every v ∈ (Rd)N
can be written uniquely as v = v0 + v⊥ where v0 ∈ V and v⊥ ∈ V⊥.

Proposition 1.2. For a solution (x(t), v(t)) of system (2) the following are equiv-
alent:

1. limt→+∞ ‖vi(t)− v(t)‖`d2 = 0 for every i = 1, . . . , N ;

2. limt→+∞ v⊥i (t) = 0 for every i = 1, . . . , N ;
3. limt→+∞ V (t) = 0.

A sufficient condition for a solution of system (2) to converge to consensus can
be given using the following functional

γ(X0) :=

∫ +∞

√
X0

a(
√

2Nr) dr.

Lemma 1.3 ([17], Corollary 3.1). Let (x(t), v(t)) be a solution of system (2). Then
X(t) and V (t) satisfy

d

dt
V (t) ≤ −2a

(√
2NX(t)

)
V (t).

In particular, if the initial datum (x(0), v(0)) = (x0, v0) ∈ (Rd)N × (Rd)N is such
that the quantities X0 = X(0) and V0 = V (0) are fulfilling

γ(X0) ≥
√
V0,

then the solution of (2) with initial data (x0, v0) tends to consensus.

Remark 1.4. A simple proof of this crucial observation can be found in the Ap-
pendix of [7]. Notice that it follows immediately that V is decreasing.

Definition 1.5 (Consensus region). If (x(t), v(t)) fulfills the condition

γ(X(t)) ≥
√
V (t),

we say that the system is in the consensus region at the time t.

2. A continuous Johnson–Lindenstrauss Lemma. As it will be made clear
below, we intend to reduce the computational effort of extracting fundamental fea-
tures of the dynamical system (2), for instance about its asymptotic behavior, by
projecting it to a k-dimensional space for k � d by a linear mapping M ∈ Rk×d.
In particular, we apply such a matrix M to each equation of (2) and by setting
yi = Mxi as well as wi = Mvi for i = 1, . . . , N , we obtain the system

ẏi(t) = wi(t),

ẇi(t) = 1
N

N∑
j=1

a (‖yi(t)− yj(t)‖) (wj(t)− wi(t)) ,

where we formally applied the equivalences

‖xi(t)− xj(t)‖`d2 ≡ ‖Mxi(t)−Mxj(t)‖`k2 ≡ ‖yi(t)− yj(t)‖`k2 . (5)

For (5) to hold, at least approximately, we need that M is nearly an isometry (here
we further refine and extend results from [14, Section 3]).
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Definition 2.1. Let M ∈ Rk×d, δ > 0, and ε ∈ (0, 1). Then we say, that M is
fulfilling the weak Johnson–Lindenstrauss property of parameters ε and δ at x ∈ Rd
if either

(1− ε)‖x‖ ≤ ‖Mx‖ ≤ (1 + ε)‖x‖ (6)

or

‖x‖ ≤ δ and ‖Mx‖ ≤ δ. (7)

We say that M is fulfilling the (strong) Johnson–Lindenstrauss property of param-
eter ε at x ∈ Rd if exclusively (6) holds at x ∈ Rd.

Remark 2.2. The earliest result providing the existence of matrices M for which
(6) holds for every x ∈ P, P ⊆ Rd such that N = #P for the dimensionality k
scaling as

k ∼ ε−2 logN (8)

is the celebrated Johnson–Lindenstrauss Lemma from the seminal paper [18]. We
refer to [13] for a rather general version of this result and to the references therein
for an extended literature.

The only construction of a matrixM fulfilling the (strong) Johnson–Lindenstrauss
property with scaling (8) known up to now is stochastic, i.e., the matrix is randomly
generated and satisfies (6) with high probability. One of the remarkable features of
these embeddings, which we exploit extensively in this paper, is that for their con-
struction there is no need to know the specific points in advance: given a fixed cloud
of points (not necessarily explicitly given!) a random matrix drawn according to cer-
tain distributions will fulfill the (strong) Johnson–Lindenstrauss property with high
probability. Let us recall briefly some well-known instances of such distributions:

(S1) k× d matrices M whose entries mij are independent realizations of Gaussian
random variables, i.e.,

mij ∼ N
(

0,
1

k

)
;

(S2) k × d matrices M whose entries mij are independent realizations of scaled
Bernoulli random variables, i.e.,

mij =

{
+ 1√

k
, with probability 1

2 ,

− 1√
k
, with probability 1

2 .

It holds 1 ≤ ‖M‖`d2→`k2 ≤
√
d.

(S3) k × d matrices M which are random projections and are scaled by a factor√
d/k, see [12]. In particular, it holds ‖M‖`d2→`k2 =

√
d/k.

Remark 2.3. While the Johnson–Lindenstrauss Lemma is a result for a finite
number of points, we need an analogous continuous result for projecting trajectories
of dynamical systems. A result in this direction was given in [14, Theorem 3.3]:
Given ε > 0 and a C1-curve ϕ : [0, 1]→ Rd, if

ρ := max
t∈[0,1]

‖ϕ′(t)‖
‖ϕ(t)‖

<∞, (9)

then there exists a matrix M ∈ Rk×d for k ∼ ε−2 log(d · ρ · ε−1) such that

(1− ε)‖ϕ(t)‖ ≤ ‖Mϕ(t)‖ ≤ (1 + ε)‖ϕ(t)‖, (10)



SPARSE CONTROL OF ALIGNMENT MODELS IN HIGH DIMENSION 655

for all t ∈ [0, 1]. As already announced at the beginning of this section, we would
like to use (10) for

ϕ(t) := xi(t)− xj(t) or ϕ(t) := vi(t)− vj(t)

being (xi(t), vi(t)) the trajectory of the i-th agent in (2). Unfortunately, (9) does
not hold in this case even if we assume that ‖xi(0) − xj(0)‖ ≥ c > 0 for all i 6= j:
Let us consider, for instance, Example 1 from [6] of a Cucker–Smale system of the
type (2) with communication function (3) of two agents moving on the real line
with positions and velocities at time t given by (x1(t), v1(t)) and (x2(t), v2(t)). Let
us assume that β = 1, K = 2 as well as σ = 1. We indicate by x(t) = x1(t)− x2(t)
the relative main state and by v(t) = v1(t)−v2(t) the relative consensus parameter.
The system can be reformulated in terms of relative variables{

ẋ = v,
v̇ = − v

1+x2

with initial conditions given by x(0) = x1(0)− x2(0) and v(0) = v1(0)− v2(0). Its
solution can be characterized by integration by the following differential equation

x′(t) = v(t) = − arctan(x(t)) + arctan(x(0)) + v(0).

Now, if x(0) < 0 and v(0) + arctan(x(0)) =: c(0) > 0, then v(t) > c(0) as long as
x(t) < 0. Hence there has to be a T > 0 with x(T ) = 0 and v(T ) = c(0). Thus (9)
is violated for ϕ(t) = x(t).

Let us stress that (9) is a necessary condition for (10) to hold (see [14, Remark
1]). This motivates the relaxation of the strong Johnson–Lindenstrauss property
to its weak version in Definition 2.1. Hence we prove a result based on the more
general weak Johnson–Lindenstrauss property which will be sufficient for us in the
following.

In the rest of the paper, given a Lipschitz function ϕ : [a, b] → Rd, we indicate
with Lϕ(a, b) its Lipschitz constant on [a, b], i.e.,

Lϕ(a, b) := sup
t,s∈[a,b]
t 6=s

‖ϕ(t)− ϕ(s)‖
|t− s|

.

Lemma 2.4. Let ϕ : [0, 1] → Rd be a Lipschitz function with Lipschitz constant
Lϕ = Lϕ(0, 1), let δ > 0, and 0 < ε < 1. Let k be such that a matrix M ∈ Rk×d
- stochastically generated as in (S2) or (S3) of Remark 2.2 - satisfies the (strong)
Johnson–Lindenstrauss property of parameter ε̃ = ε/2 at N arbitrary points with
some (high) probability, where

N ≥ 4 · Lϕ · (
√
d+ 2)

δε
. (11)

Then the matrix M fulfills the weak Johnson–Lindenstrauss property of parameters
ε and δ at ϕ(t) for every t ∈ [0, 1] with the same high probability, i.e., either

(1− ε)‖ϕ(t)‖ ≤ ‖Mϕ(t)‖ ≤ (1 + ε)‖ϕ(t)‖

or

‖ϕ(t)‖ ≤ δ and ‖Mϕ(t)‖ ≤ δ

holds for all t ∈ [0, 1].
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Proof. We shall adapt the arguments from the proof of [14, Theorem 3.3]: Let
ti := i/N for i = 0, . . . ,N − 1 and assume that M : Rd → Rk fulfills the (strong)

Johnson–Lindenstrauss property with parameter ε̃ = ε/2 at the points {ϕ(ti)}N−1
i=0 ,

i.e., we have

(1− ε̃)‖ϕ(ti)‖ ≤ ‖Mϕ(ti)‖ ≤ (1 + ε̃)‖ϕ(ti)‖

for all i ∈ {0, . . . ,N − 1}. Furthermore, we may assume 1 ≤ ‖M‖ ≤
√
d, see (S2)

and (S3) of Remark 2.2.
Let t ∈ [0, 1] and choose j ∈ {0, . . . ,N − 1} such that t ∈ [tj , tj+1]. Let us at

first assume

‖ϕ(tj)‖ ≤ δ/2.

Since ε ∈ (0, 1), by (11) we have that

N ≥ 4 · Lϕ ·
√
d

δ
.

Using this latter inequality and the Lipschitz continuity of ϕ we obtain

‖ϕ(t)‖ ≤ ‖ϕ(t)− ϕ(tj)‖+ ‖ϕ(tj)‖
≤ Lϕ/N + δ/2

≤ δ,
and also

‖Mϕ(t)‖ ≤ ‖M‖‖ϕ(t)− ϕ(tj)‖+ ‖Mϕ(tj)‖

≤
√
d · Lϕ/N + (1 + ε′)‖ϕ(tj)‖

≤ δ/4 + 3/2 · δ/2
≤ δ.

Let us now assume

‖ϕ(tj)‖ > δ/2.

Using again the Lipschitz continuity of ϕ we obtain the estimate

‖ϕ(t)− ϕ(tj)‖ ≤ Lϕ/N

≤ Lϕ/N ·
2‖ϕ(tj)‖

δ

≤ δε

4(
√
d+ 2)

· 2‖ϕ(tj)‖
δ

≤ ‖ϕ(tj)‖ · (ε− ε̃)
‖M‖+ 1 + ε

,

where in the last inequality we used that

‖M‖+ 1 + ε ≤
√
d+ 2.

This estimate of the distance ‖ϕ(t)−ϕ(tj)‖ and the (strong) Johnson–Lindenstrauss
property at ϕ(tj) enable us to extend the (strong) Johnson–Lindenstrauss property
at ϕ(t) as well, as a direct application of [14, Lemma 3.2], i.e.,

(1− ε)‖ϕ(t)‖ ≤ ‖Mϕ(t)‖ ≤ (1 + ε)‖ϕ(t)‖.

Both cases together show the (weak) Johnson–Lindenstrauss property at ϕ(t) for
every t ∈ [0, 1].
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We show in the following lemma that the mean-square norm and the relative
order of the magnitudes of points in a cloud in high dimension are nearly preserved
when projected in lower dimension by a weak Johnson–Lindenstrauss embedding.

Lemma 2.5. Let a1, . . . , aN ∈ Rd, b1, . . . , bN ∈ Rk and M ∈ Rk×d such that there
is ∆ > 0 with the following properties:

(i) The matrix M fulfills the weak Johnson–Lindenstrauss property with ε = 1/2
and δ = ∆ for the points ai, i.e., either

1/2 · ‖ai‖ ≤ ‖Mai‖ ≤ 3/2 · ‖ai‖, (12)

or

‖ai‖ ≤ ∆ and ‖Mai‖ ≤ ∆, (13)

for all i ∈ 1, . . . , N .
(ii) We have the following approximation bound

‖Mai − bi‖ ≤ ∆,

for all i ∈ 1, . . . , N .

Let ι̂ be the smallest index such that ‖bι̂‖ ≥ ‖bj‖ for all j = 1, . . . , N and let

A :=
1

N

N∑
j=1

‖aj‖2 and B :=
1

N

N∑
j=1

‖bj‖2.

If
√
B ≥ 2∆, then, for c = 1/

√
289, it holds

‖aι̂‖ ≥ ‖bι̂‖/4, ‖aι̂‖ ≥ c
√
A, and B ≤ 16NA.

If
√
B ≤ 2∆, then, for C =

√
72, it holds

√
A ≤ C∆.

Proof. First suppose that
√
B ≥ 2∆: since ‖bι̂‖ is maximal, we have ‖bι̂‖ ≥

√
B ≥

2∆. By (ii) it holds ‖Maι̂‖ ≥ ‖bι̂‖−∆ ≥ 2∆−∆ ≥ ∆ and hence using (12) we get

‖aι̂‖ ≥ ‖Maι̂‖/2 ≥ (‖bι̂‖ −∆)/2 ≥ ‖bι̂‖/4.

This shows the first estimate of the first part of the lemma. Let us address the
second estimate. Let j ∈ {1, . . . , N} for j 6= ι̂. If ‖bj‖ ≥ 2∆, then, using the same
argument as above, we have ‖Maj‖ ≥ ∆ and thus by (12) we get

‖aj‖ ≤ 2‖Maj‖ ≤ 2(‖bj‖+ ∆) ≤ 2 · 3/2 · ‖bj‖ = 3‖bj‖. (14)

On the other hand, if ‖bj‖ < 2∆, then ‖Maj‖ ≤ 3∆. Then either (12) holds and
we have

‖aj‖ ≤ 2‖Maj‖ ≤ 6∆, (15)

or (13) holds and automatically ‖aj‖ ≤ ∆. Now we can estimate the mean-square
norm A. We obtain

NA =

N∑
j=1

‖aj‖2 = ‖aι̂‖2 +
∑
j∈A1

‖aj‖2 +
∑
j∈A2

‖aj‖2,
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where A1 is the index set of all j ∈ {1, . . . , N} \ {ι̂} such that ‖bj‖ ≥ 2∆ and A2

is the index set of all j ∈ {1, . . . , N} for which ‖bj‖ < 2∆. Using (14) and (15) we
obtain

NA ≤ ‖aι̂‖2 + 9
∑
j∈A1

‖bj‖2 + |A2| · 36∆2

≤ ‖aι̂‖2 + 9NB + 9N‖bι̂‖2

≤ ‖aι̂‖2 +N‖aι̂‖2(9 · 16 + 9 · 16)

≤ 289‖aι̂‖2N,

using the maximality of ‖bι̂‖ and the first part of the lemma. Furthermore, we have

NB =

N∑
j=1

‖bj‖2 ≤ N‖bι̂‖2 ≤ 16N‖aι̂‖2 ≤ 16N2A.

