
Citation: M. Syed Ali, M. Hymavathi, Bandana Priya, Syeda Asma Kauser, Ganesh Kumar Thakur. Stability analysis of stochastic fractional-order competitive neural networks with leakage delay[J]. AIMS Mathematics, 2021, 6(4): 3205-3241. doi: 10.3934/math.2021193
[1] | Manoj Singh, Ahmed Hussein, Msmali, Mohammad Tamsir, Abdullah Ali H. Ahmadini . An analytical approach of multi-dimensional Navier-Stokes equation in the framework of natural transform. AIMS Mathematics, 2024, 9(4): 8776-8802. doi: 10.3934/math.2024426 |
[2] | Aslı Alkan, Halil Anaç . A new study on the Newell-Whitehead-Segel equation with Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2024, 9(10): 27979-27997. doi: 10.3934/math.20241358 |
[3] | Musawa Yahya Almusawa, Hassan Almusawa . Numerical analysis of the fractional nonlinear waves of fifth-order KdV and Kawahara equations under Caputo operator. AIMS Mathematics, 2024, 9(11): 31898-31925. doi: 10.3934/math.20241533 |
[4] | Gulalai, Shabir Ahmad, Fathalla Ali Rihan, Aman Ullah, Qasem M. Al-Mdallal, Ali Akgül . Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative. AIMS Mathematics, 2022, 7(5): 7847-7865. doi: 10.3934/math.2022439 |
[5] | Naveed Iqbal, Saleh Alshammari, Thongchai Botmart . Evaluation of regularized long-wave equation via Caputo and Caputo-Fabrizio fractional derivatives. AIMS Mathematics, 2022, 7(11): 20401-20419. doi: 10.3934/math.20221118 |
[6] | Maysaa Al Qurashi, Saima Rashid, Sobia Sultana, Fahd Jarad, Abdullah M. Alsharif . Fractional-order partial differential equations describing propagation of shallow water waves depending on power and Mittag-Leffler memory. AIMS Mathematics, 2022, 7(7): 12587-12619. doi: 10.3934/math.2022697 |
[7] | Nader Al-Rashidi . Innovative approaches to fractional modeling: Aboodh transform for the Keller-Segel equation. AIMS Mathematics, 2024, 9(6): 14949-14981. doi: 10.3934/math.2024724 |
[8] | Muhammad Altaf Khan, Muhammad Ismail, Saif Ullah, Muhammad Farhan . Fractional order SIR model with generalized incidence rate. AIMS Mathematics, 2020, 5(3): 1856-1880. doi: 10.3934/math.2020124 |
[9] | Ibrahim-Elkhalil Ahmed, Ahmed E. Abouelregal, Doaa Atta, Meshari Alesemi . A fractional dual-phase-lag thermoelastic model for a solid half-space with changing thermophysical properties involving two-temperature and non-singular kernels. AIMS Mathematics, 2024, 9(3): 6964-6992. doi: 10.3934/math.2024340 |
[10] | Fatmawati, Muhammad Altaf Khan, Ebenezer Bonyah, Zakia Hammouch, Endrik Mifta Shaiful . A mathematical model of tuberculosis (TB) transmission with children and adults groups: A fractional model. AIMS Mathematics, 2020, 5(4): 2813-2842. doi: 10.3934/math.2020181 |
Fractional Calculus (FC) is the subject dealing with the derivative and integration of non-integer orders. In [1], the researchers generalize the classical diffusion and wave equations to different physical processes, such as slow diffusion, classical diffusion, diffusion-wave hybrid, and the classical wave equation. Differential equations (DEs) are valuable tools for describing critical natural phenomena such as phase transition, electrochemistry, electromagnetism, filtration, acoustics, cosmology, biochemistry, and the dynamics of biological groups [2]. The present idea of DEs has been further extended by using different derivatives operators with fractional orders. The mathematical models with fractional derivatives and integrations are more accurate and adequate than ordinary models[3]. There are various applications of fractional calculus in applied sciences like Poisson-Nerst Planck diffusion [4], earth quack nonlinear oscillation [5], air foil, chaos theory [6], fluid traffic [7], Financial [8], Zener [9], Electrodynamics [10], Cancer chemotherapy [11], Hepatitis B Virus [12], Tuberculosis [13], Pine wilt disease [14], Diabetes [15] and many other various applications in applied sciences [16,17]. The applications that have been mentioned above-attracted researchers to the subject and developed various sophisticated mathematical models in terms of fractional integrals and derivatives. These models are further analyzed and solved by using some numerical and analytical techniques such as the functional constraint's method [18], the iterated pseudo-spectral method [19], reduced differential transforms algorithm (RDTA)[20], q-homotopy analysis Shehu transform algorithm (q-HASTA) [20], predictor-corrector algorithm [21], Adams-Bashforth-Moulton algorithm [22], and the numerical method for DEs in fractional order: based on the definition of Grunwald-Letnikov (GL) fractional derivative [22].
One of the most effective tools for researchers to simulate physical phenomena in nature, including fluid dynamics, mathematical biology, quantum physics, linear optics, and chemical kinetics, are considered to be fractional partial differential equations (FPDEs) [23]. Other physical phenomena are accurately modeled by FPDEs, such as the analytical solution of a coupled system of non-linear PDEs is presented in [24]; the solution of non-linear ODEs, which is previously achieved in [25]; non-linear PDEs, which is presented in[26]; fractional telegraph equations which are presented in [27], the unsteady fractional flow of a polytrophic gas model which is introduced in [28], and the fractional Fokker-Plank equation and the Schrödinger equation can be found in [29].
Many researchers have tried hard to find the solutions of these FPDES through numerous techniques such as Homotopy perturbation transform method (HPTM) [30], Homotopy perturbation method (HPM) [31], Homotopy analysis method (HAM) [32], the Finite differences method[33], the multiple exponential function algorithms and variational iteration method (VIM) [34]. Moreover, Feng's first integral method[35], Abazari and Ganji provide the reduce differential transform method (RDTM) for PDEs [36], Mehshless method (MM) [37], Laplace Adomian decomposition method (LADM)[38], and modified homotopy perturbation method (MHPM) [39].
The Riemann-Liouville (R-L) integral [40], Caputo [41,42], Caputo-Fabrizio[43] and Atangana-Baleanu[44] have been developed using the various fractional derivative operators (FDOs) to provide a precise meaning to the derivative with the optimal order of the derivative. These fractional derivative operators differ fundamentally from one another in that they each have a variety of kernels from which to choose depending on the demands of a given application. "Be aware that these three definitions of fractional derivatives have advantages and disadvantages. An arbitrary function does not need to be continuous at the origin or differentiable in order to take the RL fractional derivative. The fact that the RL derivative of a constant is not zero is one limitation in the RL's capacity for simulating real-world phenomena. On the other hand, the Caputo fractional derivative has the advantage of agreeing with the usual initial and boundary conditions included in the formulation of the equation. The disadvantage of Caputo's derivative is that we must first find the function's derivative in order to estimate the fractional derivative of a function in the Caputo sense. Atangana-Baleanu derivative tries to address some of the drawbacks from earlier. Besides, the fractional order derivative based on the AB operator is defined using limits rather than integrals. The details can be found in [41,42,43,44,45]."
In this study, we used three different FDOs: the Caputo fractional differential operator (C-FDO), the Caputo-Fabrizio fractional differential operator (C-FFDO), and the Atangana-Baleanu fractional differential operator (A-BFDO) to achieve the analytical solutions of the non-linear fractional order 3D Navier Stokes equations with g1=g2=g3=0. The approximate analytical solution for time-fractional non-homogeneous Cauchy equation [20,46] are obtained with the help of a new iterative transform method (NITM)[47]. NITM is an analytical technique in which the solution is obtained by an infinite series with higher convergent components. The accuracy of the proposed method is shown by graphs and tables with various fractional operators. The structure of this research article is presented as follows: in Section 2, we discuss some preliminary concepts. In Sections 3 and 4, we discuss the procedure of NITM for FPDEs and the system of FPDEs restrictively. The numerical results are discussed in Section 5. Section 6 is the conclusion section.
In this part of the paper, the preliminary concepts and important definitions are presented, which are very useful for the continuation of this research work.
