Citation: Tianwei Zhang, Zhouhong Li, Jianwen Zhou. 2p-th mean dynamic behaviors for semi-discrete stochastic competitive neural networks with time delays[J]. AIMS Mathematics, 2020, 5(6): 6419-6435. doi: 10.3934/math.2020413
[1] | X. B. Nie, J. L. Liang, J. D. Cao, Multistability analysis of competitive neural networks with Gaussian-wavelet-type activation functions and unbounded time-varying delays, Appl. Math. Comput., 356 (2019), 449-468. |
[2] | Y. K. Li, J. L. Qin, Existence and global exponential stability of anti-periodic solutions for generalised inertial competitive neural networks with time-varying delays, J. Exp. Theor. Artif. In., 32 (2020), 291-307. doi: 10.1080/0952813X.2019.1647564 |
[3] | S. Q. Gong, S. F. Yang, Z. T. Guo, et al. Global exponential synchronization of memristive competitive neural networks with time-varying delay via nonlinear control, Neural Process. Lett., 49 (2019), 103-119. doi: 10.1007/s11063-017-9777-1 |
[4] | B. Du, Anti-periodic solutions problem for inertial competitive neutral-type neural networks via Wirtinger inequality, J. Inequal. Appl., 2019 (2019), 187. |
[5] | X. M. Liu, C. Y. Yang, L. N. Zhou, Global asymptotic stability analysis of two-time-scale competitive neural networks with time-varying delays, Neurocomputing, 273 (2018), 357-366. doi: 10.1016/j.neucom.2017.07.047 |
[6] | Y. Q. Wang, L. H. Huang, Global stability analysis of competitive neural networks with mixed time-varying delays and discontinuous neuron activations, Neurocomputing, 152 (2015), 85-96. doi: 10.1016/j.neucom.2014.11.016 |
[7] | X. S. Yang, J. D. Cao, Y. Long, et al. Adaptive lag synchronization for competitive neural networks with mixed delays and uncertain hybrid perturbations, IEEE Trans. Neural Networks, 21 (2010), 1656-1667. doi: 10.1109/TNN.2010.2068560 |
[8] | T. T. Su, X. S. Yang, Finite-time synchronization of competitive neural networks with mixed delays, Discrete Cont. Dyn. Syst.-B, 21 (2016), 3655-3667. doi: 10.3934/dcdsb.2016115 |
[9] | H. J. Liu, Z. D. Wang, B. Shen, et al. Delay-distribution-dependent h-infinity state estimation for discrete-time memristive neural networks with mixed time-delays and fading measurements, IEEE Trans. Cybern., 50 (2020), 440-451. doi: 10.1109/TCYB.2018.2862914 |
[10] | F. Z. de Castro, M. E. Valle, A broad class of discrete-time hypercomplex-valued Hopfield neural networks, Neural Networks, 122 (2020), 54-67. doi: 10.1016/j.neunet.2019.09.040 |
[11] | E. Y. Cong, X. Han, X. Zhang, Global exponential stability analysis of discrete-time BAM neural networks with delays: A mathematical induction approach, Neurocomputing, 379 (2020), 227-235. doi: 10.1016/j.neucom.2019.10.089 |
[12] | Q. Xiao, T. W. Huang, Quasisynchronization of discrete-time inertial neural networks with parameter mismatches and delays, IEEE Trans. Cybern., 2019. In press: doi:10.1109/tcyb.2019.2937526. |
[13] | R. X. Li, X. B. Gao, J. D. Cao, Exponential state estimation for stochastically disturbed discretetime memristive neural networks: Multiobjective approach, IEEE trans. Neural Networks learn. Syst., 2019. In press: doi:10.1109/tnnls.2019.2938774. |
[14] | S. Mohamad, K. Gopalsamy, Dynamics of a class of discrete-time neural networks and their continuous-time counterparts, Math. Comput. Simul., 53 (2000), 1-39. doi: 10.1016/S0378-4754(00)00168-3 |
[15] | Z. K. Huang, S. Mohamad, F. Gao, Multi-almost periodicity in semi-discretizations of a general class of neural networks, Math. Comput. Simul., 101 (2014), 43-60. doi: 10.1016/j.matcom.2013.05.017 |
[16] | Z. K. Huang, X. H. Wang, F. Gao, The existence and global attractivity of almost periodic sequence solution of discrete-time neural networks, Phys. Lett. A, 350 (2006), 182-191. doi: 10.1016/j.physleta.2005.10.022 |
[17] | Y. Ji, Global attractivity of almost periodic sequence solutions of delayed discrete-time neural networks, Arabian J. Sci. Eng., 36 (2011), 1447-1459. doi: 10.1007/s13369-011-0109-x |
[18] | Z. K. Huang, S. Mohamad, F. Gao, Multi-almost periodicity in semi-discretizations of a general class of neural networks, Math. Comput. Simul., 101 (2014), 43-60. doi: 10.1016/j.matcom.2013.05.017 |
[19] | P. H. Bezandry, T. Diagana, Almost periodic stochastic processes, Springer, New York, 2011. |
[20] | T. W. Zhang, L. J. Xu, Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays, Kybernetika, 55 (2019), 690-713. |
[21] | S. G. Hu, C. M. Huang, F. K. Wu, Stochastic differential equations, Science Press, Beijing, 2008. |
[22] | D. R. Smart, Fixed point theorems, Cambridge University Press, Cambridge, 1980. |
[23] | T. W. Zhang, L. L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 106072. |
[24] | R. Q. Tang, X. S. Yang, X. X. Wan, et al. Finite-time synchronization of nonidentical BAM discontinuous fuzzy neural networks with delays and impulsive effects via non-chattering quantized control, Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 104893. |
[25] | T. W. Zhang, L. Yang, L. J. Xu, Stage-structured control on a class of predator-prey system in almost periodic environment, Int. J. Control, 93 (2020), 1442-1460. doi: 10.1080/00207179.2018.1513165 |
[26] | T. W. Zhang, X. R. Gan, Almost periodic solutions for a discrete fishing model with feedback control and time delays, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 150-163. doi: 10.1016/j.cnsns.2013.06.019 |
[27] | T. W. Zhang, Almost periodic oscillations in a generalized Mackey-Glass model of respiratory dynamics with several delays, Int. J. Biomath., 7 (2014), 1450029. |