Hence

B ≤ 16NA.

Let now
√
B ≤ 2∆. We can argue in the same way as for the second estimate of

the first part: If ‖bj‖ ≥ 2∆, then as in (14)

‖aj‖ ≤ 3‖bj‖.

If ‖bj‖ ≤ 2∆, then by (15) and the arguments thereafter we get

‖aj‖ ≤ 6∆.

Putting both estimates together and using the notation Ã1 for the index set of
all j ∈ {1, . . . , N} such that ‖bj‖ ≥ 2∆ as well as Ã2 for the index set of all
j ∈ {1, . . . , N} such that ‖bj‖ < 2∆ yield

NA =

N∑
j=1

‖aj‖2 =
∑
j∈Ã1

‖aj‖2 +
∑
j∈Ã2

‖aj‖2

≤ 9
∑
j∈Ã1

‖bj‖2 + |Ã2| · 36∆2

≤ 9NB + 36N∆2

≤ N(9B + 36∆2)

≤ N(36∆2 + 36∆2)

≤ 72N∆2.

Taking the square root on both sides finishes the proof.

3. Dimension reduction of the Cucker–Smale model without control. In
this section we consider the projection of the Cucker–Smale system without con-
trol. We compare two quantities: First, we calculate the trajectory of the high-
dimensional Cucker–Smale system and then project the agents’ parameters by
M ∈ Rk×d. Second, we project the initial configurations to dimension k by ap-
plications of M . Then we compute from these initial values the trajectories of the
corresponding low-dimensional Cucker–Smale system. What we shall do in the up-
coming Theorem 3.2 is to give a precise bound from above to the distance between
the two k-dimensional trajectories, computed as described above.
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More formally, given M ∈ Rk×d (where k ≤ d) and initial conditions (x(0), v(0))
for (2), we indicate with (y(t), w(t)) the solution of the Rk-projected Cucker–Smale
system

ẏi(t) = wi(t),

ẇi(t) = 1
N

N∑
j=1

a (‖yi(t)− yj(t)‖) (wj(t)− wi(t)) , i = 1, . . . , N

with initial conditions given by y(0) = (Mx1(0), . . . ,MxN (0)) ∈ (Rk)N and w(0) =
(Mv1(0), . . . ,MvN (0)) ∈ (Rk)N .

We introduce the low-dimensional analogues of X and V by

Y (t) := B(y(t), y(t)), W (t) := B(w(t), w(t)). (16)

Here the bilinear form B is intended to act on Rk instead of Rd, but with the same
meaning of the symbol as before.

Remark 3.1. By Lemma 1.3 we know that V and W are decreasing. Hence for all
i, j ∈ {1, . . . , N}

‖wi(t)− wj(t)‖2 ≤ 2
(
‖wi(t)− w(t)‖2 + ‖wj(t)− w(t)‖2

)
≤ 2

N∑
`=1

‖w`(t)− w(t)‖2

≤ 2NW (t)

≤ 2NW (0),

thus

‖wi(t)− wj(t)‖ ≤
√

2NW (0).

An analogous estimate holds for V and v. Furthermore, we have

‖xi(0)− xj(0)‖ ≤
√

2NX(0).

Theorem 3.2. Let δ > 0, let ε ∈ (0, 1), and let M ∈ Rk×d be a matrix with the weak
Johnson–Lindenstrauss property of parameters ε and δ at the vectors xi(t) − xj(t)
for all t ∈ [0, T ] and all i, j ∈ {1, . . . , N}.

Define the following errors:

exi (t) = ‖yi(t)−Mxi(t)‖, evi (t) = ‖wi(t)−Mvi(t)‖,
Ex(t) = max

i=1,...,N
exi (t), Ev(t) = max

i=1,...,N
evi (t),

Ex2 (t) =

(
1

N

N∑
i=1

(exi (t))2

)1/2

, Ev2 (t) =

(
1

N

N∑
i=1

(evi (t))
2

)1/2

.

Furthermore, let La be the Lipschitz constant of the function a, set K1 :=
La
√
NW (0)

√
2X(0), K2 := 2La

√
NW (0), and K3 = 1/2 · La

√
NW (0)

√
2V (0).

Then for all t ∈ [0, T ] the estimates

Ex(t) + Ev(t) ≤
√
N((εK1 + δK2)t+ εK3t

2) · et‖K‖`1→`1

and

Ex2 (t) + Ev2 (t) ≤ ((εK1 + δK2)t+ εK3t
2) · et‖K‖`1→`1 ,
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hold, where

K =

[
2a(0) 2La

√
NW (0)

1 0

]
.

Moreover

Ev(t) ≤
√
N min

{
((εK1 + δK2)t+ εK3t

2) · et‖K‖`1→`1 ,
(
‖M‖

√
V (t) +

√
W (t)

)}
.

Proof. We estimate the decay of Ex2 (t) and Ev2 (t) in order to use Gronwall’s Lemma.
For the following estimates we may assume that – without loss of generality –
evi (t) 6= 0 for t ∈ [0, T ] and for every i = 1, . . . , N : if this is not the case, either
evi ≡ 0 in a neighborhood of t or, by continuity, the estimates will also hold true at
t. Hence we may assume that evi is differentiable at t ∈ [0, T ]. By Cauchy–Schwarz
inequality it holds

d

dt
evi (t) =

〈wi(t)−Mvi(t),
d
dt (wi(t)−Mvi(t))〉

‖wi(t)−Mvi(t)‖
≤ ‖ẇi(t)−Mv̇i(t)‖

≤ 1

N

N∑
j=1

‖a(‖yi(t)− yj(t)‖)(wj(t)− wi(t))

− a(‖xi(t)− xj(t)‖)(Mvj(t)−Mvi(t))‖.

Using triangle inequality, the Lipschitz continuity of a and its monotonicity, we
obtain

d

dt
evi (t) ≤

1

N

N∑
j=1

[
|a(‖yi(t)− yj(t)‖)− a(‖xi(t)− xj(t)‖)| ‖wj(t)− wi(t)‖+

+ a(‖xi(t)− xj(t)‖) ‖(wj(t)− wi(t))− (Mvj(t)−Mvi(t))‖
]

≤ 1

N

N∑
j=1

[
La |‖yi(t)− yj(t)‖ − ‖xi(t)− xj(t)‖| ‖wj(t)− wi(t)‖+

+ a(0) ‖(wj(t)− wi(t))− (Mvj(t)−Mvi(t))‖
]
.

(17)

We now estimate the derivative of Ev2 . First of all, again by Cauchy–Schwarz in-
equality it follows

d

dt
Ev2 (t) =

d

dt

(
1

N

N∑
i=1

‖(wi(t)−Mvi(t))‖2
)1/2

=

(
1
N

∑N
i=1 ‖(wi(t)−Mvi(t))‖ · ddt ‖(wi(t)−Mvi(t))‖

)1/2

(
1
N

∑N
i=1 ‖(wi(t)−Mvi(t))‖2

)1/2
·

≤

(
1

N

N∑
i=1

(
d

dt
‖(wi(t)−Mvi(t))‖

)2
)1/2

=

(
1

N

N∑
i=1

(
d

dt
evi (t)

)2
)1/2

.

(18)
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If we insert (17) into the last inequality and we use triangle as well as Cauchy–
Schwarz inequality in sequence, we get

d

dt
Ev2 (t)

≤

1

N

N∑
i=1

1

N

N∑
j=1

La |‖yi(t)− yj(t)‖ − ‖xi(t)− xj(t)‖ ‖wj(t)− wi(t)‖

2


1/2

+

 1

N

N∑
i=1

 1

N

N∑
j=1

a(0) ‖(wj(t)− wi(t))− (Mvj(t)−Mvi(t))‖

2


1/2

≤ La

 1

N

N∑
i=1

(
1

N

N∑
j=1

|‖yi(t)− yj(t)‖ − ‖xi(t)− xj(t)‖|2
 ·

·

 1

N

N∑
j=1

‖wj(t)− wi(t)‖2
)1/2

+ a(0)

 1

N2

N∑
i,j=1

‖(wj(t)− wi(t))− (Mvj(t)−Mvi(t))‖2
1/2

≤ La

 1

N2

N∑
i,j=1

|‖yi(t)− yj(t)‖ − ‖xi(t)− xj(t)‖|2
1/2

·

· max
i=1,...,N

 1

N

N∑
j=1

‖wj(t)− wi(t)‖2
1/2

+ a(0)

 1

N2

N∑
i,j=1

‖(wj(t)− wi(t))− (Mvj(t)−Mvi(t))‖2
1/2

.

Let us now estimate now the first term of the sum. It holds

|‖yi − yj‖ − ‖xi − xj‖| = |‖yi − yj‖ − ‖Mxi −Mxj‖+ ‖Mxi −Mxj‖ − ‖xi − xj‖|
≤ |‖yi − yj‖ − ‖Mxi −Mxj‖|+ |‖Mxi −Mxj‖ − ‖xi − xj‖|
≤ ‖yi −Mxi‖+ ‖yj −Mxj‖+ |‖Mxi −Mxj‖ − ‖xi − xj‖|
≤ exi + exj + |‖Mxi −Mxj‖ − ‖xi − xj‖| ,

(19)

and for all i = 1, . . . , N

1

N

N∑
j=1

‖wj(t)− wi(t)‖2 ≤
1

N

N∑
i=1

i−1∑
j=1

‖wj(t)− wi(t)‖2

=
1

2N

N∑
i,j=1

‖wj(t)− wi(t)‖2

= NW (t).
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Furthermore, for the second sum we have(
1

N2

N∑
i,j=1

‖(wj(t)− wi(t))− (Mvj(t)−Mvi(t))‖2
)1/2

≤

(
1

N

N∑
i=1

‖(wi(t)−Mvi(t))‖2
)1/2

+

 1

N

N∑
j=1

‖(wj(t)−Mvj(t))‖2
1/2

≤ 2Ev2 (t).

Hence our computation yields

d

dt
Ev2 (t) ≤ La

√
NW (t)

 1

N2

N∑
i,j=1

|‖Mxi −Mxj‖ − ‖xi − xj‖|2
1/2

+ 2La
√
NW (t)Ex2 (t) + 2a(0)Ev2 (t).

Now we apply the assumptions on the matrix M : For every i, j ∈ {1, . . . , N} and
t ∈ [0, T ] either (6) holds, and then

|‖Mxi(t)−Mxj(t)‖ − ‖xi(t)− xj(t)‖|≤ ε‖xi(t)− xj(t)‖

≤ ε
(
‖xi(0)− xj(0)‖+

∫ t

0

‖vi(s)− vj(s)‖ds
)
,

(20)

or (7) holds, and then

|‖Mxi(t)−Mxj(t)‖ − ‖xi(t)− xj(t)‖| ≤ 2δ,

so we always have

|‖Mxi(t)−Mxj(t)‖ − ‖xi(t)− xj(t)‖| ≤ ε

(
‖xi(0)− xj(0)‖

+

∫ t

0

‖vi(s)− vj(s)‖ ds

)
+ 2δ.

Using (vector-valued) Minkowski inequality and observing that, by Lemma 1.3, V
and W are decreasing, we derive

d

dt
Ev2 (t) ≤ εLa

√
NW (t)

 1

N2

N∑
i,j=1

‖xi(0)− xj(0)‖2
1/2

+ εLa
√
NW (t)

 1

N2

N∑
i,j=1

(∫ t

0

‖vi(s)− vj(s)‖ ds
)2
1/2

+ 2La
√
NW (t)(δ + Ex2 (t)) + 2a(0)Ev2 (t)

≤ εLa
√
NW (0)

√2X(0) +

∫ t

0

 1

N2

N∑
i,j=1

‖vi(s)− vj(s)‖2
1/2

ds


+ 2La

√
NW (0)(δ + Ex2 (t)) + 2a(0)Ev2 (t)
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≤ εLa
√
NW (0)

(√
2X(0) +

∫ t

0

√
2V (s) ds

)
+ 2La

√
NW (0)(δ + Ex2 (t)) + 2a(0)Ev2 (t) (21)

≤ εLa
√
NW (0)

(√
2X(0) + t

√
2V (0)

)
+ 2δLa

√
NW (0)

+ 2La
√
NW (0)Ex2 (t) + 2a(0)Ev2 (t). (22)

On the other hand, in the same way as in (18), we obtain

d

dt
Ex2 (t) ≤

(
1

N

N∑
i=1

(
d

dt
‖(yi(t)−Mxi(t))‖

)2
)1/2

≤

(
1

N

N∑
i=1

∥∥∥∥ ddt (yi(t)−Mxi(t))

∥∥∥∥2
)1/2

=

(
1

N

N∑
i=1

‖wi(t)−Mvi(t)‖2
)1/2

= Ev2 (t).

Let K1 = La
√
NW (0)

√
2X(0), K2 = 2La

√
NW (0), K3 = 1/2 · La

√
NW (0)

√
2V (0),

and

K =

[
2a(0) 2La

√
NW (0)

1 0

]
be as in the statement of the theorem. If we integrate the two inequalities for d

dtE
x
2

and d
dtE

v
2 from 0 to t we obtain

Ev2 (t) ≤ Ev2 (0) + (εK1 + δK2)t+ εK3t
2 +

∫ t

0

(
2a(0)Ev(s) + 2La

√
NW (0)Ex(s)

)
ds,

Ex2 (t) ≤ Ex2 (0) +

∫ t

0

Ev(s)ds,

which can be rearranged in vector form in the following way:[
Ev2 (t)
Ex2 (t)

]
≤
[
Ev2 (0) + (εK1 + δK2)t+ εK3t

2

Ex2 (0)

]
+

∫ t

0

K ·
[
Ev(s)
Ex(s)

]
ds,

Notice that

‖K‖`1→`1 = max
(

2a(0) + 1, 2La
√
NW (0)

)
≥ 1.