Definition 2.1. The Caputo fractional derivative operator (C-FDO) is given as [48]
Dδˆtμ(ˆt)=1Γ(n−δ)∫ˆt0(ˆt−τ)n−δ−1f(n)(τ)dτ, n−1<δ≤n n∈N, ˆt>0. | (2.1) |
Definition 2.2. The Laplace transform (LT) of C-FDO is given as [48]
Ł(Dδˆtμ(ˆt))=sδŁ[μ(ˆt)]−n−1∑k=0sn−k−1Uk(0+),Ł(Dδˆtμ(ˆt))=sδU(s)−sδ−1U(0). | (2.2) |
Definition 2.3. The formulation of the Caputo-Fabrizio fractional differential operator (C-FFDO) is [43]
CFDδˆtμ(ˆt)=B(δ)1−δ∫ˆt0e−δ1−δ(ˆt−τ)∂∂τμ(τ)dτ | (2.3) |
the function B(δ) is the normalization function depending on δ∋B(0)=B(1)=1.
Definition 2.4. The LT of the C-FFDO is define as [43]
Ł(Dn+δˆtμ(ˆt))(s)=11−δŁ(μn+1(ˆt))Ł(exp(−δ1−δˆt)),Ł(Dn+δˆtμ(ˆt))(s)=sn+1Ł(μ(ˆt))−snμ(0)−sn−1μ′(0)−⋯−μ(n)(0)s+δ(1−s). |
In particular, we have
Ł(Dn+δˆtμ(ˆt))(s)=sŁ(μ(ˆt))s+δ(1−s), n=0,Ł(D1+δˆtμ(ˆt))(s)=s2Ł(μ(ˆt))−sμ(0)−μ′(0)s+δ(1−s), n=1. |
Definition 2.5. The Mittag-leffler function was introduced in 1903[49], and is given as
Eδ(Z)=∞∑n=0znΓ(δn+1), where z ϵ C. |
Definition 2.6. The Atangana-Baleanu fractional derivative operator (ABFDO) is defined as [50]
ABCDδtμ(ˆt)=B(δ)1−δ∫ˆt0Eδ(−δ1−δ(ˆt−τ)δ)∂∂τμ(τ)dτ, | (2.4) |
where B(⋅) is a normalization function such that B(0)=B(1)=1 and Eδ is the Mittag-leffler function defined in Definition 2.5.
Definition 2.7. The LT of the ABFDO is define as[50]
Ł(ABCDδˆtμ(ˆt))=sδ−1B(δ)sδ(1−δ)+δ(sμ(s)−μ(0)). | (2.5) |
Definition 2.8. The Aboodh transform (AT) is define by [51]
A[u(ˆt)]=U(s)=1s∫∞0u(ˆt)e−sˆtdˆt,ˆt≥0,k1≤s≤k2. | (2.6) |
Theorem 1. The AT of C-FDO is given as [51]
A(Dδˆtμ(ˆt))=sδA[μ(ˆt)]−n−1∑k=0sn−k−1Uk(0+). | (2.7) |
Theorem 2. The AT of C-FFDO is defined as [52]
A(CFCDδˆtμ(ˆt))=B(δ)(U(s)−u(0)s). | (2.8) |
Theorem 3. If U(s) is the AT of Atangana-Baleanu-Caputo operator then [53]
U(s)=A(ABCDδˆtμ(ˆt))(s)=B(δ)s(1−δ){sδŁ[u(ˆt)]−sδ−1u(0)sδ+δ1−δ}. | (2.9) |
Proofs. The proofs of these Theorems 1–3 can be found in [51,52,53].
To understand the basic methodology of the NITM within three different fractional derivative operators (FDOs), we consider the following three different cases.
Let us consider a general non-homogenous FPDEs within C-FDO of the form,
Dδ+mˆtu(ξo,ˆt)=f(ξo,ˆt)+Lu(ξo,ˆt)+Nu(ξo,ˆt), m−1<δ≤m, m∈N, | (3.1) |
having initial condition
∂ku(ξo,0)∂ˆtk=θk(ξo), k=0,1,⋯,n−1. | (3.2) |
In Eq (3.1) L is linear and N is the non-linear operator, while f(ξo,ˆt) is a source term.
Applying} the AT to Eq (3.1), we obtain
A(u(ξo,ˆt))=ϑ(ξo,s)+(1sδ+m)A(Lu(ξo,ˆt)+Nu(ξo,ˆt)), | (3.3) |
where
ϑ(ξo,s)=1sm+1(smθ0(ξo)+sm−1θ1(ξo)+⋯+θm(ξo))+1sδ+mf(ξo,s). |
Taking the inverse AT on Eq (3.3), we obtain
u(ξo,ˆt)=ϑ(ξo,ˆt)+A−(1sδ+m)A(Lu(ξo,ˆt)+Nu(ξo,ˆt)). | (3.4) |
Next, we apply the New Iterative Method present in [54], we obtain an infinite series solution
u(ξo,ˆt)=∞∑ℵ=0uℵ(ξo,ˆt). | (3.5) |
Since L is linear
L(∞∑ℵ=0uℵ(ξo,ˆt))=∞∑ℵ=0L(uℵ(ξo,ˆt)). | (3.6) |
The nonlinear operator N becomes
N(∞∑ℵ=0uℵ(ξo,ˆt))=N(u0(ξo,ˆt))+∞∑ℵ=0[N(ℵ∑i=0ui(ξo,ˆt))−N(ℵ−1∑i=0ui(ξo,ˆt))]. | (3.7) |
In view of Eqs (3.3–3.5) and Eq (3.6) is equivalent to
∞∑ℵ=0uℵ(ξo,ˆt)=ϑ(ξo,ˆt)+A−[(1sδ)A(∞∑ℵ=0Luℵ(ξo,ˆt))]+A−[(1sδ)A(N(u0(ξo,ˆt)))+∞∑ℵ=0{N(ℵ∑i=0ui(ξo,ˆt))−N(ℵ−1∑i=0ui(ξo,ˆt))}]. | (3.8) |
Next, we consider the following recurrence relation,
u0(ξo,ˆt)=ϑ(ξo,ˆt),u1(ξo,ˆt)=A−[(1sδ)A(L(u0(ξo,ˆt))+N(u0(ξo,ˆt)))], | (3.9) |
⋮un+1(ξo,ˆt)=A−(1sδ)A[(L(un(ξo,ˆt)))+∞∑j=1{N(n∑i=0ui(ξo,ˆt))−N(n−1∑i=0ui(ξo,ˆt))}]. | (3.10) |
The NITM series form solution is given by
u(ξo,ˆt)=u0+u1+u2+⋯+un. | (3.11) |
We have a general non-homogenous AB-FDE of the form
Dδ+mˆtu(ξo,ˆt)=f(ξo,ˆt)+Lu(ξo,ˆt)+Nu(ξo,ˆt), m−1<δ≤m, m∈N, | (3.12) |
having initial condition
∂ku(ξo,0)∂ˆtk=θk(ξo), k=0,1,⋯,n−1. | (3.13) |
In Eq (3.12) L is linear and N is the non-linear operator, while f(ξo,ˆt) is a source term.