Now we apply the `1-norm to the inequality and we use Gronwall’s Lemma, see
Lemma 7.2, to deduce∥∥∥∥ Ev2 (t)

Ex2 (t)

∥∥∥∥
`1

≤
∥∥∥∥ Ev2 (0) + (εK1 + δK2)t+ εK3t

2

Ex2 (0)

∥∥∥∥
`1

· et‖K‖`1→`1 ,

thus

Ev2 (t) + Ex2 (t) ≤
[
Ev2 (0) + Ex2 (0) + (εK1 + δK2)t+ εK3t

2
]
· et‖K‖`1→`1

= ((εK1 + δK2)t+ εK3t
2) · et‖K‖`1→`1 ,

(23)

since Ev(0) = Ex(0) = 0 by definition.
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Moreover, since v(t) = v(0) and w(t) = w(0) for every t ≥ 0, it holds

‖Mvi(t)− wi(t)‖ = ‖Mvi(t)− w(0) + w(0)− wi(t)‖
≤ ‖Mvi(t)−Mv(0)‖+ ‖w(0)− wi(t)‖
≤ ‖M‖‖vi(t)− v(t)‖+ ‖w(t)− wi(t)‖,

and hence we have

Ev2 (t) ≤ ‖M‖

(
1

N

N∑
i=1

‖vi(t)− v(t)‖2
)1/2

+

(
1

N

N∑
i=1

‖wi(t)− w(t)‖2
)1/2

.

Together with (23), we deduce the upper bound

Ev2 (t) ≤ min
{

((εK1 + δK2)t+ εK3t
2) · et‖K‖`1→`1 ,

(
‖M‖

√
V (t) +

√
W (t)

)}
.

Using the trivial estimate of the `∞-norm by the `2-norm we conclude as well the
estimate

Ev(t) ≤
√
N min

{
((εK1 + δK2)t+ εK3t

2) · et‖K‖`1→`1 ,
(
‖M‖

√
V (t) +

√
W (t)

)}
.

and

Ev(t) + Ex(t) ≤
√
N((εK1 + δK2)t+ εK3t

2) · et‖K‖`1→`1 .

Remark 3.3. In the proof we used that V and W are decreasing. When we consider
controlled systems below, we even have a better estimate on the integral of V . In
particular we use the following: Assume additionally that∫ t

0

√
2V (s) ds ≤ α for all t ≤ T,

for a fixed α > 0. Then for all t ≤ T we have

Ex(t) + Ev(t) ≤
√
N((ε(K1 +K4) + δK2)t) · et‖K‖`1→`1

with K1,K2,K as in Theorem 3.2, and K4 = La
√
NW (0)α.

To verify the latter estimate, just consider the boundedness of
∫ t

0

√
2V (s) ds

within the inequality (21) in the proof of Theorem 3.2, and then proceed further as
before.

Remark 3.4. Among the hypotheses of Theorem 3.2, we assumed the existence of a
matrix M ∈ Rk×d fulfilling the weak Johnson–Lindenstrauss property for all curves
of the form xi(t)−xj(t), where i, j ∈ {1, . . . , N} and t ∈ [0, T ]. We show now that M
is such a matrix provided that it fulfills the (strong) Johnson–Lindenstrauss prop-
erty for all the (finite) vectors of the form xi(tm)− xj(tm), where i, j ∈ {1, . . . , N},
m = 0, . . . , dT · N ′e − 1, tm = m/dT · N ′e, for

N ′ ≥ 4 ·
√

2NV (0) · (
√
d+ 2)

δε
, (24)

and that the target dimension k is sufficiently large.
Indeed, we can adapt the proof of Lemma 2.4 in order to obtain a result valid

simultaneously for all the curves ϕij : [0, T ] → Rd given by ϕij(t) = xi(t) − xj(t).
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For each of these curves we have the Lipschitz estimate

‖(xi(t1)− xj(t1))− (xi(t2)− xj(t2))‖
|t1 − t2|

≤ sup
t∈[0,T ]

‖(xi − xj)′(t)‖

= sup
t∈[0,T ]

‖(vi − vj)(t)‖ ≤
√

2NV (0),
(25)

thus Lϕij (0, T ) ≤
√

2NV (0). In order for the argument of the proof to work, for
each curve ϕij we need N ·T points (where N is as in (24), and the factor T is due
to stretching the dynamics from a reference time domain [0, 1] to [0, T ]) at which
the (strong) Johnson–Lindenstrauss property must hold, bringing the total number
of points N at which that property must be true to N ′ · T ·N2. So it holds

N ∼
√
NV (0) ·

√
d

δε
· T ·N2.

Thus, if M is a k× d matrix fulfilling the (strong) Johnson–Lindenstrauss property
of parameter ε at these N points, where k ≥ k0 with

k0 . log(N ) · ε−2 . log

(√
NV (0) ·

√
d

δε
· T ·N2

)
· ε−2

∼ (log(T ·N · d · V (0)) + | log(δε)|) · ε−2,

then M satisfies also the hypothesis of Theorem 3.2 for any δ > 0.

Remark 3.5. In the remark above we calculated the necessary minimal dimension
k0 for a matrix M to satisfy the weak Johnson–Lindenstrauss property for all curves
of the form xi(t)− xj(t), where i, j ∈ {1, . . . , N} and t ∈ [0, T ]. The dependency of
k0 on N and ε is quite natural, but the dependency on the dimension d, even only
logarithmically, is perhaps not desirable. But one can circumvent the dependence
on the dimension using certain direct estimates within the proof of Theorem 3.2.
In analogy to what we did before, take tm = m/N ′ with m = 0, . . . , dT · N ′e −
1 and N ′ – the number of sampling points – is to be chosen large enough later
on. Furthermore, we assume that the matrix M fulfills the (strong) Johnson–
Lindenstrauss property at tm, i.e., we require that M satisfies

(1− ε)‖xi(tm)− xj(tm)‖ ≤ ‖M(xi(tm)− xj(tm))‖ ≤ (1 + ε)‖xi(tm)− xj(tm)‖
(1− ε)‖vi(tm)− vj(tm)‖ ≤ ‖M(vi(tm)− vj(tm))‖ ≤ (1 + ε)‖vi(tm)− vj(tm)‖

for all i, j ∈ {1, . . . , N} and m = 0, . . . , dT · N ′e − 1. Now, for any t ∈ [0, T ] choose
m ∈ {0, . . . , dT · N ′e − 1} such that t ∈ [tm, tm+1]. We start at the estimate (19):

|‖xi(t)− xj(t)‖ − ‖yi(t)− yj(t)‖| ≤ |‖xi(tm)− xj(tm)‖ − ‖yi(tm)− yj(tm)‖|
+ |‖xi(t)− xj(t)‖ − ‖xi(tm)− xj(tm)‖|
+ |‖yi(t)− yj(t)‖ − ‖yi(tm)− yj(tm)‖|
≤ |‖xi(tm)− xj(tm)‖ − ‖Mxi(tm)−Mxj(tm)‖|

+ exi (tm) + exj (tm) +
Lxi−xj
N ′

+
Lyi−yj
N ′

,

(26)

where Lxi−xj = Lxi−xj (0, T ) and Lyi−yj = Lyi−yj (0, T ) are the Lipschitz constants
of the functions (xi − xj)(·) and (yi − yj)(·) on [0, T ], respectively. Furthermore,
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using the (strong) Johnson–Lindenstrauss property of M at tm we get the same
estimates as in (20), only with tm instead of t:

|‖Mxi(tm)−Mxj(tm)‖ − ‖xi(tm)− xj(tm)‖| ≤ ε‖xi(tm)− xj(tm)‖

≤ ε

(
‖xi(0)− xj(0)‖

+

∫ tm

0

‖vi(s)− vj(s)‖ ds

)
.

For the estimate of the last two terms in (26) we choose N ′ large enough so that

N ′ ∼
max

(
Lxi−xj , Lyi−yj

)
δ

.

Thus we arrive at

|‖xi(t)− xj(t)‖ − ‖yi(t)− yj(t)‖| ≤ exi (tm) + exj (tm) + ε

(
‖xi(0)− xj(0)‖

+

∫ tm

0

‖vi(s)− vj(s)‖ ds

)
+ 2δ.

Following the steps of the proof of Theorem 3.2, we can get an analogue of (22):

d

dt
Ev2 (t) ≤ εLa

√
NW (0)

(√
2X(0) + t

√
2V (0)

)
+ 2δLa

√
NW (0)

+ 2La
√
NW (0)Ex2 (tm) + 2a(0)Ev2 (t).

So, the main difference is the replacement of Ex2 (t) with Ex2 (tm) on the right-hand
sides, with tm = m/N ′. At this point in the proof of Theorem 3.2 we applied Gron-
wall’s Lemma, see the estimates before (23). Now here we intend to use its discrete

version, Lemma 7.3: let again K1 = La
√
NW (0)

√
2X(0), K2 = 2La

√
NW (0), and

K3 = 1/2 · La
√
NW (0)

√
2V (0). Integrating between tm and t we get[

Ev2 (t)
Ex2 (t)

]
≤
[
Ev2 (tm) + (εK1 + δK2)(t− tm) + εK3(t2 − t2m) +K2Ex2 (tm)(t− tm)

Ex2 (tm)

]
+

∫ t

tm

K′ ·
[
Ev(s)
Ex(s)

]
ds,

where

K′ =

[
2a(0) 0

1 0

]
.

Now applying the `1-norm and Lemma 7.3 we get∥∥∥∥ Ev2 (t)
Ex2 (t)

∥∥∥∥
`1

≤
∥∥∥∥ Ev2 (0) + (εK1 + δK2)t+ εK3t

2

Ex2 (0)

∥∥∥∥
`1

· e
t

(
‖K′‖

`1→`1
+K2

)
.
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This is a slightly worse estimate than the original one of Theorem 3.2 by a factor 2
in the exponential, since

‖K‖`1→`1 = max
(

2a(0) + 1, 2La
√
NW (0)

)
≤ 2La

√
NW (0) +

∥∥∥∥[ 2a(0) 0
1 0

]∥∥∥∥
`1→`1

= K2 + ‖K′‖`1→`1

≤ 2 max
(

2a(0) + 1, 2La
√
NW (0)

)
= 2‖K‖`1→`1 .

So eventually we obtain

Ev2 (t) + Ex2 (t) ≤
[
Ev2 (0) + Ex2 (0) + (εK1 + δK2)t+ εK3t

2
]
· e2t‖K‖`1→`1

= ((εK1 + δK2)t+ εK3t
2) · e2t‖K‖`1→`1 .

At the cost of a slightly worse estimate, we gain, however, that the admissible
lower dimensionality k of the matrix M does not depend anymore on the higher
dimension d: indeed we make use of the (strong) Johnson–Lindenstrauss property
on N = 2 · dT · N ′e · N2 points. Hence, it suffices to take the minimal target
dimension k0 such that M ∈ Rk×d with k ≥ k0 for

k0 . log
(
T · N ′ ·N2

)
· ε−2.

Actually, in order to verify the independence of the dimension d, we have to estimate
the number of sampling points N ′ independently of it. By (25) in Remark 3.4, we

know that Lxi−xj ≤
√

2NV (0). Analogously, for Lyi−yj we have

‖(yi(t1)− yj(t1))− (yi(t2)− yj(t2))‖
|t1 − t2|

≤
√

2NW (0)

≤
√

2NV (0)(1 + ε)2

≤
√

8NV (0),

since

‖wi(0)− wj(0)‖ = ‖Mvi(0)−Mvj(0)‖ ≤ (1 + ε)‖vi(0)− vj(0)‖.
Hence we obtain

k . log (T · N ′ ·N) · ε−2 . log
(
T ·
√
NV (0) · δ−1 ·N

)
· ε−2

∼ (log (T ·N · V (0)) + | log δ|) · ε−2,

so that we confirmed that there is no asymptotic dependence on d.

Remark 3.6. The estimate of Theorem 3.2

Ev(t) ≤
√
N min

{
((εK1 + δK2)t+ εK3t

2) · et‖K‖`1→`1 ,
(
‖M‖

√
V (t) +

√
W (t)

)}
.

explains the plot presented in [14, Fig. 3.5], where surprisingly the error for large
time was shown to decrease instead of exploding according to classical Gronwall’s
estimates. Indeed, since V (t) and W (t) are decreasing functions, there is a time
when the bound swaps from the exponential Gronwall-type bound to the decreasing
curve given by

√
N
(
‖M‖

√
V (t) +

√
W (t)

)
.
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Moreover, if both the high-dimensional and the low-dimensional trajectories entered
the consensus region already, then V (t) and W (t) approach 0 as t tends to +∞,
forcing Ev(t) to tend to 0. The vanishing of the discrepancy between the low-
dimensional trajectory (wk(t))Nk=1 of the consensus parameters and the projected
trajectory (Mvk(t))Nk=1 is a remarkable property of the Cucker–Smale system (2)
as the initial mean-consensus parameter w(0) = Mv(0) is actually a conserved
quantity.

Remark 3.7. In the theorem we can replace Ev(t) by Ev⊥(t) because 0 = ‖Mv(0)−
w(0)‖ = ‖Mv(t)− w(t)‖.

4. Dimension reduction of the Cucker–Smale model with control. It was
proven in [7] that a system of type (2) can be driven to the consensus region using
a sparse control strategy, i.e., a control acting at every instant only on one agent,
whose consensus parameter is the furthest away from the mean consensus param-
eter. However, if the dimension d of each agent is very large, the numerical simu-
lation of such a dynamical system and its sparse control becomes computationally
demanding.

In this section we consider a k-dimensional Cucker–Smale system, where k � d,
having as initial conditions the projection of the initial configuration of the original
d-dimensional system. The projection will be done by a matrix M ∈ Rk×d fulfilling
the (strong) Johnson–Lindenstrauss property for a certain amount of points. We
shall show that the solution of the k-dimensional system obtained in this way will
stay close to the projected dynamics of the original d-dimensional system via the ma-
trix M . This, in turn, shall allow us to prove our main result: If we gather the infor-
mation of which is the furthest agent away from consensus in the k-dimensional sys-
tem and we control this agent in the original high-dimensional system by the sparse
strategy presented in [7], then we will still be able to drive the high-dimensional
system to the consensus region in finite time and with a near-optimal rate.

One of the main consequences of this fact is that simulations following this strat-
egy will save a relevant amount of computational time with respect to approaching
directly the problem in high dimension: indeed, we present in Section 6 numerical
examples, which show that we can take k even conspicuously smaller than d and
still be able to implement a successful sparse control strategy steering the dynamics
to the consensus region nearly optimally.

Formally, let us now consider a controlled version of the high-dimensional system
ẋi(t) = vi(t),

v̇i(t) = 1
N

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) + uhi (t), i = 1, . . . , N

(27)

with initial datum (x(0), v(0)) ∈ (Rd)N × (Rd)N , and of the associated low-dimensi-
onal system

ẏi(t) = wi(t),

ẇi(t) = 1
N

N∑
j=1

a (‖yi(t)− yj(t)‖) (wj(t)− wi(t)) + u`i(t), i = 1, . . . , N

(28)

with initial condition (y(0), w(0)) ∈ (Rk)N × (Rk)N , where yi(0) = Mxi(0) and
wi(0) = Mvi(0) for every i = 1, . . . , N , and M ∈ Rk×d is a matrix fulfilling the



SPARSE CONTROL OF ALIGNMENT MODELS IN HIGH DIMENSION 669

(strong) Johnson–Lindenstrauss property at certain points of the high-dimensional
trajectories.

We have already stated that the control uh in high dimension shall depend on u`,
the low-dimensional one. Since the latter control is a function of the low-dimensional
dynamics determined by the initial datum (y(0), w(0)), which in turn depends on
M , the trajectories of the high-dimensional dynamics depend on M as well.

As already stated before, given a set of N points, not necessarily explicitly,
a random matrix generated by one of the constructions reported in Remark 2.2
fulfills the Johnson–Lindenstrauss property at these N points with a certain high
probability. Unfortunately, in the current situation and differently from the one
encountered in Section 3, the points on the trajectories at which the Johnson–
Lindenstrauss property has to hold seem depending on the matrix M that we have
generated!

As we shall see in detail in Section 5, we can resolve this dependency of the
high-dimensional trajectories on the generated matrix M , by observing that the
realization of the trajectories depends actually on a finite number of control switch-
ings. Hence, for the moment, we just assume that the Johnson–Lindenstrauss prop-
erty holds at certain points of the trajectory and we postpone to Section 5 the
explanation of how this assumption can in fact hold true.

In what follows, we shall always indicate with θ > 0 the maximal amount of
resources that the external policy maker is allowed to spend at every instant to
keep the system confined. This means that our controls uh and u` will satisfy –
respectively – the `N1 (`d2) and the `N1 (`k2)-constraints

N∑
i=1

‖uhi ‖`d2 ≤ θ,
N∑
i=1

‖u`i‖`k2 ≤ θ.

Definition 4.1. Let T > 0, (x(t), v(t)) ∈ (Rd)N × (Rd)N and (y(t), w(t)) ∈
(Rk)N × (Rk)N be continuous functions defined on the interval [0, T ]. Let V (t)
and W (t) be as in (4) and (16), respectively. Let us fix a Γ ≥ 0 and define
T c0 := inf {t ∈ [0, T ] : W (t) ≤ Γ} if the set is non-empty, otherwise set T c0 := T .
We define the componentwise feedback controls uh and u` as follows:

• if t ≤ T c0 , let ι̂(t) ∈ {1, . . . , N} be the smallest index such that

‖w⊥ι̂ (t)‖ = max
1≤i≤N

‖w⊥i (t)‖, (29)

define

u`i(t) =

{
−θ w⊥i (t)

‖w⊥i (t)‖ if i = ι̂(t)

0 if i 6= ι̂(t)

and

uhi (t) =

{
−θ v⊥i (t)

‖v⊥i (t)‖ if i = ι̂(t)

0 if i 6= ι̂(t).
(30)

• if t > T c0 , then uh(t) = 0 and u`(t) = 0. In this case, ι̂(t) is undefined.

We say that the trajectory in low dimension has entered the consensus region given
by the threshold Γ if t ∈ [T c0 , T ).

Let us stress now the following observation.
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Remark 4.2. Notice that the control uh is sparse (all the components are zero at
most except one) and defined exclusively through the following information: the
index ι̂ which is computed from the low-dimensional control problem according to
(29), the consensus parameter vι̂, which is actually the only information to be ob-
served in high-dimension and enters the definition (30), and the mean consensus

parameter v(t) = v(0) + 1
N

∑N
i=1

∫ t
0
uhi (s)ds, which one easily computes by integra-

tion and sum of previous controls, and it is also used in (30).

There are situations where the computation of the controls uh and u` from Def-
inition 4.1 turns out to be problematic. For instance, if there are only three agents
and in the low dimensional system their consensus parameters form an equiangu-
lar and equinormal set of vectors at a certain time t, then u` (and thus uh) are
not pointwise computable after t because of chattering effects. A method to avoid
chattering in such trajectories is the use of sampling solutions, as defined in [8].

Definition 4.3. Let U ⊆ Rm, f : Rm × U 7→ f(x, u) be continuous in x and u as
well as locally Lipschitz in x uniformly on every compact subset of Rm×U . Given a
feedback control function u : Rm → U , τ > 0, and x0 ∈ Rm we define the sampling
solution associated with the sampling time τ of the differential system

ẋ = f(x, u(x)), x(0) = x0

as the piecewise C1-function x : [0, T ]→ Rm solving the system

ẋ = f(x(t), ũ(t))

in the interval t ∈ [nτ, (n + 1)τ ] recursively for n ∈ N, where ũ(t) = u(x(nτ)) is
constant for t ∈ [nτ, (n+ 1)τ ]. As the initial value x(nτ) we use the endpoint of the
solution of the preceding interval and start with x(0) = x0.

Let us fix a sampling time τ > 0. In the following we shall consider d-dimensional
and k-dimensional Cucker–Smale systems for k � d and feedback controls uh and
u`, respectively, as introduced in Definition 4.1. We shall focus on their sampling
solutions (x, v) and (y, w) associated with τ as defined in Definition 4.3, hence

ũ`(t) = u`(nτ), ũh(t) = uh(nτ)

for t ∈ [nτ, (n + 1)τ). Since we are only able to change the control at times which
are multiples of τ , we define the switch-off time of the sampled control associated
with the threshold Γ as

T s0 := inf
n∈N0

{nτ : W (nτ) ≤ Γ} , (31)

otherwise set T s0 := T if the set whose infimum is taken is empty. Because in the
rest of the paper we shall deal only with sampled control, we will refer to T s0 with
T0, omitting the superscript.

In the following, we shall show an estimate of the error between the projec-
tion of the sampled controlled high-dimensional system and the sampled controlled
low-dimensional system, under the crucial assumption of the validity of the weak
Johnson–Lindenstrauss property for M for the differences of trajectories of the sys-
tem.

This result is the controlled counterpart of Theorem 3.2.

Proposition 4.4. Let T > 0, ∆ > 0 and k ∈ N0 with k ≤ d. Let τ > 0 be a
sampling time, T̂ > 0 such that T̂ + τ ≤ T and let M ∈ Rk×d.
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Let (x(t), v(t)) be the sampling solution of the d-dimensional Cucker–Smale sys-
tem (27) with initial conditions (x(0), v(0)) and (y(t), w(t)) be the sampling solu-
tion of the Rk-projected Cucker–Smale system (28) with initial conditions y(0) =
(Mx1(0), . . . ,MxN (0)) ∈ (Rk)N and w(0) = (Mv1(0), . . . ,MvN (0)) ∈ (Rk)N as
defined in Definition 4.3, where uhi and u`i are the controls from Definition 4.1 with
threshold Γ = (2∆)2. Moreover, let T0 be as in (31).

Suppose that W is non-increasing in time and that there exists a constant α ≥ 0
such that ∫ t

0

√
2V (s) ds ≤ α, for all t ∈ [0,min(T̂ + τ, T0)].

Let ε′ ∈ (0, 1) be so small that

∆

2
≥ ε′
√
N

(
4La

√
NV (0)

(√
2X(0) + α

)
+

θ√
N

)
·

· (T̂ + τ)e
(T̂+τ)

(
max

(
2a(0)+1,4La

√
NV (0)

)
+8θ/∆

)
,

and assume that the matrix M

(JL1) has the weak Johnson–Lindenstrauss property of parameter ε = ε′ and δ =

min

(
ε′
√

2X(0)+α

2 , 1/2

)
at all points xi(t) − xj(t) for i, j ∈ {1, . . . , N}, t ∈

[0, T̂ + τ ],
(JL2) has the weak Johnson–Lindenstrauss property of parameter ε = ε′ and δ = ∆

at all points vi(nτ)− v(nτ) for i ∈ {1, . . . , N}, n = 0, . . . , b T̂τ c+ 1, and
(JL3) has the (strong) Johnson–Lindenstrauss property of parameter ε = 1/2 at the

points vi(0)− v(0) and xi(0)− x(0) for i ∈ {1, . . . , N} .

Define the following errors:

exi (t) = ‖yi(t)−Mxi(t)‖, evi (t) = ‖wi(t)−Mvi(t)‖,
Ex(t) = max

i=1,...,N
exi (t), Ev(t) = max

i=1,...,N
evi (t).

Then it holds

∆

2
≥ ε′
√
N

(
4La

√
NV (0)

(√
2X(0) + α

)
+

θ√
N

)
· tet

(
max

(
2a(0)+1,4La

√
NV (0)

)
+8θ/∆

)

≥ Ev(t) + Ex(t),

(32)

for all t ∈ [0,min(T̂ + τ, T0)].

Proof. We argue by induction: We want to show that if (32) holds true at t ∈
{0, τ, . . . , nτ}, then it is also true for t ∈ [n, (n+ 1)τ ], in particular at t = (n+ 1)τ ,

as long as nτ ≤ T̂ and nτ < T0, i.e., the control is not switched off before (n+ 1)τ .
Obviously, (32) holds for n = 0, this means at t = 0, and actually arguing in the
same way as in the following inductive step, the base step is verified.

So, let t ∈ [nτ, (n+ 1)τ ] for n ∈ N0. First, we consider the estimate on the agent
on which the control is acting. We shall estimate the decay in order to use Gronwall
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Lemma as in Theorem 3.2. We have

d

dt
evι̂ (t) ≤

∥∥∥∥ ddt (wι̂(t)−Mvι̂(t))

∥∥∥∥
≤ 1

N

N∑
j=1

∥∥∥a(‖yι̂(t)− yj(t)‖)(wj(t)− wι̂(t))

− a(‖xι̂(t)− xj(t)‖)(Mvj(t)−Mvι̂(t))
∥∥∥

+ θ

∥∥∥∥ w⊥ι̂ (nτ)

‖w⊥ι̂ (nτ)‖
− Mv⊥ι̂ (nτ)

‖v⊥ι̂ (nτ)‖

∥∥∥∥ .
(33)

For i ∈ {1 . . . , N} and i 6= ι̂ we have

d

dt
evi (t) ≤

1

N

N∑
j=1

∥∥∥a(‖yi(t)− yj(t)‖)(wj(t)− wi(t))

− a(‖xi(t)− xj(t)‖)(Mvj(t)−Mvi(t))
∥∥∥.

(34)

We now focus on the control term:∥∥∥∥ w⊥ι̂ (nτ)

‖w⊥ι̂ (nτ)‖
− Mv⊥ι̂ (nτ)

‖v⊥ι̂ (nτ)‖

∥∥∥∥
=

1

‖w⊥ι̂ (nτ)‖‖v⊥ι̂ (nτ)‖
∥∥‖v⊥ι̂ (nτ)‖w⊥ι̂ (nτ)− ‖w⊥ι̂ (nτ)‖Mv⊥ι̂ (nτ)

∥∥
=

1

‖w⊥ι̂ (nτ)‖‖v⊥ι̂ (nτ)‖

∥∥∥∥∥ (‖v⊥ι̂ (nτ)‖ − ‖w⊥ι̂ (nτ)‖
)
w⊥ι̂ (nτ)

− ‖w⊥ι̂ (nτ)‖
(
Mv⊥ι̂ (nτ)− w⊥ι̂ (nτ)

) ∥∥∥∥∥
≤ 1

‖v⊥ι̂ (nτ)‖
∣∣‖v⊥ι̂ (nτ)‖ − ‖w⊥ι̂ (nτ)‖

∣∣+
1

‖v⊥ι̂ (nτ)‖
∥∥Mv⊥ι̂ (nτ)− w⊥ι̂ (nτ)

∥∥ .

(35)

Since by assumption nτ < T0 and (32) holds at nτ by the inductive hypothesis, it
follows

‖w⊥ι̂ (nτ)‖ ≥
√
W (nτ) > 2∆,

‖Mv⊥ι̂ (nτ)− w⊥ι̂ (nτ)‖ ≤ ‖Mvι̂(nτ)− wι̂(nτ)‖+
1

N

N∑
j=1

‖Mvj(nτ)− wj(nτ)‖

≤ 2Ev(nτ)

≤ ∆.

(36)

Hence

‖Mv⊥ι̂ (nτ)‖ > ∆. (37)
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From assumption (JL2) and (37) it follows that the (strong) Johnson–Lindenstrauss
property with parameter ε = ε′ holds at v⊥ι̂ . Hence

∣∣‖v⊥ι̂ (nτ)‖ − ‖w⊥ι̂ (nτ)‖
∣∣ ≤ ∣∣‖v⊥ι̂ (nτ)‖ − ‖Mv⊥ι̂ (nτ)‖

∣∣+
∣∣‖Mv⊥ι̂ (nτ)‖ − ‖w⊥ι̂ (nτ)‖

∣∣
≤
∣∣‖v⊥ι̂ (nτ)‖ − ‖Mv⊥ι̂ (nτ)‖

∣∣+ ‖Mv⊥ι̂ (nτ)− w⊥ι̂ (nτ)‖

≤ ε′‖v⊥ι̂ (nτ)‖+ ‖Mv⊥ι̂ (nτ)− w⊥ι̂ (nτ)‖

and

‖v⊥ι̂ (nτ)‖ ≥ 1

1 + ε′
‖Mv⊥ι̂ (nτ)‖ ≥ ∆

2
.

Inserting these estimates into (35) and using (36) we get

∥∥∥∥ w⊥ι̂ (nτ)

‖w⊥ι̂ (nτ)‖
− Mv⊥ι̂ (nτ)

‖v⊥ι̂ (nτ)‖

∥∥∥∥ ≤ ε′ + 2
‖Mv⊥ι̂ (nτ)− w⊥ι̂ (nτ)‖

‖v⊥ι̂ (nτ)‖

≤ ε′ + 8Ev(nτ)

∆
.

Now we add the estimates for the derivatives of evι̂ in (33) and evi for i 6= ι̂ in
(34). By (JL1) the weak Johnson–Lindenstrauss property of parameter ε = ε′ and

δ = min

(
ε′
√

2X(0)+α

2 , 1/2

)
holds at xi(t) − xj(t) for t ∈ [0, (n + 1)τ). Hence, for

the first (uncontrolled) part of (33) and (34) we can use the same estimate as in
(21). Thus, setting

Ev2 (t) =

(
1

N

N∑
i=1

(evi (t))
2

)1/2

and Ex2 (t) =

(
1

N

N∑
i=1

(exi (t))2

)1/2

by using Ev(nτ) ≤
√
NEv2 (nτ) and the definition of δ, we obtain the bound

d

dt
Ev2 (t) ≤

(
1

N

N∑
i=1

(
d

dt
evi (t)

)2
)1/2

≤ ε′La
√
NW (0)

(√
2X(0) +

∫ t

0

√
2V (s) ds

)
+ 2La

√
NW (0)(δ + Ex2 (t)) + 2a(0)Ev2 (t)

+
θ√
N

∥∥∥∥ w⊥ι̂ (nτ)

‖w⊥ι̂ (nτ)‖
− Mv⊥ι̂ (nτ)

‖v⊥ι̂ (nτ)‖

∥∥∥∥
≤ ε′

(
2La

√
NW (0)

(√
2X(0) + α

)
+

θ√
N

)
+ 2La

√
NW (0)Ex2 (t) + 2a(0)Ev2 (t) +

8θ

∆
Ev2 (nτ).
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For Ex2 we have

d

dt
Ex2 (t) ≤

(
1

N

N∑
i=1

(
d

dt
exi (t)

)2
)1/2

≤

(
1

N

N∑
i=1

(evi (t))
2

)1/2

= Ev2 (t).