Taking the AT to Eq (3.12), we get
A(u(ξo,ˆt))=χ(ξo,s)+((1−δ)sδsδ)A(L(ξo,ˆt)+Nu(ξo,ˆt)), | (3.14) |
where
χ(ξo,s)=1sm+1(smθ0(ξo)+sm−1θ1(ξo)+⋯+θm(ξo))+(1−δ)sδ+δsδ+mf(ξo,s). |
Taking the inverse AT on Eq (3.14), we obtain
u(ξo,ˆt)=ϑ(ξo,ˆt)+A−((1−δ)sδsδ)A(Lu(ξo,ˆt)+Nu(ξo,ˆt)), | (3.15) |
where the source term is denoted by ϑ(ξo,ˆt). Next we apply New Iterative Method introduced in [54], we obtain an infinite series solution
u(ξo,ˆt)=∞∑ℵ=0uℵ(ξo,ˆt). | (3.16) |
Since L is linear
L(∞∑ℵ=0uℵ(ξo,ˆt))=∞∑ℵ=0L(uℵ(ξo,ˆt)). | (3.17) |
The nonlinear term N is decomposed by
N(∞∑ℵ=0uℵ(ξo,ˆt))=N(u0(ξo,ˆt))+∞∑ℵ=0[N(ℵ∑i=0ui(ξo,ˆt))−N(ℵ−1∑i=0ui(ξo,ˆt))]. | (3.18) |
In view of Eqs (3.15–3.17) and Eq (3.18) is equivalent to,
∞∑ℵ=0uℵ(ξo,ˆt)=ϑ(ξo,ˆt)+A−((1−δ)sδsδ)A[(L(un(ξo,ˆt)))+∞∑ℵ=0{N(ℵ∑i=0ui(ξo,ˆt))−N(ℵ−1∑i=0ui(ξo,ˆt))}], | (3.19) |
furthermore, consider the recursive relation of the following form,
u0(ξo,ˆt)=ϑ(ξo,ˆt),u1(ξo,ˆt)=A−[((1−δ)sδsδ)A(u(u0(ξo,ˆt))+N(u0(ξo,ˆt)))], | (3.20) |
⋮un+1(ξo,ˆt)=A−((1−δ)sδsδ)A[(L(un(ξo,ˆt)))+∞∑j=1{N(n∑i=0ui(ξo,ˆt))−N(n−1∑i=0ui(ξo,ˆt))}]. | (3.21) |
The NITM approximate solution is given by
u(ξo,ˆt)=u0+u1+u2+⋯+un. | (3.22) |
We have a general non-homogenous FPDEs of the form
Dδ+mˆtu(ξo,ˆt)=f(ξo,ˆt)+Lu(ξo,ˆt)+Nu(ξo,ˆt), m−1<δ≤m, m∈N, | (3.23) |
having initial condition
∂ku(ξo,0)∂ˆtk=θk(ξo), k=0,1,⋯,m−1, | (3.24) |
where Dδ+mˆt is C-FFDO and L and N are the linear and non-linear operator respectively, while f(ξo,ˆt) is a source term.
Taking the AT to Eq (3.23), we obtain
A(u(ξo,ˆt))=ϑ(ξo,s)+(s+δ(1−s)sm+1)A(Lu(ξo,ˆt)+Nu(ξo,ˆt)), | (3.25) |
where
ϑ(ξo,s)=1sm+1(smθ0(ξo)+sm−1θ1(ξo)+⋯+θm(ξo)+s+δ(1−s)sm+1f(ξo,s). |
Taking the inverse AT to Eq (3.25), we obtain
u(ξo,ˆt)=ϑ(ξo,ˆt)+A−(s+δ(1−s)sm+1)A(Lu(ξo,ˆt)+Nu(ξo,ˆt)), | (3.26) |
where the source term is denoted by ϑ(ξo,ˆt). Next, we apply the New Iterative Method introduced in [54], we obtain an infinite series solution
u(ξo,ˆt)=∞∑ℵ=0uℵ(ξo,ˆt). | (3.27) |
Since L is linear
L(∞∑ℵ=0uℵ(ξo,ˆt))=∞∑ℵ=0L(uℵ(ξo,ˆt)). | (3.28) |
The nonlinear term N is decomposed by
L(∞∑ℵ=0uℵ(ξo,ˆt))=N(u0(ξo,ˆt))+∞∑ℵ=0[N(ℵ∑i=0ui(ξo,ˆt))−N(ℵ−1∑i=0ui(ξo,ˆt))]. | (3.29) |
In view of Eqs (3.26–3.28) and Eq (3.29) is equivalent to
∞∑ℵ=0uℵ(ξo,ˆt)=ϑ(ξo,ˆt)+A−(s+δ(1−s)sm+1)A[(L(un(ξo,ˆt)))+∞∑ℵ=0{N(ℵ∑i=0ui(ξo,ˆt))−N(ℵ−1∑i=0ui(ξo,ˆt))}]. | (3.30) |
Next, consider the recursive relation of the following form,
u0(ξo,ˆt)=ϑ(ξo,ˆt),u1(ξo,ˆt)=A−[(s+δ(1−s)sm+1)A(L(u0(ξo,ˆt))+N(u0(ξo,ˆt)))], | (3.31) |
⋮un+1(ξo,ˆt)=A−(s+δ(1−s)sm+1)A[(L(un(ξo,ˆt)))+∞∑j=1{N(n∑i=0ui(ξo,ˆt))−N(n−1∑i=0ui(ξo,ˆt))}]. | (3.32) |
The NITM approximate solution is given by
u(ξo,ˆt)=u0+u1+u2+⋯+un. | (3.33) |
We give the following methods to study the NITM process.
Consider a general system of non-homogenous Caputo type FPDEs of the form
Dδ+mˆtu(ξo,ξ1,ξ2,ˆt)=f1(ξo,ξ1,ξ2,ˆt)+Lu(ξo,ξ1,ξ2,ˆt)+Nu(ξo,ξ1,ξ2,ˆt), m−1<δ≤m, m∈N,Dδ+mˆtμ(ξo,ξ1,ξ2,ˆt)=f2(ξo,ξ1,ξ2,ˆt)+Lμ(ξo,ξ1,ξ2,ˆt)+Nμ(ξo,ξ1,ξ2,ˆt), m−1<δ≤m, m∈N,Dδ+mˆtν(ξo,ξ1,ξ2,ˆt)=f3(ξo,ξ1,ξ2,ˆt)+Lν(ξo,ξ1,ξ2,ˆt)+Nν(ξo,ξ1,ξ2,ˆt), m−1<δ≤m, m∈N, | (4.1) |
having initial condition
∂ku(ξo,ξ1,ξ2,0)∂ˆtk=θk(ξo,ξ1,ξ2), k=0,1,⋯,ℵ−1,∂kμ(ξo,ξ1,ξ2,0)∂ˆtk=ℏk(ξo,ξ1,ξ2), k=0,1,⋯,ℵ−1,∂kν(ξo,ξ1,ξ2,0)∂ˆtk=jk(ξo,ξ1,ξ2), k=0,1,⋯,ℵ−1. | (4.2) |
In Eq (4.1) f1(ξo,ξ1,ξ2,ˆt), f2(ξo,ξ1,ξ2,ˆt) and f3(ξo,ξ1,ξ2,ˆt), are the source terms and L and N are the linear and non-linear operator respectively, while Dδ+mˆt is a Caputo type fractional derivative operator.
Taking the AT of Eq (4.1), we have
A(u(ξo,ξ1,ξ2,ˆt))=ϑ1(ξo,ξ1,ξ2,s)+(1sδ)A(Lu(ξo,ξ1,ξ2,ˆt)+Nu(ξo,ξ1,ξ2,ˆt)),A(μ(ξo,ξ1,ξ2,ˆt))=ϑ2(ξo,ξ1,ξ2,s)+(1sδ)A(Lμ(ξo,ξ1,ξ2,ˆt)+Nμ(ξo,ξ1,ξ2,ˆt)),A(ν(ξo,ξ1,ξ2,ˆt))=ϑ3(ξo,ξ1,ξ2,s)+(1sδ)A(Lν(ξo,ξ1,ξ2,ˆt)+Nν(ξo,ξ1,ξ2,ˆt)), | (4.3) |
where
ϑ1(ξo,ξ1,ξ2,s)=1sm+1(smθ0(ξo,ξ1,ξ2)+sm−1θ1(ξo,ξ1,ξ2)+⋯+θm(ξo,ξ1,ξ2))+1sδ+mf1(ξo,ξ1,ξ2,s). |
ϑ2(ξo,ξ1,ξ2,s)=1sm+1(smℏ0(ξo,ξ1,ξ2)+sm−1ℏ1(ξo,ξ1,ξ2)+⋯+ℏm(ξo,ξ1,ξ2))+1sδ+mf2(ξo,ξ1,ξ2,s). |
ϑ3(ξo,ξ1,ξ2,s)=1sm+1(smj0(ξo,ξ1,ξ2)+sm−1j1(ξo,ξ1,ξ2)+⋯+jm(ξo,ξ1,ξ2))+1sδ+mf3(ξo,ξ1,ξ2,s). |
Taking the inverse AT on Eq (4.3), we obtain
u(ξo,ξ1,ξ2,ˆt)=ϑ1(ξo,ξ1,ξ2,ˆt)+A−(1sδ)A(Lu(ξo,ξ1,ξ2,ˆt)+Nu(ξo,ξ1,ξ2,ˆt)),μ(ξo,ξ1,ξ2,ˆt)=ϑ2(ξo,ξ1,ξ2,ˆt)+A−(1sδ)A(Lμ(ξo,ξ1,ξ2,ˆt)+Nμ(ξo,ξ1,ξ2,ˆt)),ν(ξo,ξ1,ξ2,ˆt)=ϑ3(ξo,ξ1,ξ2,ˆt)+A−(1sδ)A(Lν(ξo,ξ1,ξ2,ˆt)+Nν(ξo,ξ1,ξ2,ˆt)). | (4.4) |
Now, the source terms for the given system are presented as ϑ1(ξo,ξ1,ξ2,ˆt), ϑ2(ξo,ξ1,ξ2,ˆt) and ϑ3(ξo,ξ1,ξ2,ˆt) respectively.