By integrating the estimates for d
dtE

v
2 (t) and d

dtE
x
2 (t) between nτ and t we get the

inequalities

Ev2 (t) ≤
(

1 +
8θ

∆
(t− nτ)

)
Ev2 (nτ) + ε′

(
K1 +

θ√
N

)
(t− nτ)

+

∫ t

nτ

(
2a(0)Ev2 (s) + 2La

√
NW (0)Ex2 (s)

)
ds,

Ex2 (t) ≤ Ex2 (nτ) +

∫ t

nτ

Ev2 (s)ds,

which can be recast in vector form in the following way:[
Ev2 (t)
Ex2 (t)

]
≤

[ (
1 + 8θ

∆ (t− nτ)
)
Ev2 (nτ) + ε′

(
K1 + θ√

N

)
(t− nτ)

Ex2 (nτ)

]

+

∫ t

nτ

K ·
[
Ev2 (s)
Ex2 (s)

]
ds,

with

K =

[
2a(0) 2La

√
NW (0)

1 0

]
,

and

K1 = 2La
√

2NW (0)
(√

2X(0) + α
)
.

Now we apply the `1-norm to the inequality and obtain

Ev2 (t) + Ex2 (t) ≤ ε′
(
K1 +

θ√
N

)
(t− nτ) +

(
1 +

8θ

∆
(t− nτ)

)
(Ev2 (nτ) + Ex2 (nτ))

+

∫ t

nτ

‖K‖`1→`1 · (E
v
2 (s) + Ex2 (s)) ds.

The discrete Gronwall Lemma 7.3 applied for

β1(t) :=
8θ

∆
t, β2(t) ≡ ‖K‖`1→`1 ,

ρ(t) :=

(
K1 +

θ√
N

)
ε′t, u(t) := Ev2 (t) + Ex2 (t) ≥ 0,
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yields

Ev2 (t) + Ex2 (t)

≤ [Ev2 (0) + Ex(0)] · et(‖K‖`1→`1+8θ/∆) + ε′
(
K1 +

θ√
N

)
tet(‖K‖`1→`1+8θ/∆)

= ε′
(
K1 +

θ√
N

)
tet(‖K‖`1→`1+8θ/∆)

because the initial time errors are 0 by definition of the low-dimensional system.
Hence using a trivial estimate of the `2-norm by the `∞-norm we conclude the
induction and also the proof:

Ev(t) + Ex(t) ≤ ε′
√
N

(
K1 +

θ√
N

)
tet(‖K‖`1→`1+8θ/∆)

≤ ε′
√
N

(
4La

√
NV (0)

(√
2X(0) + α

)
+

θ√
N

)
·

· tet
(

max
(

2a(0)+1,4La
√
NV (0)

)
+8θ/∆

)

using that
√
W (0) ≤ (1 + 1/2)

√
V (0) ≤ 2

√
V (0) by (JL3).

Now we are in the position of showing that we can steer both the low- and high-
dimensional systems simultaneously to the consensus region using the control de-
fined in Definition 4.1 and Definition 4.3. We repeat that this means that we choose
the index of the agent on which the sparse control acts from the low-dimensional
system and use the same index for the control in the high-dimensional system. The
challenge here is ensuring that the control coming out of this procedure drives the
high-dimensional system to consensus as well. For this we need the estimates from
Proposition 4.4 to show that the error of the projection of the high-dimensional
system and the low-dimensional system stay near to each other. Additionally, from
[7] it is known that the low-dimensional system will be steered optimally to the
consensus region in finite time using the sampled version of the control introduced
in Definition 4.1.

Theorem 4.5. Let x(0) = (x1(0), . . . , xN (0)) ∈ (Rd)N and v(0) = (v1(0), . . . ,
vN (0)) ∈ (Rd)N be given and let k ≤ d. Let γ, X(0) as well as V (0) be defined as
before and let c, C be the constants from Lemma 2.5. Let

X := 2X(0) +
2N2

c2θ2
V (0)2, (38)

as well as

∆ := min

(
γ(X)

C
,

1

2
γ
(
4X
))

, (39)

and

T̂ :=
2N

θ

(
2
√
V (0)− 2∆

)
. (40)

Let τ0 > 0 be so small that

τ0

(
a(0)
√
N
√
V (0) + θ

)
+ τ2

0 a(0)θ ≤ ∆

4
, (41)
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and fix τ ∈ (0, τ0]. Furthermore, let M ∈ Rk×d. Let uh and u` be the controls as in
Definition 4.1 with threshold Γ = (2∆)2. Let (x(t), v(t)) be the sampling solution of
the d-dimensional Cucker–Smale system

ẋi(t) = vi(t),

v̇i(t) = 1
N

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) + uhi (t), i = 1, . . . , N,

with initial conditions (x(0), v(0)) associated with the sampling time τ and (y(t),
w(t)) be the sampling solution of the Rk-projected Cucker–Smale system

ẏi(t) = wi(t),

ẇi(t) = 1
N

N∑
j=1

a (‖yi(t)− yj(t)‖) (wj(t)− wi(t)) + u`i(t), i = 1, . . . , N,

with initial conditions given by y(0) = (Mx1(0), . . . ,MxN (0)) ∈ (Rk)N and w(0) =
(Mv1(0), . . . ,MvN (0)) ∈ (Rk)N associated with the sampling time τ .

Let α =
√

2N
cθ and ε′ ∈ (0, 1) be so small that

∆

2
≥ ε′
√
N

(
4La

√
NV (0)

(√
2X(0) + α

)
+

θ√
N

)
·

· (T̂ + τ)e
(T̂+τ)

(
max

(
2a(0)+1,4La

√
NV (0)

)
+8θ/∆

)
,

(42)

and assume that the matrix M

(JL1) has the weak Johnson–Lindenstrauss property of parameter ε = ε′ and δ =

ε′
√

2X(0)+α

2 at all points xi(t)− xj(t) for i, j ∈ {1, . . . , N}, t ∈ [0, T̂ + τ ],
(JL2) has the weak Johnson–Lindenstrauss property of parameter ε = ε′ and δ = ∆

at all points vi(nτ)− v(nτ) for i ∈ {1, . . . , N}, n = 0, . . . , b T̂τ c+ 1, and
(JL3) has the (strong) Johnson–Lindenstrauss property of parameter ε = 1/2 at the

points vi(0)− v(0) and xi(0)− x(0) for i ∈ {1, . . . , N} .

Then there exists an n ∈ N0 such that
√
W (nτ) ≤ 2∆. Moreover, setting

T0 = n∗τ, where n∗ := min
{
n ∈ N0 :

√
W (nτ) ≤ 2∆

}
,

it holds that at T0 both the high-dimensional and the projected low-dimensional
systems are in the consensus region defined by Lemma 1.3. Furthermore, we have
the estimates

T0 ≤
2N

θ

(√
W (0)− 2∆

)
+ τ ≤ T̂ + τ

as well as

max
t∈[0,T0]

max
i,j
‖xi(t)− xj(t)‖ ≤ 2

√
NX,

max
t∈[0,T0]

max
i,j
‖vi(t)− vj(t)‖ ≤ 2

√
NV (0).

(43)

Proof. First step. Let

Y = 2Y (0) +
2N2

θ2
W (0)2. (44)

We shall prove the following implication for every n ∈ N such that nτ ≤ T̂ : if√
W (mτ) > 2∆ for every m = 0, . . . , n and the subsequent assumptions P1(n),

P2(n), and P3(n) depending on n hold
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P1(n) : For t ∈ [0, nτ) it holds

W ′(t) ≤ − θ

N

√
W (t) < 0,

V ′(t) ≤ −cθ
N

√
V (t) < 0;

P2(n) : Y (t) ≤ Y and X(t) ≤ X hold in [0, nτ ];
P3(n) : It holds ∫ nτ

0

√
2V (s) ds ≤ α,

then also P1(n+ 1), P2(n+ 1), and P3(n+ 1) hold true.

So let us assume
√
W (mτ) > 2∆ for every m = 0, . . . , n, which means that

T0 ≥ (n + 1)τ by definition of T0, and assume P1(n), P2(n), and P3(n). We begin
by computing the derivative of V and W for t ∈ [nτ, (n+ 1)τ ]:

V ′(t) =
d

dt
B(v(t), v(t))

= 2B(v̇(t), v(t))

≤ 2B(uh(nτ), v(t)).

The same computation yields

W ′(t) ≤ 2B(u`(nτ), w(t)).

By definition, u`ι̂(nτ) = −θw⊥ι̂ (nτ)/‖w⊥ι̂ (nτ)‖ where ι̂ is the smallest index such
that ‖w⊥ι̂ (nτ)‖ ≥ ‖w⊥j (nτ)‖ for all j = 1, . . . , N , and u`j(nτ) = 0 for every j 6= ι̂.

Then uhι̂ (nτ) = −θv⊥ι̂ (nτ)/‖v⊥ι̂ (nτ)‖ and uhj (nτ) = 0 for every j 6= ι̂. So we have

V ′(t) ≤ −2θ

N
φh(t),

W ′(t) ≤ −2θ

N
φ`(t),

(45)

where

φh(t) =
〈v⊥ι̂ (nτ), v⊥ι̂ (t)〉
‖v⊥ι̂ (nτ)‖

,

φ`(t) =
〈w⊥ι̂ (nτ), w⊥ι̂ (t)〉
‖w⊥ι̂ (nτ)‖

.

As we want to prove that P1(n+ 1) holds, we need to deduce suitable lower bounds
on φh(t) and φ`(t) to estimate the right-hand side of (45). To this purpose we need

first do derive auxiliary bounds on the growth of
√
V (t) and

√
W (t), see formula

(46) below: The general estimate

〈a, bi〉
‖a‖

≤ ‖bi‖ ≤
√
N
√
B

with arbitrary vectors a and b1, . . . , bN , and B = 1
N

∑N
i=1 ‖bi‖2 yields

|φ`(s)| ≤
√
N
√
W (s), |φh(s)| ≤

√
N
√
V (s)
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for all s ∈ [nτ, (n + 1)τ ]. We use these bounds to estimate the right-hand side of
(45) (√

V
)′

(s) =
V ′(s)

2
√
V (s)

≤ θ√
N
,(√

W
)′

(s) =
W ′(s)

2
√
W (s)

≤ θ√
N
.

An integration between nτ and s ∈ [nτ, (n+ 1)τ ] yields√
W (s) ≤

√
W (nτ) + (s− nτ)

θ√
N
≤
√
W (nτ) + τ

θ√
N
,√

V (s) ≤
√
V (nτ) + (s− nτ)

θ√
N
≤
√
V (nτ) + τ

θ√
N
.

(46)

With the help of (46) we now work out lower bounds for φ` and φh. It holds

φ`(t) =
〈w⊥ι̂ (nτ), w⊥ι̂ (t)〉
‖w⊥ι̂ (nτ)‖

=
〈w⊥ι̂ (nτ), w⊥ι̂ (nτ)〉
‖w⊥ι̂ (nτ)‖

− 〈w
⊥
ι̂ (nτ), w⊥ι̂ (nτ)− w⊥ι̂ (t)〉

‖w⊥ι̂ (nτ)‖
≥ ‖w⊥ι̂ (nτ)‖ − ‖w⊥ι̂ (nτ)− w⊥ι̂ (t)‖

≥ ‖w⊥ι̂ (nτ)‖ −
∫ t

nτ

‖ẇ⊥ι̂ (s)‖ ds.

(47)

We now estimate the integrand. From

ẇ⊥ι̂ (t) =
1

N

N∑
j=1

a(‖yj(t)− yι̂(t)‖)(w⊥j (t)− w⊥ι̂ (t)) + u`ι̂(nτ)− 1

N

N∑
j=1

u`j(nτ)

=
1

N

N∑
j=1

a(‖yj(t)− yι̂(t)‖)(w⊥j (t)− w⊥ι̂ (t))− θ · N − 1

N
· w⊥ι̂ (nτ)

‖w⊥ι̂ (nτ)‖
,

and the inequality

1

N

N∑
j=1

‖w⊥j − w⊥ι̂ ‖ ≤

 1

N

N∑
j=1

‖w⊥k − w⊥ι̂ ‖2
 1

2

≤

 1

N

N∑
j=1

j−1∑
j′=1

‖w⊥j′ − w⊥j ‖2
 1

2

=

 1

2N

N∑
j,j′=1

‖w⊥j − w⊥j′‖2
 1

2

=
√
N
√
W,

it follows

‖ẇ⊥ι̂ (s)‖ ≤ a(0)
√
N
√
W (s) + θ

N − 1

N
for all s ∈ [nτ, (n+ 1)τ).
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Using (46) we get

‖ẇ⊥ι̂ (s)‖ ≤ a(0)
√
N

(√
W (nτ) + τ

θ√
N

)
+ θ.

Plugging the last inequality into (47) we deduce

φ`(t) ≥ ‖w⊥ι̂ (nτ)‖ − τ
(
a(0)
√
N

(√
W (nτ) + τ

θ√
N

)
+ θ

)
≥ ‖w⊥ι̂ (nτ)‖ − τ

(
a(0)
√
N
√
W (nτ) + θ

)
− τ2a(0)θ.

The same calculations give us

φh(t) ≥ ‖v⊥ι̂ (nτ)‖ − τ
(
a(0)
√
N
√
V (nτ) + θ

)
− τ2a(0)θ.

Together with (45) this yields

W ′(t) ≤ −2θ

N

(
‖w⊥ι̂ (nτ)‖ − τ

(
a(0)
√
N
√
W (nτ) + θ

)
− τ2a(0)θ

)
, (48)

V ′(t) ≤ −2θ

N

(
‖v⊥ι̂ (nτ)‖ − τ

(
a(0)
√
N
√
V (nτ) + θ

)
− τ2a(0)θ

)
. (49)

By the assumption on τ ≤ τ0 in (41) and by assumption (JL3) we have

τ
(
a(0)
√
N
√
W (0) + θ

)
+ τ2a(0)θ ≤ τ

(
2a(0)

√
N
√
V (0) + θ

)
+ τ2a(0)θ

≤ ∆

2
≤ ∆.

Applying this and the fact that W is decreasing in [0, nτ ], which follows from P1(n),
we use (48) to deduce the following upper bound

W ′(t) ≤ −2θ

N

(
‖w⊥ι̂ (nτ)‖ − τ

(
a(0)
√
N
√
W (nτ) + θ

)
− τ22a(0)θ

)
≤ −2θ

N

(√
W (nτ)− τ

(
a(0)
√
N
√
W (0) + θ

)
− τ22a(0)θ

)
≤ −2θ

N

(√
W (nτ)−∆

)
.

Since we assumed that
√
W (nτ) > 2∆, this shows that W is decreasing on [nτ, (n+

1)τ ]. Additionally, using this former assumption we also can estimate

W ′(t) ≤ −2θ

N

(√
W (nτ)−∆

)
≤ − θ

N

√
W (nτ)

≤ − θ

N

√
W (t)

for all t ∈ [nτ, (n + 1)τ ]. Together with P1(n) this shows the stated assertion for
W ′(t) in P1(n+ 1).

In order to conclude the statement of P1(n) for V ′(t) we need to take advantage
of the estimates of the lower dimensional dynamics, of Proposition 4.4, and Lemma
2.5. By assumption P3(n) it holds that∫ nτ

0

√
2V (s) ds ≤ α.
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Thus, by the choice of ε′ in (42) and the assumptions (JL1), (JL2), and (JL3), the
hypotheses of Proposition 4.4 are fulfilled in the interval [0, nτ ] - since nτ ≤ T0 by
definition of T0 as the time where we switch the control to 0. Hence (32) holds and
it follows

‖Mv⊥i (nτ)− w⊥i (nτ)‖ ≤ ‖Mvi(nτ)− wi(nτ)‖+
1

N

N∑
j=1

‖Mvj(nτ)− wj(nτ)‖

≤ 2Ev(nτ)

≤ ∆.

This estimate and assumption (JL2) allow us to use Lemma 2.5 for the vectors

ai = v⊥i (nτ) and bi = w⊥i (nτ). Together with
√
W (nτ) > 2∆ this results in

‖v⊥ι̂ (nτ)‖ ≥ 1

4
‖w⊥ι̂ (nτ)‖, ‖v⊥ι̂ (nτ)‖ ≥ 1

4

√
W (nτ) ≥ ∆

2
,

‖v⊥ι̂ (nτ)‖ ≥ c
√
V (nτ).

By assumption P1(n) we know that V is decreasing in [0, nτ ]. Using the estimate
(49) together with the choice of τ ≤ τ0 in (41) we obtain

V ′(t) ≤ −2θ

N

(
‖v⊥ι̂ (nτ)‖ − τ

(
a(0)
√
N
√
V (nτ) + θ

)
− τ2a(0)θ

)
≤ −2θ

N

(
‖v⊥ι̂ (nτ)‖ − τ

(
a(0)
√
N)
√
V (0) + θ

)
− τ2a(0)θ

)
≤ −2θ

N

(
‖v⊥ι̂ (nτ)‖ − ∆

4

)
≤ − θ

N
‖v⊥ι̂ (nτ)‖

≤ −cθ
N

√
V (nτ),

for all t ∈ [nτ, (n+ 1)τ ]. This shows that also V is decreasing in [nτ, (n+ 1)τ ] and
hence

V ′(t) ≤ −cθ
N

√
V (nτ) ≤ −cθ

N

√
V (t)

for all t ∈ [nτ, (n+ 1)τ ]. Together with P1(n) this finishes the proof of P1(n+ 1).
We can now use Lemma 7.1 with η = θ

N and η = cθ
N to get the following estimates

for Y (t) and X(t), respectively,

Y (t) ≤ Y and X(t) ≤ X for all t ∈ [0, (n+ 1)τ ]

with X as defined in (38) and Y as defined in (44). This shows P2(n+ 1). Further-
more, P1(n+ 1) yields by integration∫ (n+1)τ

0

√
2V (s) ds ≤ −

√
2N

cθ

∫ (n+1)τ

0

V ′(s) ds

=

√
2N

cθ
(V (0)− V ((n+ 1)τ))

≤ αV (0),
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with α =
√

2N
cθ . Hence, under the assumptions P1(n), P2(n), and P3(n) we have

shown P1(n+ 1), P2(n+ 1) as well as P3(n+ 1), provided that
√
W (mτ) > 2∆ for

every m = 0, . . . , n, and thus completed the first step.

Second step. In the second step we shall prove that there exists an n∗ ∈ N0 such
that n∗τ ≤ T̂ + τ and

√
W (n∗τ) ≤ 2∆ holds, where T̂ is defined as in (40). By

definition of the threshold Γ = (2∆)2, this implies the switching of the control to 0
at time n∗τ . Assume on the contrary that√

W ((n+ 1)τ) > 2∆ (50)

for all n ∈ N0 with nτ ≤ T̂ . In the first step we showed that this yields in particular
for t ∈ [0, (n+ 1)τ) the estimates

W ′(t) ≤ − θ

N

√
W (t) < 0 and

√
W (t) > 2∆.

Hence for all t ∈ [0, (n+ 1)τ) it holds√
W (t) ≤

√
W (0) + t · sup

ξ∈(0,(n+1)τ)

(√
W
)′

(ξ)

=
√
W (0) + t · sup

ξ∈(0,(n+1)τ)

W ′(ξ)

2
√
W (ξ)

≤
√
W (0)− t · θ

2N
.

Taking n0 ∈ N0 such that n0τ ≤ T̂ < (n0 + 1)τ and using (JL3) we have√
W ((n0 + 1)τ) ≤

√
W (T̂ )

≤
√
W (0)− T̂ · θ

2N

=
√
W (0)− 2N

θ

(
2
√
V (0)− 2∆

) θ

2N

≤
√
W (0)− 2N

θ

(√
W (0)− 2∆

) θ

2N
≤ 2∆.

(51)

This contradicts assumption (50). Thus there exists an n∗ ∈ N0 that satisfies

n∗τ ≤ T̂ + τ and for which it holds√
W (n∗τ) ≤ 2∆. (52)

Third step. We shall show that (52) implies that the trajectories of both the low-
and high-dimensional systems are in the consensus region identified by Lemma 1.3
at time n∗τ , i.e.,√

W (n∗τ) ≤ γ(Y (n∗τ)) and
√
V (n∗τ) ≤ γ(X(n∗τ)).

We shall start considering the low-dimensional system. Since by (JL3) it holds

Y (0) ≤ (1 + 1/2)2 ·X(0) ≤ 4X(0),

W (0) ≤ 4V (0),
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and by the fact that the constant c from Lemma 2.5 is smaller than 1, we can

estimate Y = 2Y (0)+ 2N2

θ2 W (0)2 from below by 4X, where X = 2X(0)+ 2N2

c2θ2V (0)2.
This together with (52), the definition of ∆ in (39), and P2(n∗) lead to√

W (n∗τ) ≤ 2∆ ≤ γ
(
4X
)
≤ γ(Y ) ≤ γ(Y (n∗τ)).

It remains to prove that the high-dimensional system is in the consensus region
identified by Lemma 1.3. Again, the conditions of Lemma 2.5 for the vectors ai =
v⊥i (n∗τ) and bi = w⊥i (n∗τ) are fulfilled: as in the first step we have by Proposition
4.4

‖Mv⊥i (n∗τ)− w⊥i (n∗τ)‖ ≤ ∆,

and property (JL2) holds at n∗τ . Thus, an application of Lemma 2.5 shows√
V (n∗τ) ≤ C∆.

Hence the definition of ∆ in (39) and P2(n∗) yield√
V (n∗τ) ≤ C∆ ≤ γ(X) ≤ γ(X(n∗τ)).

We conclude that both the trajectories of the systems are in the consensus region
at time n∗τ . By Lemma 1.3 we are allowed to switch the control to 0 and both
systems tend to consensus autonomously.

Fourth step. In the second and third steps we have proven that both systems
enters the consensus region at time T0 = n∗τ , where n∗τ ≤ T̂ + τ . By the compu-
tations in (51), we have the following estimate

T0 ≤
2N

θ

(√
W (0)− 2∆

)
+ τ ≤ T̂ + τ.

Moreover, by P2(n∗) we have for every t ∈ [0, n∗τ ]

‖xi(t)− xj(t)‖2 ≤ 2‖xi(t)− x(t)‖2 + 2‖xj(t)− x(t)‖2 ≤ 4NX(t) ≤ 4NX,

and from P1(n∗) it follows

‖vi(t)− vj(t)‖2 ≤ 2‖vi(t)− v(t)‖2 + 2‖vj(t)− v(t)‖2 ≤ 4NV (t) ≤ 4NV (0)

for every t ∈ [0, n∗τ ]. This shows (43) and the proof is concluded.

5. How to find a Johnson–Lindenstrauss matrix. The main ingredient of
Proposition 4.4 and Theorem 4.5 is the existence of a Johnson–Lindenstrauss matrix
M ∈ Rk×d for the trajectories. Let ∆ and ε′ be as in Theorem 4.5 and let us recall
what we explicitly needed. Assume that T̂ is an upper estimate for T0, the time to
switch off the control. Then we need to define a matrix M ∈ Rk×d such that the
following properties hold:

(JL1) Let ε = ε′ and δ =
√

2
2 ε
′
(√

X(0) + N
cθ

)
. For all t ∈ [0, T̂ + τ ] and i, j ∈

{1, . . . , N} either we have

(1− ε)‖xi(t)− xj(t)‖ ≤ ‖M(xi(t)− xj(t))‖ ≤ (1 + ε)‖xi(t)− xj(t)‖

or

‖xi(t)− xj(t)‖ ≤ δ and ‖M(xi(t)− xj(t))‖ ≤ δ.
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(JL2) Let ε = ε′ and δ = ∆. For all n = 0, . . . , bTτ c + 1 and i ∈ {1, . . . , N} either
we have

(1− ε)‖vi(nτ)− v(nτ)‖ ≤ ‖M(vi(nτ)− v(nτ))‖ ≤ (1 + ε)‖vi(nτ)− v(nτ)‖

or

‖vi(nτ)− v(nτ)‖ ≤ δ and ‖M(vi(nτ)− v(nτ))‖ ≤ δ.

(JL3) Let ε = 1/2. Then for all i ∈ {1, . . . , N} we have

(1− ε)‖vi(0)− v(0)‖ ≤ ‖M(vi(0)− v(0))‖ ≤ (1 + ε)‖vi(0)− v(0)‖

and

(1− ε)‖xi(0)− x(0)‖ ≤ ‖M(xi(0)− x(0))‖ ≤ (1 + ε)‖xi(0)− x(0)‖.

In order to prove conditions (JL2) and (JL3) one can directly invoke the Johnson–
Lindenstrauss Lemma as discussed in Remark 2.2 while for (JL1) one can use its
continuous version, Lemma 2.4, which boils down again to the application of the
Johnson–Lindenstrauss Lemma on points sampled from the trajectories.

However, the Johnson–Lindenstrauss Lemma applies on points which are fixed a
priori before generating randomly the matrix M ∈ Rk×d. At a first look, due to the
fact that the high-dimensional controls depend on the low-dimensional ones, which
depend on the matrix M , the points on which we apply the Johnson–Lindenstrauss
Lemma may be seen as directly depending on M as well.

In order to resolve this apparent paradox, we want to clarify that actually, due
to the finite number of sampling times of the control and the finite number of
agents, the number of possible realizable trajectories, and consequently the number
of possible sampling points for the Johnson–Lindenstrauss Lemma, is finite and
independent of the choice of the matrix M . Hence we are now left with the tasks
of counting the number of such trajectories and of verifying that they fulfill the
necessary Lipschitz continuity assumptions for applying Lemma 2.4.

Let us state again that the lower dimension k of M ∈ Rk×d scales as

k ∼ ε−2 log(N ), (53)

where ε ∈ (0, 1) is the allowed distortion and N is the number of sampling points
on all possible trajectories.

We focus first in (53) on the dependence of ε = min{ε′, 1
2} on N , the number of

agents, and the dimension d. According to (42) in Theorem 4.5 the estimate on ε′

scales exponentially with N , i.e., ε′ . e−N , since T̂ scales (at least) linearly with
N , see (40) (for θ independent of N and d).

The positive aspect is that the estimate for ε′ does not involve the dimension d.
In order to compute N in (53) we need first of all to estimate the number of

realizable trajectories. Since we are insisting on sparse controls acting at most on
one agent at the time, at every switching time nτ with nτ ≤ T0, i.e., as long as the
control is not switched off, there are precisely only N possible controls and hence
N possible branches of future developments of the trajectories. By Theorem 4.5 it
holds T0 ≤ T̂ + τ and thus we can estimate the number P of possible paths by

P ≤ NbTτ c+1.

Surprisingly, accounting for all the possible future branching is sufficient to show
that actually we can already deterministically fix points a priory on which later
apply an independently randomly drawn matrix!
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1. In order to fulfill (JL1) for every possible trajectory, an application of Lemma
2.4 yields an estimate of the number of necessary sampling points

N1 = P · (T̂ + τ) ·
(
N

2

)
· 4 · Lx · (

√
d+ 2)

δε
, (54)

where the factor P · (T̂ + τ) accounts for the number of trajectories and

their time length, the factor
(
N
2

)
accounts for the number of space trajectory

differences xi − xj , and Lx is an upper estimate for the individual Lipschitz
constant, given by an estimate similar to (25) and the result from Theorem
4.5 that V is decreasing until T0 as follows:

Lx = max
(
Lxi−xj (0, T0) : i, j ∈ {1, . . . , N}

)
≤ sup
t∈(0,T0)

√
2NV (t) ≤

√
2NV (0).

2. To fulfill (JL2) we shall now count the necessary sampling points at every
switching time nτ . For n = 0 we have to consider N sampling points. For
n = 1 there are already N possible paths to take into account and hence we
need to take N2 = N ·N sampling points. Going on in this way, at time nτ
we have Nn possible outcomes of the dynamical system and hence we have
to take Nn+1 = Nn · N sampling points, as long as nτ ≤ T̂ + τ . Summing
up the number of sampling points, we conclude

N2 =

bTτ c+1∑
n=0

Nn+1 ≤ NbTτ c+3

3. To fulfill (JL3) we need only N3 = 2N sampling points.

Hence we can eventually estimate N from above by

N ≤ N1 +N2 +N3

= Nb
T
τ c+1 · (T̂ + τ) ·

(
N

2

)
· 4 ·

√
2NV (0) · (

√
d+ 2)

δε
+Nb

T
τ c+3 + 2N.