Next, applying the New Iterative Method introduced in [54] and considering the solution of an infinite series form,
u(ξo,ξ1,ξ2,ˆt)=∞∑ℵ=0uℵ(ξo,ξ1,ξ2,ˆt),μ(ξo,ξ1,ξ2,ˆt)=∞∑ℵ=0uℵ(ξo,ξ1,ξ2,ˆt),ν(ξo,ξ1,ξ2,ˆt)=∞∑ℵ=0uℵ(ξo,ξ1,ξ2,ˆt). | (4.5) |
Since L is linear
u(∞∑ℵ=0uℵ(ξo,ξ1,ξ2,ˆt))=∞∑ℵ=0u(uℵ(ξo,ξ1,ξ2,ˆt)),u(∞∑ℵ=0μℵ(ξo,ξ1,ξ2,ˆt))=∞∑ℵ=0u(μℵ(ξo,ξ1,ξ2,ˆt)),u(∞∑ℵ=0νℵ(ξo,ξ1,ξ2,ˆt))=∞∑ℵ=0u(νℵ(ξo,ξ1,ξ2,ˆt)), | (4.6) |
and the nonlinear term N is decomposed as
u(∞∑ℵ=0uℵ(ξo,ξ1,ξ2,ˆt))=N(u0(ξo,ξ1,ξ2,ˆt))+∞∑ℵ=0[N(ℵ∑i=0ui(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0ui(ξo,ξ1,ξ2,ˆt))],u(∞∑ℵ=0μℵ(ξo,ξ1,ξ2,ˆt))=N(μ0(ξo,ξ1,ξ2,ˆt))+∞∑ℵ=0[N(ℵ∑i=0μi(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0μi(ξo,ξ1,ξ2,ˆt))],u(∞∑ℵ=0νℵ(ξo,ξ1,ξ2,ˆt))=N(ν0(ξo,ξ1,ξ2,ˆt))+∞∑ℵ=0[N(ℵ∑i=0νi(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0νi(ξo,ξ1,ξ2,ˆt))]. | (4.7) |
In view of Eqs (4.4–4.6) and Eq (4.7), is equivalent to
∞∑ℵ=0uℵ(ξo,ξ1,ξ2,ˆt)=ϑ1(ξo,ξ1,ξ2,ˆt)+A−[(1sδ)A(∞∑ℵ=0Luℵ(ξo,ξ1,ξ2,ˆt))]+A−[(1sδ)×A(L(un(ξo,ξ1,ξ2,ˆt)))+∞∑ℵ=0{N(ℵ∑i=0ui(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0ui(ξo,ξ1,ξ2,ˆt))}],∞∑ℵ=0μℵ(ξo,ξ1,ξ2,ˆt)=ϑ2(ξo,ξ1,ξ2,ˆt)+A−[(1sδ)A(∞∑ℵ=0Lμℵ(ξo,ξ1,ξ2,ˆt))]+A−[(1sδ)×A(N(μ0(ξo,ξ1,ξ2,ˆt)))+∞∑ℵ=0{N(ℵ∑i=0μi(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0μi(ξo,ξ1,ξ2,ˆt))}],∞∑ℵ=0νℵ(ξo,ξ1,ξ2,ˆt)=ϑ3(ξo,ξ1,ξ2,ˆt)+A−[(1sδ)A(∞∑ℵ=0Lνℵ(ξo,ξ1,ξ2,ˆt))]+A−[(1sδ)×A(N(ν0(ξo,ξ1,ξ2,ˆt)))+∞∑ℵ=0{N(ℵ∑i=0νi(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0νi(ξo,ξ1,ξ2,ˆt))}], | (4.8) |
furthermore, we obtained a recursive relation of the following form
u0(ξo,ξ1,ξ2,ˆt)=ϑ1(ξo,ξ1,ξ2,ˆt),μ0(ξo,ξ1,ξ2,ˆt)=ϑ2(ξo,ξ1,ξ2,ˆt),ν0(ξo,ξ1,ξ2,ˆt)=ϑ3(ξo,ξ1,ξ2,ˆt),u1(ξo,ξ1,ξ2,ˆt)=A−[(1sδ)A(L(u0(ξo,ξ1,ξ2,ˆt))+L(un(ξo,ξ1,ξ2,ˆt)))],μ1(ξo,ξ1,ξ2,ˆt)=A−[(1sδ)A(L(μ0(ξo,ξ1,ξ2,ˆt))+N(μ0(ξo,ξ1,ξ2,ˆt)))],ν1(ξo,ξ1,ξ2,ˆt)=A−[(1sδ)A(L(ν0(ξo,ξ1,ξ2,ˆt))+N(ν0(ξo,ξ1,ξ2,ˆt)))], | (4.9) |
un+1(ξo,ξ1,ξ2,ˆt)=A−(1sδ)A[(L(un(ξo,ξ1,ξ2,ˆt)))+∞∑j=1{N(n∑i=0ui(ξo,ξ1,ξ2,ˆt))−N(n−1∑i=0ui(ξo,ξ1,ξ2,ˆt))}],μn+1(ξo,ξ1,ξ2,ˆt)=A−(1sδ)A[(L(μn(ξo,ξ1,ξ2,ˆt)))+∞∑j=1{N(n∑i=0μi(ξo,ξ1,ξ2,ˆt))−N(n−1∑i=0μi(ξo,ξ1,ξ2,ˆt))}],νn+1(ξo,ξ1,ξ2,ˆt)=A−(1sδ)A[(L(νn(ξo,ξ1,ξ2,ˆt)))+∞∑j=1{N(n∑i=0νi(ξo,ξ1,ξ2,ˆt))−N(n−1∑i=0νi(ξo,ξ1,ξ2,ˆt))}]. | (4.10) |
The NITM approximate solution is given by
u(ξo,ξ1,ξ2,ˆt)=u0+u1+u2+⋯+un,μ(ξo,ξ1,ξ2,ˆt)=μ0+μ1+μ2+⋯+μn,ν(ξo,ξ1,ξ2,ˆt)=ν0+ν1+ν2+⋯+un. | (4.11) |
We have a general non-homogenous system of C-FFDE of the form
Dδ+mˆtu(ξo,ξ1,ξ2,ˆt)=f1(ξo,ξ1,ξ2,ˆt)+Lu(ξo,ξ1,ξ2,ˆt)+Nu(ξo,ξ1,ξ2,ˆt), m−1<δ≤m, m∈N,Dδ+mˆtμ(ξo,ξ1,ξ2,ˆt)=f2(ξo,ξ1,ξ2,ˆt)+Lμ(ξo,ξ1,ξ2,ˆt)+Nμ(ξo,ξ1,ξ2,ˆt), m−1<δ≤m, m∈N,Dδ+mˆtν(ξo,ξ1,ξ2,ˆt)=f3(ξo,ξ1,ξ2,ˆt)+Lν(ξo,ξ1,ξ2,ˆt)+Nν(ξo,ξ1,ξ2,ˆt), m−1<δ≤m, m∈N, | (4.12) |
having initial condition
∂ku(ξo,ξ1,ξ2,0)∂ˆtk=θk(ξo,ξ1,ξ2), k=0,1,⋯,ℵ−1,∂kμ(ξo,ξ1,ξ2,0)∂ˆtk=ℏk(ξo,ξ1,ξ2), k=0,1,⋯,ℵ−1,∂kν(ξo,ξ1,ξ2,0)∂ˆtk=jk(ξo,ξ1,ξ2), k=0,1,⋯,ℵ−1. | (4.13) |
In Eq (4.12) f1(ξo,ξ1,ξ2,ˆt), f2(ξo,ξ1,ξ2,ˆt) and f3(ξo,ξ1,ξ2,ˆt), are the source terms, L and N are the linear and non-linear operator respectively, while Dδ+mˆt is Atangana-Baleanu type fractional derivative operator.
Applying the AT to Eq (4.12), we have
A(u(ξo,ξ1,ξ2,ˆt))=ϑ1(ξo,ξ1,ξ2,s)+((1−δ)sδ+δsδ)A(Lu(ξo,ξ1,ξ2,ˆt)+Nu(ξo,ξ1,ξ2,ˆt)),A(μ(ξo,ξ1,ξ2,ˆt))=ϑ2(ξo,ξ1,ξ2,s)+((1−δ)sδ+δsδ)A(Lμ(ξo,ξ1,ξ2,ˆt)+Nμ(ξo,ξ1,ξ2,ˆt)),A(ν(ξo,ξ1,ξ2,ˆt))=ϑ3(ξo,ξ1,ξ2,s)+((1−δ)sδ+δsδ)A(Lν(ξo,ξ1,ξ2,ˆt)+Nν(ξo,ξ1,ξ2,ˆt)), | (4.14) |
where
ϑ1(ξo,ξ1,ξ2,s)=1sm+1(smθ0(ξo,ξ1,ξ2)+sm−1θ1(ξo,ξ1,ξ2)+⋯+θm(ξo,ξ1,ξ2))+(1−δ)sδ+δsδ+mf1(ξo,ξ1,ξ2,s). |
ϑ2(ξo,ξ1,ξ2,s)=1sm+1(smℏ0(ξo,ξ1,ξ2)+sm−1ℏ1(ξo,ξ1,ξ2)+⋯+ℏm(ξo,ξ1,ξ2))+(1−δ)sδ+δsδ+mf2(ξo,ξ1,ξ2,s). |
ϑ3(ξo,ξ1,ξ2,s)=1sm+1(smg0(ξo,ξ1,ξ2)+sm−1g1(ξo,ξ1,ξ2)+⋯+gm(ξo,ξ1,ξ2))+(1−δ)sδ+δsδ+mf3(ξo,ξ1,ξ2,s). |
Taking the inverse AT to Eq (4.14), we obtain
u(ξo,ξ1,ξ2,ˆt)=ϑ1(ξo,ξ1,ξ2,ˆt)+A−((1−δ)sδ+δsδ)A(Lu(ξo,ξ1,ξ2,ˆt)+Nu(ξo,ξ1,ξ2,ˆt)),μ(ξo,ξ1,ξ2,ˆt)=ϑ2(ξo,ξ1,ξ2,ˆt)+A−((1−δ)sδ+δsδ)A(Lμ(ξo,ξ1,ξ2,ˆt)+Nμ(ξo,ξ1,ξ2,ˆt)),ν(ξo,ξ1,ξ2,ˆt)=ϑ3(ξo,ξ1,ξ2,ˆt)+A−((1−δ)sδ+δsδ)A(Lν(ξo,ξ1,ξ2,ˆt)+Nν(ξo,ξ1,ξ2,ˆt)), | (4.15) |
where the source term is denoted by ϑ(ξo,ξ1,ξ2,ˆt). Further we apply NIM introduced in [54]. We consider the solution as an infinite series given as
u(ξo,ξ1,ξ2,ˆt)=∞∑ℵ=0uℵ(ξo,ξ1,ξ2,ˆt),μ(ξo,ξ1,ξ2,ˆt)=∞∑ℵ=0μℵ(ξo,ξ1,ξ2,ˆt),ν(ξo,ξ1,ξ2,ˆt)=∞∑ℵ=0νℵ(ξo,ξ1,ξ2,ˆt). | (4.16) |
Since L is linear
L(∞∑ℵ=0uℵ(ξo,ξ1,ξ2,ˆt))=∞∑ℵ=0L(uℵ(ξo,ξ1,ξ2,ˆt)),L(∞∑ℵ=0μℵ(ξo,ξ1,ξ2,ˆt))=∞∑ℵ=0L(μℵ(ξo,ξ1,ξ2,ˆt)),L(∞∑ℵ=0νℵ(ξo,ξ1,ξ2,ˆt))=∞∑ℵ=0L(νℵ(ξo,ξ1,ξ2,ˆt)). | (4.17) |
The nonlinear operator N is decomposed as
N(∞∑ℵ=0uℵ(ξo,ξ1,ξ2,ˆt))=N(u0(ξo,ξ1,ξ2,ˆt))+∞∑ℵ=0[N(ℵ∑i=0ui(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0ui(ξo,ξ1,ξ2,ˆt))],N(∞∑ℵ=0μℵ(ξo,ξ1,ξ2,ˆt))=N(μ0(ξo,ξ1,ξ2,ˆt))+∞∑ℵ=0[N(ℵ∑i=0μi(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0μi(ξo,ξ1,ξ2,ˆt))],N(∞∑ℵ=0νℵ(ξo,ξ1,ξ2,ˆt))=N(ν0(ξo,ξ1,ξ2,ˆt))+∞∑ℵ=0[N(ℵ∑i=0νi(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0νi(ξo,ξ1,ξ2,ˆt))]. | (4.18) |
In view of Eqs (4.15–4.17) and Eq (4.18) is equivalent to
∞∑ℵ=0uℵ(ξo,ξ1,ξ2,ˆt)=ϑ(ξo,ξ1,ξ2,ˆt)+A−[((1−δ)sδ+δsδ)A(N(u0(ξo,ξ1,ξ2,ˆt)))+∞∑ℵ=0{N(ℵ∑i=0ui(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0ui(ξo,ξ1,ξ2,ˆt))}],∞∑ℵ=0μℵ(ξo,ξ1,ξ2,ˆt)=ϑ(ξo,ξ1,ξ2,ˆt)+A−[((1−δ)sδ+δsδ)A(∞∑ℵ=0Lμℵ(ξo,ξ1,ξ2,ˆt))]+A−[((1−δ)sδ+δsδ)A(N(μ0(ξo,ξ1,ξ2,ˆt)))+∞∑ℵ=0{N(ℵ∑i=0μi(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0μi(ξo,ξ1,ξ2,ˆt))}],∞∑ℵ=0νℵ(ξo,ξ1,ξ2,ˆt)=ϑ(ξo,ξ1,ξ2,ˆt)+A−[((1−δ)sδ+δsδ)A(∞∑ℵ=0Lνℵ(ξo,ξ1,ξ2,ˆt))]+A−[((1−δ)sδ+δsδ)A(N(ν0(ξo,ξ1,ξ2,ˆt)))+∞∑ℵ=0{N(ℵ∑i=0νi(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0νi(ξo,ξ1,ξ2,ˆt))}], | (4.19) |
considering the following recursive relation
u0(ξo,ξ1,ξ2,ˆt)=ϑ1(ξo,ξ1,ξ2,ˆt),μ0(ξo,ξ1,ξ2,ˆt)=ϑ2(ξo,ξ1,ξ2,ˆt),ν0(ξo,ξ1,ξ2,ˆt)=ϑ3(ξo,ξ1,ξ2,ˆt),u1(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)sδ+δsδ)A(L(u0(ξo,ξ1,ξ2,ˆt))+N(u0(ξo,ξ1,ξ2,ˆt)))],μ1(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)sδ+δsδ)A(L(μ0(ξo,ξ1,ξ2,ˆt))+N(μ0(ξo,ξ1,ξ2,ˆt)))],ν1(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)sδ+δsδ)A(L(ν0(ξo,ξ1,ξ2,ˆt))+N(ν0(ξo,ξ1,ξ2,ˆt)))], | (4.20) |