Thus, we can choose the dimension k of a Johnson–Lindenstrauss matrix M ∈
Rk×d as

k ∼ ε−2 · log(N )

∼ ε−2

[(
T̂

τ
+ 1

)
· logN + log(T̂ + τ) + log d+ log V (0) + | log(δε)|

]
,

where

ε = min (ε′, 1/2) and δ = min

(
∆,

√
2

2
ε′
(√

X(0) +
N

cθ

))
.

Since the estimate on ε′ scales exponentially in N , i.e., ε′ . e−N , the dimension
k grows exponentially in N . However, the positive aspect is that the estimate of
k only scales logarithmically with the dimension d. Hence we have shown that
at least for very large dimension d � 1 and relatively small number of agents
N our dimensionality reduction approach will pay-off. As we show in Section 6,
these theoretical bounds turn out to be by far over-pessimistic and, surprisingly,
this method of dimensionality reduction for computing optimal controls can work
effectively with lower dimensions k conspicuously smaller than d. Moreover, we
show below ways to circumvent the exponential dependency of k with respect to N
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at the cost of using sequences of Johnson–Lindenstrauss matrices, see Remark 5.2
and Remark 5.3.

Remark 5.1. The log(d)-dependency only comes into play when we derive (JL1)
from Lemma 2.4. One can actually use a similar argument as in Remark 3.5 in
order to get rid of this logarithmic dependency. We do not elaborate further on this
issue which appears to us just a mere and perhaps unnecessary technicality at this
point.

Remark 5.2. We observed that at least in the worst-case scenario here considered,
the dimension k of the Johnson–Lindenstrauss matrix is blowing up exponentially
with the number of agents N . A practical approach to circumvent this problem is
to use not only one but a whole family of matrices M0, . . . ,M`. The matrix M0 is
used from time 0 up to a certain time t0 and thus only needs to fulfill the Johnson–
Lindenstrauss property in this short time interval. At time t0 a new matrix M1

is chosen. We have to observe the positions as well as the consensus parameters
in high-dimension and project the system to low-dimension again, using M1, at t0.
Then we use the new low-dimensional system to calculate the index of the control
for the high-dimensional system from time t0 up to time t1, eventually we again
repeat the procedure with a new matrix M2 etc.

This approach has the advantage that it requires the Johnson–Lindenstrauss
properties for Mi, i = 1, . . . , `, only for a short time interval. The disadvantage is
that we have to observe the high-dimensional system and project it to low-dimension
again at every time ti, i = 0, . . . , `− 1.

Remark 5.3. There is additionally the possibility to get rid of the mutual de-
pendency of the matrix and the points of the trajectories using another family of
matrices.

First, we take a matrix M0 having the Johnson–Lindenstrauss properties (JL2)
at t = 0 and (JL3). We compute the index i0 of the control (as defined in Definition
4.1) at t = 0 using the projection M0.

Then we choose a matrix M1 having the Johnson–Lindenstrauss properties (JL1)
for all t ∈ [0, τ), (JL2) at t = τ , and (JL3). We compute the low-dimensional
system using the projection M1 in [0, τ ] and let the control act on the agent i0
calculated by M0. This is the main trick of the procedure: The points of the high-
dimensional system in [0, τ ] are not influenced by the matrix M1 and hence the
mutual dependency is removed, which means that there is no need of considering
all trajectories P anymore, in contrast to (54).

Now, from the low-dimensional system, computed by M1 with control acting on
i0 in [0, τ ], we choose the agent i1 at τ on which the control will act in the next
interval [τ, 2τ ].

This procedure can be carried on using a family of matrices {Mp : p = 0, . . . , `}
fulfilling the Johnson–Lindenstrauss properties (JL1) for all t ∈ [0, pτ), (JL2) at
t = pτ , and (JL3). The agent ip on which the control shall act in the interval
[pτ, (p+ 1)τ) is computed at pτ using the low-dimensional system projected by Mp,
while the control acts on jq in [qτ, (q+ 1)τ) for q = 0, . . . p− 1. Therefore, in [0, pτ ]
the index of the controlled agent and hence the trajectories of the high-dimensional
system are independent of Mp.

6. Numerical experiments. In the following section we shall present some nu-
merical experiments to confirm the theoretical observation of the interplay between
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the Cucker–Smale system, the dimension reduction by a Johnson–Lindenstrauss
matrix and the quality of the control chosen from the low-dimensional (projected)
system as defined in Definition 4.1.

For every ` = 0, 1, . . . we recursively solve the d-dimensional Cucker–Smale sys-
tem

ẋi(t) = vi(t),

v̇i(t) = 1
N

N∑
j=1

vj(t)−vi(t)(
1+‖xi(t)−xj(t)‖2

)β + ui(`τ),
t ∈ [`τ, (`+ 1)τ ], i = {1, . . . , N}

numerically, using as the initial value (x(`τ), v(`τ)) the solution of the preceding
interval [(`− 1)τ, `τ ] and as the starting value for ` = 0 the given values x(0) = x0

and v(0) = v0. The experiments are implemented by using Matlab applying a
Runge-Kutta method of order 4 solving the systems of ODEs with step width τ .
The following are the different control strategies ui we compare in our experiments:

(SP) Sparse control implemented in the high-dimensional system: this is the sparse
control strategy outlined in [7, Definition 4]. The control acts on the agent
with consensus parameter furthest away from the mean consensus parameter
as long as we are not in the consensus region given by Lemma 1.3: for every
` ∈ N0 let ι̂ ∈ {1, . . . , N} be the smallest index such that

‖v⊥ι̂ (`τ)‖ = max
1≤i≤N

‖v⊥i (`τ)‖,

and define the control as

uι̂(`τ) = −θ v⊥ι̂ (`τ)

‖v⊥ι̂ (`τ)‖
and ui(`τ) = 0 for every i 6= ι̂

as long as V (`τ) > γ(X(`τ))2. As soon as V (nτ) ≤ γ(X(nτ))2 is satisfied
for some n ∈ N0, we set T0 := nτ and the control to zero.

This control was shown to be optimal in the work [7, Section 4] in terms
of maximizing the rate of convergence to the consensus region, and shall
be therefore employed as a benchmark to test the effectiveness of the other
controls.

(U) Uniform control: this control strategy acts on every agent simultaneously
using a control pointing towards the mean consensus parameter with norm
equal to θ/N as long as V (`τ) > γ(X(`τ))2 . This means

uj(`τ) = − θ

N

v⊥j (`τ)

‖v⊥j (`τ)‖
for all j ∈ {1, . . . , N}.

Again, as soon as V (nτ) ≤ γ(X(nτ))2 is satisfied for some n ∈ N0, we set
T0 := nτ and the control to zero.

(R) Random sparse control: as long as V (`τ) > γ(X(`τ))2, at every sampling
time `τ we choose an index j ∈ {1, . . . , N} at random following a uniform
distribution. Then we define the control as

uj(`τ) = −θ
v⊥j (`τ)

‖v⊥j (`τ)‖
and ui(`τ) = 0 for every i 6= j.

As in the above controls, as soon as V (nτ) ≤ γ(X(nτ))2 is satisfied for some
n ∈ N0, we set T0 := nτ and the control to zero.

(DR) Dimension reduction sparse control chosen by the low-dimensional projected
system: here ui(`τ) = uhi (`τ) is defined as in Definition 4.1. In order to test
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the performance of this control, and to avoid the stability complications aris-
ing from finite precision approximation, we calculate the trajectories of both
the high- and the low-dimensional system: if the high-dimensional system
enters the consensus region first (i.e., V (nτ) ≤ γ(X(nτ))2 for some n ∈ N0),
then we set the control to zero and T0 := nτ . Instead, if the system in low di-
mension reaches the consensus region first (i.e., W (`τ) ≤ γ(Y (`τ))2 for some
` ∈ N0), then we switch the control for the high-dimensional system to the
random sparse control strategy (R) until V (nτ) ≤ γ(X(nτ))2 is eventually
satisfied for some n ∈ N0.

Notice that all the controls above are time sparse, and only the uniform control
strategy (U) is not componentwise sparse.

Remark 6.1. The reasons for using random sparse control at the end phase of (DR)
in the case that the low-dimensional system reaches the consensus region before the
high-dimensional one are of numerical and computational nature. In fact, the step
width τ computed in Theorem 4.5 to ensure convergence to the consensus region
in finite time is often way too small, and in our numerical experiments we need to
exceed it. Moreover, as soon as the high-dimensional system enters the consensus
region, the difference between consensus parameters becomes so small to render, for
such a large time step, the choice of the sparse control highly inaccurate, leading to
inefficient chattering phenomena, without steering the high-dimensional system to
consensus.

As an alternative, we employ the random sparse control as soon as the low-
dimensional system has reached the consensus region (if this happens before the
high-dimensional system does). This procedure has the advantage of always steering
the system to the consensus region, and it only slightly affects the time that the high-
dimensional system takes to reach the consensus region, since it is usually necessary
for a very short time (provided that the dimension of the Johnson–Lindenstrauss
matrix is sufficiently large).

6.1. Content of the numerics. The following are the driving issues concerning
the controls introduced above:

1. Does the control steer the system to the consensus region as defined in Defi-
nition 1.5 in finite time?

2. How long does it take to steer the system to the consensus region?

In the following, for every experiment we fix the number of agents N , the di-
mension d, the control strength θ, the power of the interaction kernel β as in (3),
the step width τ , and in particular the configuration (x0, v0) at the beginning. We
report the maximal step width τ0 (theoretically) allowed by formula (41), and the

estimate from above for the time to consensus T̂ (taken from Theorem 4.5). We also
report the quantity V (0)− γ(X(0))2, accounting for the discrepancy of the original
configuration from the consensus region.

For every configuration we shall present a table containing the performances
of the different controls, measured by the time employed by the high-dimensional
system to reach the consensus region T0, and the time T0.5 it takes to halve the
“distance” to the consensus region: this means that T0.5 is the minimal time satis-
fying

V (T0.5)− γ(X(T0.5))2 ≤ 1/2 ·
(
V (0)− γ(X(0))2

)
.
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To test the performances of the control (DR) we shall use a variety of Bernoulli
random matrices M ∈ Rk×d for different dimensions k. For any of these dimensions,
we also report the initial discrepancy W (0)−γ(Y (0))2 from the consensus region of
the projected system, and the switching time TS at which the random sparse control
replaces the original dimension reduction control strategy (if the high-dimensional
system enters the consensus region before the low-dimensional one, we set TS := T0).

Figure 2 shows the first two coordinates of the initial configurations used in each
section.
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Figure 2. From top-left to bottom-right: first two coordinates of
the initial configurations of Sections 6.2.1, 6.2.2, 6.2.3, 6.3.1, 6.3.2.
The blue points are the positions of the agents, the red arrows their
consensus parameters.

6.2. Examples where (DR) performs second best after (SP).

6.2.1. Configuration with one outlier. We take into account N = 9 agents in di-
mension d = 100 for which the j-th spatial component of the i-th agent is given by
the formula

(xi)j =
1

2
cos(i+ j

√
2) for j = 1, . . . , d and i = 1, . . . , N.

The result obtained is a set of points non-homogeneously distributed over an almost
spherical configuration, which, projected in R2, resembles an ellipse. A similar
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configuration is used for the consensus parameter of each agent, for which we have

(vi)j = sin(i
√

3− j) for j = 1, . . . , d and i = 1, . . . , N − 1;

the initial consensus parameter of the N -th agent is instead the vector with all
entries set equal to 10.

N θ β d τ0 T̂ τ V (0)− γ(X(0))2

9 5 0.6 100 7.33 · 10−4 115.17 10−2 1031.3

The following table reports the performance of the different kinds of control taken
into account:

Control (SP) (U) (R) (R) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR)

k - - - - 1 1 5 5 10 10 25 25 32 40 55 55

W (0)− γ(Y (0))2 - - - - 202.0 1014.2 509.9 870.2 1651.4 1072.3 1035.2 582.18 933.0 1273.1 1054.5 1046.5

T0 27.78 87.21 87.90 88.79 69.75 30.98 44.27 30.47 35.55 29.65 27.8 44.75 30.65 32.49 28.20 28.19

T0.5 5.44 22.96 22.64 23.21 5.92 5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.44

TS - - - - 13.47 22.25 17.81 22.39 32.62 29.03 27.8 23.14 26.2 28.94 28.20 28.15

We first observe that if the system is left alone, with no control acting on it,
the quantity V (t)− γ(X(t))2 decreases only from 1031.3 to 946.2 at time 100, from
which we can infer that the system would not reach the consensus region without
an external intervention. Notice that the Sparse Control (SP) is the fastest; this
shall be a common feature of all our experiments, as expected by its optimality
shown in [7, Proposition 3]. The uniform control (U) and the random control
(R) perform similarly and both take more than three times longer to reach the
consensus region as (SP). The control (DR) has comparable performances to (SP),
and very surprisingly even when projecting to dimension k = 1 the system reaches
the consensus region faster than with the controls (U) and (R).
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Figure 3. Time to con-
sensus for (DR) in func-
tion of the projected di-
mension k, and compari-
son with (SP) and (R).
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exactness of the matrix
at 0 for the fixed dimen-
sion k = 10.

In Figure 3, we illustrate the time T0 the system takes to reach the consensus
region as a function of the projected dimension k for the control (DR). If multiple
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tests are made with the same dimension k, we consider an average of the results.
We also report, in different colors, the values of T0 we obtain with the control (SP)
and the control (R) (blue and green line, respectively). It can be seen how the per-
formance of (DR) is basically the same as (SP) even if we reduce the dimensionality
by 80% .

Up to now, we don’t have any procedure to test if the randomly generated matrix
we use to implement the control (DR) satisfies the requested properties of Theorem
4.5. Moreover, to get a precise answer, we would need to gather information which
belongs to the high-dimensional system beyond time 0, something which we are not
allowed to know in advance. We claim, however, that the quantity, which we call
the exactness of the matrices at 0,

EM =

∣∣∣∣1− V (0)

W (0)

∣∣∣∣ =

∣∣∣∣∣1−
∑N
i=1 ‖v⊥i (0)‖2∑N

i=1 ‖Mv⊥i (0)‖2

∣∣∣∣∣ .
is a measure of how good the matrix M is. To show that, we have considered six
different M ∈ Rk×d for k = 10 and their respective time to the consensus region: we
report in Figure 4 the time to consensus for the system in function of the exactness
of the matrices at 0. A correlation between how EM is close to zero and how
effective is the control, is clearly visible.

6.2.2. Configuration generated by a geometric distribution. In this section we con-
sider a system where the locations are distributed as in the example before, while
the consensus parameters are given by the formula

(vi)j = (1.2)(i−1)/2 · sin(i
√

3− j) for j = 1, . . . , d and i = 1, . . . , N − 1;

This results in a more heterogeneous situation at the beginning. We also increase
the dimension d to 500, the strength of the force θ to 20 and β to 0.65.

N θ β d τ0 T̂ τ V (0)− γ(X(0))2

15 20 0.65 500 1.26 · 10−4 51.82 10−2 1195.5

The following table summarizes the results of the experiments:

Control (SP) (U) (R) (R) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR)

k - - - - 1 1 10 10 50 50 50 100 100

W (0)− γ(Y (0))2 - - - - 1194.2 1191.9 1194.3 1197.5 1007.2 1199.7 1178.2 1079.1 1204.7

T0 23.45 38.02 38.10 39.82 40.96 45.41 26.66 29.81 27.45 24.33 26.48 26.88 24.02

T0.5 5.49 7.60 7.68 7.66 7.455 9.04 5.64 5.86 5.55 5.5 5.59 5.59 5.50

If we let the system free to evolve, the quantity V (t) − γ(X(t))2 decreases only
from 1195.5 to 1122.3 at time 30. The slowness of the decay implies the necessity of
a control. The uniform control (U) and the random control (R) perform similarly,
as in the example before. However, the control (DR) overwhelms both when the
projected dimension is large enough (k ≥ 10). Figure 5 shows the performance of
(DR) in function of k and compares it with (R) and (SP).
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Time to consensus for (DR) in function of the projected dimension k, and
comparison with (SP) and (R)
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Figure 6.

6.2.3. Configuration generated by a Cauchy distribution. For the system considered
in this section, the initial configuration is calculated as follows: the j-th spatial
component of the i-th agent is the value of a normal distribution with expected
value 0 and standard deviation 1, independently selected for different i and j. The
j-th component of the consensus parameter of the i-th agent is ruled by a Cauchy
distribution, whose density is given by

f(x) =
b

π(b2 + x2)
.

We choose the height to be b = 1/40 (to get a reasonably large V (0) in the com-
putations). The initial configuration is generated once and then fixed for all the
experiments with the different controls (SP), (R), (U) and (DR).

Below we list the parameters we fix for this section:

N θ β d τ0 T̂ τ V (0)− γ(X(0))2

25 5 0.6 100 3.77 · 10−4 214.76 10−2 464.03

The following table reports the performances of the various controls:

Control (SP) (U) (R) (DR) (DR) (DR) (DR) (DR) (DR) (DR)

k - - - 1 1 2 5 5 10 10

W (0)− γ(Y (0))2 - - - 461.04 461.04 475.48 464.39 464.39 465.00 465.00

T0 33.45 266.44 265.14 48.04 48.6 38.07 37.98 38.16 36.11 35.41

T0.5 6.1 70.55 68.54 6.1 6.1 6.1 6.1 6.1 6.1 6.1

As in the examples before, the control (DR) clearly outperforms both (R) and
(U), and in this case even for k = 1. Figure 6 compares the effectiveness of the
controls (DR) (in function of k), (R) and (SP). We point out that, even in this
situation, a control is necessary to steer the system to consensus since the quantity
V (t)−γ(X(t))2 decreases only from 464 to 436.5 at time 50 if no control is applied.
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6.3. Examples in which the performances of (R) and (U) are comparable
to (DR).

6.3.1. Configuration generated by a normal distribution. In this example, the j-th
spatial (resp., consensus parameter) component of the i-th agent is independently
generated by a normal distribution with expected value 0 and standard deviation
10 (resp., 8). As in Section 6.2.3, we generate the initial configuration once and we
use it for all the experiments with the controls.

The parameters used for this configuration are listed in the table below, and after
it we report the performances of the various controls:

N θ β d τ0 T̂ τ V (0)− γ(X(0))2

10 20 0.65 500 2.55 · 10−6 165.68 5 · 10−3 27458

Control (SP) (U) (R) (R) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR)

dim. k - - - - 1 1 2 5 10 10 20 50 50 100 100

W (0)− γ(Y (0))2 - - - - 27496 27469 27421 27425 27458 27493 27464 27482 27481 27495 27498

T0 82.65 84.56 85.82 85.25 129.28 153.02 115.91 99.79 95.31 100.18 96.7 89.79 91.02 91.67 89.60

T0.5 24.09 24.13 24.15 24.13 36.195 42.76 29.28 26.47 26.75 25.25 25.32 24.7 24.74 24.44 24.32

TS - - - - 68.06 62.94 76.91 80.51 80.55 77.30 81.57 82.25 82.25 82.49 82.57

This time the controls (R) and (U) are quasi-optimal, performing in almost
the same way as the benchmark control (SP). Figure 7 shows that the control
(DR) behaves similarly to (R) and (SP) up to a reduced dimension k = 50 (hence
up to 10% of the original dimension): from that point on the efficiency rapidly
deteriorates, making the control unfeasible.

Time to consensus for (DR) in function of the projected dimension k, and
comparison with (SP) and (R)
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6.3.2. Uniform configuration. As last example we consider a configuration similar
to the one of Section 6.2.1: the j-th spatial and consensus parameter components
of the i-th agent are both given by

(xi)j = (vi)j = cos(i+ j
√

2) for j = 1, . . . , d and i = 1, . . . , N.
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The following tables report the parameters of the configuration taken into account
and the outcomes with the different controls:

N θ β d τ0 T̂ τ V (0)− γ(X(0))2

15 5 0.8 200 1.91 · 10−5 59.48 10−3 98.30

Control (SP) (U) (R) (R) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR)

k - - - - 1 1 10 10 20 20 50 50

W (0)− γ(Y (0)) - - - - 95.98 43.50 95.85 96.70 77.12 101.65 97.02 122.83

T0 28.95 29.95 30.86 30.74 53.97 44.47 38.13 32.35 33.08 32.73 29.41 32.45

T0.5 7.99 8.30 8.30 8.31 9.74 9.21 8.92 8.15 8.21 8.17 7.99 8.14

As before, (R) and (U) perform similarly to (SP); (DR) is able to compete up to
a dimension reduction of 25% of the original dimension (k = 50). From there on,
its efficiency steadily declines. This phenomenon can be witnessed in Figure 8.

6.4. Conclusions from the experiments. In this section we summarize the con-
clusions that can be drawn from the list of experiments reported in this numerical
section.

1. A common feature of all the experiments is that the control (DR) is highly
competitive with respect to the benchmark control (SP) up to a reduced
dimension which is 10% of the original one. Indeed, in this case (DR) takes
between 5 to 22% more time than (SP) to steer the system to consensus.
This suggests that the approach of dimension reduction works in general
much better practically than theoretically, and that our analysis in Theorem
4.5 is quite conservative.

2. The dimension of the matrix is not the only necessary ingredient to obtain a
competitive control: a matrix should also fulfill the Johnson–Lindenstrauss
property for certain points of the high dimensional system. Since to check the
latter condition we need information regarding the future development of the
system, we need to design different criteria to distinguish “good” matrices
from “bad” ones. In Section 6.2.1, we have seen that an efficient sieve is the
notion of exactness of a matrix at 0: the smaller this value is, the better the
control shall perform, according to the empirical data we have gathered.

3. There is no proof yet the that random sparse control (R) forces the system
to enter the consensus region almost surely for every configuration, but nu-
merical experiments suggest this behavior. Furthermore, it is interesting to
notice that the time to consensus obtained by the use of the uniform control
(U) is always very close to the one we get by using the random sparse con-
trol strategy (R): this strongly hints that the expected value of the time to
consensus of the random control (R) could be very near or even equal to the
one of (U).

4. A common feature of the last two examples is the “relative homogeneity”
of the consensus parameters with respect to the mean consensus parameter:
by this we mean that the consensus parameters of all the agents compete
to be the furthest away from it, and thus the sparse control will jump from
one to another continuously, showing a chattering behavior. In contrast,
all the first three experiments feature a relatively small subgroup of agents
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whose consensus parameters are the furthest away from the mean consensus
parameter by a considerable margin. These are the case where the controls
(SP) and (DR) are substantially more efficient than (R) and (U): by firmly
acting on the most “badly behaving” agents, we are able to steer the system
to consensus faster than employing control strategies which are blind to the
structure of the group. It is thus advisable to use sparse strategies only when
the consensus parameters of the agents are sufficiently “asymmetric” at the
starting point.

7. Appendix. We need a technical lemma which can be found also in [7]. But with
a slightly different argument, we could improve the inequalities there and get rid
of an N2, which is important for estimating the time of entrance in the consensus
region of controlled Cucker–Smale systems, depending on N .

Lemma 7.1. If there exists η > 0 and T > 0 such that

V ′(t) ≤ −η
√
V (t)

for almost every t ∈ [0, T ], then

V (t) ≤
(√

V (0)− η

2
t
)2

and

X(t) ≤ 2X(0) +
2

η2
V (0)2.

Proof. Integrating the first assumption one has∫ t

0

V ′(s)√
V (s)

ds ≤ −ηt

and hence √
V (t)−

√
V (0) =

1

2

∫ t

0

V ′(s)√
V (s)

ds ≤ −η
2
t.

Furthermore, to prove the second statement of the lemma we observe∫ t

0

√
V (s) ds ≤ −1

η

∫ t

0

V ′(s) ds = −1

η
(V (t)− V (0)) ≤ 1

η
V (0).

On the other hand, using the (vector-valued) Minkowski inequality in the second
step √

X(t)

=

 1

2N2

∑
i,j

‖xi(t)− xj(t)‖2
1/2

≤

 1

2N2

∑
i,j

‖xi(0)− xj(0)‖2
1/2

+

 1

2N2

∑
i,j

(∫ t

0

‖vi(s)− vj(s)‖ ds
)2
1/2
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≤
√
X(0) +

∫ t

0

 1

2N2

∑
i,j

‖vi(s)− vj(s)‖2
1/2

ds

=
√
X(0) +

∫ t

0

√
V (s) ds

≤
√
X(0)− 1

η

∫ t

0

V ′(s) ds

≤
√
X(0) +

1

η
V (0)

and furthermore by (x+ y)2 ≤ 2x2 + 2y2 it follows

X(t) ≤ 2X(0) +
2

η2
V 2(0).

7.1. Gronwall’s estimates and variations on the theme. We need to employ
at several places Gronwall’s estimates. However, besides the classical one, we need
to develop a variation for piecewise continuous evolutions. Both are reported as
follows.

Lemma 7.2 (Classical Gronwall’s Lemma). Let I = [a, b] be an interval on the
real line. Let ρ, β and u be real valued functions and furthermore assume that β is
non-negative as well as continuous, u is continuous and ρ is non-decreasing on I
and integrable on I.

Assume that we have

u(t) ≤ ρ(t) +

∫ t

a

β(s)u(s) ds, ∀t ∈ I,

then

u(t) ≤ ρ(t)e
∫ t
a
β(s) ds, ∀t ∈ I.

Lemma 7.3 (Discrete Gronwall’s Lemma). Let I = [0, T ] be an interval on the real
line and τ ∈ [0, T ]. Let ρ, β1, β2, and u be real functions on I such that

1. ρ is non-decreasing and bounded on I,
2. β1 is non-decreasing and continuous on I,
3. β2 is non-negative and continuous on I and
4. u be non-negative and continuous on I.

Assume that for every t ∈ [0, T ] it holds: Let n ∈ N0 such that nτ ≤ t < (n + 1)τ
and assume

u(t) ≤ (ρ(t)− ρ(nτ)) + (1 + β1(t)− β1(nτ))u(nτ) +

∫ t

nτ

β2(s)u(s) ds for all t ∈ I.

Then

u(t) ≤ u(0)eβ1(t)−β1(0)+
∫ t
0
β2(s) ds + (ρ(t)− ρ(0))eβ1(t)−β1(0)+

∫ t
0
β2(s) ds.

Proof. The proof uses n applications of Gronwall’s Lemma for the intervals [0, τ ],
[τ, 2τ ], . . . , [(n− 1)τ, nτ ], [nτ, t]. The first application over [nτ, t] gives

u(t) ≤ [(ρ(t)− ρ(nτ)) + (1 + β1(t)− β1(nτ))u(nτ)] e
∫ t
nτ
β2(s) ds.
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The second application for the interval [(n− 1)τ, nτ ] gives

u(nτ) ≤ [(ρ(nτ)− ρ((n− 1)τ)) + (1 + β1(nτ)− β1((n− 1)τ))u((n− 1)τ)] ·

· e
∫ nτ
(n−1)τ

β2(s) ds.

Plugging the last estimate into the first one we arrive at

u(t) ≤ (ρ(t)− ρ(nτ))e
∫ t
nτ
β2(s) ds

+ [1 + β1(t)− β1(nτ)] [ρ(nτ)− ρ((n− 1)τ)] e
∫ t
(n−1)τ

β2(s) ds

+ [1 + β1(t)− β1(nτ)] [1 + β1(nτ)− β1((n− 1)τ)]u((n− 1)τ)e
∫ t
(n−1)τ

β2(s) ds.

Now, by induction on this successive substitutions we obtain

u(t) ≤ (ρ(t)− ρ(nτ))e
∫ t
nτ
β2(s) ds

+ [1 + β1(t)− β1(nτ)]

n−1∑
i=0

[ρ((n− i)τ)− ρ((n− i− 1)τ)] e
∫ t
(n−i−1)τ

β2(s) ds·

·
n∏

j=n−i+1

[1 + β1(jτ)− β1((j − 1)τ)]

+ u(0)e
∫ t
0
β2(s) ds [1 + β1(t)− β1(nτ)]

n∏
j=1

[1 + β1(jτ)− β1((j − 1)τ)] .

Now we use

1 + a ≤ ea, hence

n∏
i=1

(1 + an) ≤ e
∑n
i=1 an

for a, a1, . . . , an ∈ R+ to get

u(t) ≤ (ρ(t)− ρ(nτ))e
∫ t
nτ
β2(s) ds

+

n−1∑
i=0

[ρ((n− i)τ)− ρ((n− i− 1)τ)] e
∫ t
(n−i−1)τ

β2(s) dseβ1(t)−β1((n−i)τ)

+ u(0)e
∫ t
0
β2(s) dseβ1(t)−β1(0)

≤ u(0)eβ1(t)−β1(0)+
∫ t
0
β2(s) ds + (ρ(t)− ρ(0))eβ1(t)−β1(0)+

∫ t
0
β2(s) ds.
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