⋮ un+1(ξo,ξ1,ξ2,ˆt)=A−((1−δ)sδ+δsδ)A[(L(un(ξo,ξ1,ξ2,ˆt)))+∞∑j=1{N(n∑i=0ui(ξo,ξ1,ξ2,ˆt))−N(n−1∑i=0ui(ξo,ξ1,ξ2,ˆt))}],μn+1(ξo,ξ1,ξ2,ˆt)=A−((1−δ)sδ+δsδ)A[(N(μ0(ξo,ξ1,ξ2,ˆt)))+∞∑j=1{N(n∑i=0μi(ξo,ξ1,ξ2,ˆt))−N(n−1∑i=0μi(ξo,ξ1,ξ2,ˆt))}],νn+1(ξo,ξ1,ξ2,ˆt)=A−((1−δ)sδ+δsδ)A[(N(ν0(ξo,ξ1,ξ2,ˆt)))+∞∑j=1{N(n∑i=0νi(ξo,ξ1,ξ2,ˆt))−N(n−1∑i=0νi(ξo,ξ1,ξ2,ˆt))}]. | (4.21) |
The NITM approximate solution is given by
u(ξo,ξ1,ξ2,ˆt)=u0+u1+u2+⋯+un,μ(ξo,ξ1,ξ2,ˆt)=μ0+μ1+μ2+⋯+μn,ν(ξo,ξ1,ξ2,ˆt)=ν0+ν1+ν2+⋯+νn. | (4.22) |
Let us consider a general non-homogenous system of FPDEs in terms of C-FPDO,
Dδ+mˆtu(ξo,ξ1,ξ2,ˆt)=f1(ξo,ξ1,ξ2,ˆt)+Lu(ξo,ξ1,ξ2,ˆt)+Nu(ξo,ξ1,ξ2,ˆt), m−1<δ≤m, m∈N,Dδ+mˆtμ(ξo,ξ1,ξ2,ˆt)=f2(ξo,ξ1,ξ2,ˆt)+Lμ(ξo,ξ1,ξ2,ˆt)+Nμ(ξo,ξ1,ξ2,ˆt), m−1<δ≤m, m∈N,Dδ+mˆtν(ξo,ξ1,ξ2,ˆt)=f3(ξo,ξ1,ξ2,ˆt)+Lν(ξo,ξ1,ξ2,ˆt)+Nν(ξo,ξ1,ξ2,ˆt), m−1<δ≤m, m∈N, | (4.23) |
having initial condition
∂ku(ξo,ξ1,ξ2,0)∂ˆtk=gk(ξo,ξ1,ξ2), k=0,1,⋯,ℵ−1,∂kμ(ξo,ξ1,ξ2,0)∂ˆtk=hk(ξo,ξ1,ξ2), k=0,1,⋯,ℵ−1,∂kν(ξo,ξ1,ξ2,0)∂ˆtk=jk(ξo,ξ1,ξ2), k=0,1,⋯,ℵ−1. | (4.24) |
In Eq (4.23) f1(ξo,ξ1,ξ2,ˆt), f2(ξo,ξ1,ξ2,ˆt) and f3(ξo,ξ1,ξ2,ˆt), are the source terms, L and N are the linear and non-linear operator respectively, while Dδ+mˆt is the Caputo-Fabrizio type fractional derivative operator.
Applying the AT to Eq (4.23), we have
A(u(ξo,ξ1,ξ2,ˆt))=ϑ1(ξo,ξ1,ξ2,s)+(s+δ(1−s)sm+1)A(Lu(ξo,ξ1,ξ2,ˆt)+Nu(ξo,ξ1,ξ2,ˆt)),A(μ(ξo,ξ1,ξ2,ˆt))=ϑ2(ξo,ξ1,ξ2,s)+(s+δ(1−s)sm+1)A(Lμ(ξo,ξ1,ξ2,ˆt)+Nμ(ξo,ξ1,ξ2,ˆt)),A(ν(ξo,ξ1,ξ2,ˆt))=ϑ2(ξo,ξ1,ξ2,s)+(s+δ(1−s)sm+1)A(Lν(ξo,ξ1,ξ2,ˆt)+Nν(ξo,ξ1,ξ2,ˆt)), | (4.25) |
where
ϑ1(ξo,ξ1,ξ2,s)=1sm+1(smθ0(ξo,ξ1,ξ2)+sm−1θ1(ξo,ξ1,ξ2)+⋯+θm(ξo,ξ1,ξ2)+s+δ(1−s)sm+1f1(ξo,ξ1,ξ2,s). |
ϑ2(ξo,ξ1,ξ2,s)=1sm+1(smθ0(ξo,ξ1,ξ2)+sm−1θ1(ξo,ξ1,ξ2)+⋯+θm(ξo,ξ1,ξ2)+s+δ(1−s)sm+1f2(ξo,ξ1,ξ2,s). |
ϑ3(ξo,ξ1,ξ2,s)=1sm+1(smθ0(ξo,ξ1,ξ2)+sm−1θ1(ξo,ξ1,ξ2)+⋯+θm(ξo,ξ1,ξ2)+s+δ(1−s)sm+1f3(ξo,ξ1,ξ2,s). |
Taking the inverse AT on Eq (4.25), we obtain
u(ξo,ξ1,ξ2,ˆt)=ϑ1(ξo,ξ1,ξ2,ˆt)+A−(s+δ(1−s)sm+1)A(Lu(ξo,ξ1,ξ2,ˆt)+Nu(ξo,ξ1,ξ2,ˆt)),μ(ξo,ξ1,ξ2,ˆt)=ϑ2(ξo,ξ1,ξ2,ˆt)+A−(s+δ(1−s)sm+1)A(Lμ(ξo,ξ1,ξ2,ˆt)+Nμ(ξo,ξ1,ξ2,ˆt)),ν(ξo,ξ1,ξ2,ˆt)=ϑ3(ξo,ξ1,ξ2,ˆt)+A−(s+δ(1−s)sm+1)A(Lν(ξo,ξ1,ξ2,ˆt)+Nν(ξo,ξ1,ξ2,ˆt)), | (4.26) |
where the source terms are denoted by ϑ1(ξo,ξ1,ξ2,ˆt), ϑ2(ξo,ξ1,ξ2,ˆt) and ϑ3(ξo,ξ1,ξ2,ˆt). Further we apply NIM introduced in [48].We consider the solution as an infinite series given as
u(ξo,ξ1,ξ2,ˆt)=∞∑ℵ=0uℵ(ξo,ξ1,ξ2,ˆt),μ(ξo,ξ1,ξ2,ˆt)=∞∑ℵ=0μℵ(ξo,ξ1,ξ2,ˆt),ν(ξo,ξ1,ξ2,ˆt)=∞∑ℵ=0νℵ(ξo,ξ1,ξ2,ˆt). | (4.27) |
Since L is linear
L(∞∑ℵ=0uℵ(ξo,ξ1,ξ2,ˆt))=∞∑ℵ=0L(uℵ(ξo,ξ1,ξ2,ˆt)),L(∞∑ℵ=0μℵ(ξo,ξ1,ξ2,ˆt))=∞∑ℵ=0L(μℵ(ξo,ξ1,ξ2,ˆt)),L(∞∑ℵ=0νℵ(ξo,ξ1,ξ2,ˆt))=∞∑ℵ=0L(νℵ(ξo,ξ1,ξ2,ˆt)). | (4.28) |
The nonlinear operator N is decomposed as
N(∞∑ℵ=0uℵ(ξo,ξ1,ξ2,ˆt))=N(u0(ξo,ξ1,ξ2,ˆt))+∞∑ℵ=0[N(ℵ∑i=0ui(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0ui(ξo,ξ1,ξ2,ˆt))],N(∞∑ℵ=0μℵ(ξo,ξ1ν,ξ2,ˆt))=N(μ0(ξo,ξ1,ξ2,ˆt))+∞∑ℵ=0[N(ℵ∑i=0μi(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0μi(ξo,ξ1,ξ2,ˆt))],N(∞∑ℵ=0νℵ(ξo,ξ1,ξ2,ˆt))=N(ν0(ξo,ξ1,ξ2,ˆt))+∞∑ℵ=0[N(ℵ∑i=0νi(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0νi(ξo,ξ1,ξ2,ˆt))]. | (4.29) |
In view of Eqs (4.26–4.28) and Eq (4.29) is equivalent to
∞∑ℵ=0uℵ(ξo,ξ1,ξ2,ˆt)=ϑ1(ξo,ξ1,ξ2,ˆt)+A−[(s+δ(1−s)sm+1)A(∞∑ℵ=0Luℵ(ξo,ξ1,ξ2,ˆt))]+A−[(s+δ(1−s)sm+1)A(N(u0(ξo,ξ1,ξ2,ˆt)))+∞∑ℵ=0{N(ℵ∑i=0ui(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0ui(ξo,ξ1,ξ2,ˆt))}],∞∑ℵ=0μℵ(ξo,ξ1,ξ2,ˆt)=ϑ2(ξo,ξ1,ξ2,ˆt)+A−[(s+δ(1−s)sm+1)A(∞∑ℵ=0Lμℵ(ξo,ξ1,ξ2,ˆt))]+A−[(s+δ(1−s)sm+1)A(N(μ0(ξo,ξ1,ξ2,ˆt)))+∞∑ℵ=0{N(ℵ∑i=0μi(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0μi(ξo,ξ1,ξ2,ˆt))}],∞∑ℵ=0νℵ(ξo,ξ1,ξ2,ˆt)=ϑ3(ξo,ξ1,ξ2,ˆt)+A−[(s+δ(1−s)sm+1)A(∞∑ℵ=0Lνℵ(ξo,ξ1,ξ2,ˆt))]+A−[(s+δ(1−s)sm+1)A(N(ν0(ξo,ξ1,ξ2,ˆt)))+∞∑ℵ=0{N(ℵ∑i=0νi(ξo,ξ1,ξ2,ˆt))−N(ℵ−1∑i=0νi(ξo,ξ1,ξ2,ˆt))}], | (4.30) |
considering the following recursive relation
u0(ξo,ξ1,ξ2,ˆt)=ϑ1(ξo,ξ1,ξ2,ˆt),μ0(ξo,ξ1,ξ2,ˆt)=ϑ2(ξo,ξ1,ξ2,ˆt),ν0(ξo,ξ1,ξ2,ˆt)=ϑ3(ξo,ξ1,ξ2,ˆt),u1(ξo,ξ1,ξ2,ˆt)=A−[(s+δ(1−s)sm+1)A(L(u0(ξo,ξ1,ξ2,ˆt))+N(u0(ξo,ξ1,ξ2,ˆt)))],μ1(ξo,ξ1,ξ2,ˆt)=A−[(s+δ(1−s)sm+1)A(L(μ0(ξo,ξ1,ξ2,ˆt))+N(μ0(ξo,ξ1,ξ2,ˆt)))],ν1(ξo,ξ1,ξ2,ˆt)=A−[(s+δ(1−s)sm+1)A(L(ν0(ξo,ξ1,ξ2,ˆt))+N(ν0(ξo,ξ1,ξ2,ˆt)))], | (4.31) |
⋮un+1(ξo,ξ1,ξ2,ˆt)=A−(s+δ(1−s)sm+1)A[(L(un(ξo,ξ1,ξ2,ˆt)))+∞∑j=1{N(n∑i=0ui(ξo,ξ1,ξ2,ˆt))−N(n−1∑i=0ui(ξo,ξ1,ξ2,ˆt))}],μn+1(ξo,ξ1,ξ2,ˆt)=A−(s+δ(1−s)sm+1)A[(L(μn(ξo,ξ1,ξ2,ˆt)))+∞∑j=1{N(n∑i=0μi(ξo,ξ1,ξ2,ˆt))−N(n−1∑i=0μi(ξo,ξ1,ξ2,ˆt))}],νn+1(ξo,ξ1,ξ2,ˆt)=A−(s+δ(1−s)sm+1)A[(L(νn(ξo,ξ1,ξ2,ˆt)))+∞∑j=1{N(n∑i=0νi(ξo,ξ1,ξ2,ˆt))−N(n−1∑i=0νi(ξo,ξ1,ξ2,ˆt))}]. | (4.32) |
The NITM approximate solution is given by
u(ξo,ξ1,ξ2,ˆt)=u0+u1+u2+⋯+un,μ(ξo,ξ1,ξ2,ˆt)=μ0+μ1+μ2+⋯+μn,ν(ξo,ξ1,ξ2,ˆt)=ν0+ν1+ν2+⋯+νn. | (4.33) |
In this section, we will find the analytical solutions of a non-homogeneous, time-fractional Cauchy equation with different fractional derivative operators.
The non-homogeneous time-fractional Cauchy equation is [20,46]
0Dδˆtu+uξo=ξo,ˆt>0,ξo∈R,0<δ≤1, | (5.1) |
having initial condition
u(ξo,0)=eξo. |
The exact solution is given as [20,46]
u(ξo,ˆt)=eξo−ˆt+ˆt(ξo−ˆt2). |
Applying AT to Eq (5.1), we obtain
A(u(ξo,ˆt))=u(ξo,0)s+1sδA(ξo−uξo), | (5.2) |
applying the inverse AT on Eq (5.2), we have
u(ξo,ˆt)=u(ξo,0)+A−[1sδA(ξo−uξo)], | (5.3) |
so the iterative scheme is
u0(ξo,ˆt)=u(ξo,0)=eξo,un+1(ξo,ˆt)=A−[1sδA(ξo−unξo)], n=0,1,⋯, | (5.4) |
put n = 0 in Eq (5.4), we have
u1(ξo,ˆt)=A−[1sδA(ξo−u0ξo)], |
u1(ξo,ˆt)=ξoˆtδΓ(δ+1)−eξoˆtδΓ(δ+1). |
Put n = 1 in Eq (5.4), we have
u2(ξo,ˆt)=A−[1sδA(ξo−u1ξo)],u2(ξo,ˆt)=ξoˆtδΓ(δ+1)−ˆt2δΓ(2δ+1)+eξoˆt2δΓ(2δ+1). |
The approximate NITM solution using the Caputo operator with three terms iterations
u(ξo,ˆt)=u0(ξo,ˆt)+u1(ξo,ˆt)+u2(ξo,ˆt), |
u(ξo,ˆt)=eξo+ξoˆtδΓ(δ+1)−eξoˆtδΓ(δ+1)+ξoˆtδΓ(δ+1)−ˆt2δΓ(2δ+1)+eξoˆt2δΓ(2δ+1). |
When the series goes to infinity term then we obtain the following solution
u(ξo,ˆt)=eξo−ˆt+ˆt(ξo−ˆt2), |
which is the the exact solution of the Eq (5.1). The exact solution are also yield in VIM [46], q-HASTA and RDTA [20].
Applying AT to Eq (5.1), we obtain
A(u(ξo,ˆt))=u(ξo,0)s+((1−δ)sδ+δsδ)A(ξo−uξo), | (5.5) |
applying the inverse AT on Eq (5.5), we have
u(ξo,ˆt)=u(ξo,0)+A−[((1−δ)sδ+δsδ)A(ξo−uξo)], | (5.6) |
so the iterative scheme of Eq (5.6), is
u0(ξo,ˆt)=u(ξo,0)=eξo,un+1(ξo,ˆt)=A−[((1−δ)sδ+δsδ)A(ξo−unξo)], n=0,1,⋯, | (5.7) |
put n = 0 in Eq (5.7)
u1(ξo,ˆt)=A−[((1−δ)sδ+δsδ)A(ξo−u0ξo)], |
u1(ξo,ˆt)=(1−δ)ξo−(1−δ)eξo+δξoˆtδΓ(δ+1)−δeξoˆtδΓ(δ+1). |
Put n = 1 in Eq (5.7), we have
u2(ξo,ˆt)=A−[((1−δ)sδ+δsδ)A(ξo−u1ξo)], |
u2(ξo,ˆt)={(1−δ)ξo−(1−δ)2+(1−δ)2eξo−(1−δ)δˆtδΓ(δ+1)+(1−δ)δeξoˆtδΓ(δ+1)+δξoˆtδΓ(δ+1)−δ(1−δ)ˆtδΓ(δ+1)+δ(1−δ)eξoˆtδΓ(δ+1)−δ2ˆt2δΓ(2δ+1)+δ2eξoˆt2δΓ(2δ+1). |
The NITM solution with three terms approximation within Atangana-Baleanu operator is
u(ξo,ˆt)=u0(ξo,ˆt)+u1(ξo,ˆt)+u2(ξo,ˆt), |
u(ξo,ˆt)={eξo+(1−δ)ξo−(1−δ)eξo+δˆtδΓ(δ+1)−δeξoˆtδΓ(δ+1)(1−δ)−(1−δ)2+(1−δ)2eξo−(1−δ)δˆtδΓ(δ+1)+(1−δ)δeξoˆtδΓ(δ+1)+δξoˆtδΓ(δ+1)−δ(1−δ)ˆtδΓ(δ+1)+δ(1−δ)eξoˆtδΓ(δ+1)−δ2ˆt2δΓ(2δ+1)+δ2eξoˆt2δΓ(2δ+1). |
Applying AT to Eq (5.1), we obtain
A(u(ξo,ˆt))=u(ξo,0)s+(s+(1−s)δs)A(ξo−uξo), | (5.8) |
taking the inverse AT on Eq (5.8), we have
u(ξo,ˆt)=u(ξo,0)+A−[(s+(1−s)δs)A(ξo−uξo)], | (5.9) |
so the iterative scheme of Eq (5.9), is
u0(ξo,ˆt)=u(ξo,0)=eξo,un+1(ξo,ˆt)=A−[(s+(1−s)δs)A(ξo−unξo)], n=0,1,⋯, | (5.10) |
put n = 0 in Eq (5.10)
u1(ξo,ˆt)=A−[(s+(1−s)δs)A(ξo−u0ξo)], |
u1(ξo,ˆt)=ξo−eξo+δξoˆtΓ(2)−eξoˆtΓ(2)−δξo+δeξo. |
Put n = 1 in Eq (5.10),
u2(ξo,ˆt)=A−[(s+(1−s)δs)A(ξo−u1ξo)], |
u2(ξo,ˆt)={ξo−1+eξo−δˆtΓ(2)+δeξoˆtΓ(2)+δ−δeξo+δξoˆtΓ(2)−δˆtΓ(2)+δeξoˆtΓ(2)−δ2ˆt2Γ(3)+δ2eξoˆt2Γ(3)+δ2ˆtΓ(2)−δ2eξoˆtΓ(2)−δξo+δ−δeξo+δ2ˆtΓ(2)−δ2eξoˆtΓ(2)−δ2+δ2eξo. |
The NITM solution with three terms approximation within Caputo Fabrizio operator is
u(ξo,ˆt)=u0(ξo,ˆt)+u1(ξo,ˆt)+u2(ξo,ˆt), |
the series form approximate solution to three term iterations is given as
u(ξo,ˆt)={ξo+δξoˆtΓ(2)−eξoˆtΓ(2)−δξo+δeξo+ξo−1+eξo−δˆtΓ(2)+δeξoˆtΓ(2)+δ−δeξo+δξoˆtΓ(2)−δˆtΓ(2)+δeξoˆtΓ(2)−δ2ˆt2Γ(3)+δ2eξoˆt2Γ(3)+δ2ˆtΓ(2)−δ2eξoˆtΓ(2)−δξo+δ−δeξo+δ2ˆtΓ(2)−δ2eξoˆtΓ(2)−δ2+δ2eξo, | (5.11) |
Consider fractional order 3D Navier Stokes equation of the form[38]
Dδˆtu+u∂u∂ξo+μ∂u∂ξ1+ν∂u∂ξ2=ρ0(∂2u∂ξo2+∂2u∂ξ12+∂2u∂ξ22)−1ρ∂ρ∂ξo,Dδˆtμ+u∂μ∂ξo+μ∂μ∂ξ1+ν∂μ∂ξ2=ρ0(∂2μ∂ξo2+∂2μ∂ξ12+∂2μ∂ξ22)−1ρ∂ρ∂ξ1,Dδˆtν+u∂ν∂ξo+μ∂ν∂ξ1+ν∂ν∂ξ2=ρ0(∂2ν∂ξo2+∂2ν∂ξ12+∂2ν∂ξ22)−1ρ∂ρ∂ξ2, | (5.12) |
having initial condition
u(ξo,ξ1,ξ2,0)=−0.5ξo+ξ1+ξ2,μ(ξo,ξ1,ξ2,0)=ξo−0.5ξ1+ξ2,ν(ξo,ξ1,ξ2,0)=ξo+ξ1−0.5ξ2. |
The exact solution of the Eq (5.12), is
u(ξo,ξ1,ξ2,ˆt)=−0.5ξo+ξ1+ξ2−2.25ξoˆt1−2.25ˆt2,μ(ξo,ξ1,ξ2,ˆt)=ξo−0.5ξ1+ξ2−2.25ξ1ˆt1−2.25ˆt2,ν(ξo,ξ1,ξ2,ˆt)=ξo+ξ1−0.5ξ2−2.25ξ2ˆt1−2.25ˆt2, |
where
g1=−1ρ∂ρ∂ξo, g2=−1ρ∂ρ∂ξ1, g3=−1ρ∂ρ∂ξ2. |
Case 1: The solution of system (5.12), using NITM within C-FDO.
Applying AT on both sides of Eq (5.12), we obtain
A(u(ξo,ξ1,ξ2,ˆt))=u(ξo,ξ1,ξ2,0)s+1sδA[ρ0(∂2u∂ξo2+∂2u∂ξ12+∂2u∂ξ22)+g1−(u∂u∂ξo+μ∂u∂ξ1+ν∂u∂ξ2)],A(μ(ξo,ξ1,ξ2,ˆt))=μ(ξo,ξ1,ξ2,0)s+1sδA[ρ0(∂2μ∂ξo2+∂2μ∂ξ12+∂2μ∂ξ22)+g2−(u∂μ∂ξo+μ∂μ∂ξ1+ν∂μ∂ξ2)],A(ν(ξo,ξ1,ξ2,ˆt))=ν(ξo,ξ1,ξ2,0)s+1sδA[ρ0(∂2ν∂ξo2+∂2ν∂ξ12+∂2ν∂ξ22)+g3−(u∂ν∂ξo+μ∂ν∂ξ1+ν∂ν∂ξ2)], | (5.13) |
applying the inverse AT on Eq (5.13), we have
u(ξo,ξ1,ξ2,ˆt)=u(ξo,ξ1,ξ2,0)+A−[1sδA{ρ0(∂2u∂ξo2+∂2u∂ξ12+∂2u∂ξ22)+g1−(u∂u∂ξo+μ∂u∂ξ1+ν∂u∂ξ2)}],μ(ξo,ξ1,ξ2,ˆt)=μ(ξo,ξ1,ξ2,0)+A−[1sδA{ρ0(∂2μ∂ξo2+∂2μ∂ξ12+∂2μ∂ξ22)+g2−(u∂μ∂ξo+μ∂μ∂ξ1+ν∂μ∂ξ2)}],ν(ξo,ξ1,ξ2,ˆt)=μ(ξo,ξ1,ξ2,0)+A−[1sδA{ρ0(∂2ν∂ξo2+∂2ν∂ξ12+∂2ν∂ξ22)+g3−(u∂ν∂ξo+μ∂ν∂ξ1+ν∂ν∂ξ2)}], | (5.14) |
so the iterative scheme is
u0(ξo,ξ1,ξ2,ˆt)=u(ξo,ξ1,ξ2,0)=−0.5ξo+ξ1+ξ2,μ0(ξo,ξ1,ξ2,ˆt)=μ(ξo,ξ1,ξ2,0)=ξo−0.5ξ1+ξ2,ν0(ξo,ξ1,ξ2,ˆt)=ν(ξo,ξ1,ξ2,0)=ξo+ξ1−0.5ξ2,un+1(ξo,ξ1,ξ2,ˆt)=A−[1sδA{ρ0(∂2un∂ξo2+∂2un∂ξ12+∂2un∂ξ22)+g1−(un∂un∂ξo+μn∂un∂ξ1+νn∂un∂ξ2)}],μn+1(ξo,ξ1,ξ2,ˆt)=A−[1sδA{ρ0(∂2μn∂ξo2+∂2μn∂ξ12+∂2μn∂ξ22)+g2−(un∂μn∂ξo+μn∂μn∂ξ1+νn∂μn∂ξ2)}],νn+1(ξo,ξ1,ξ2,ˆt)=A−[1sδA{ρ0(∂2νn∂ξo2+∂2νn∂ξ12+∂2νn∂ξ22)+g3−(un∂νn∂ξo+μn∂νn∂ξ1+νn∂νn∂ξ2)}], n=0,1,⋯, | (5.15) |
put n = 0 in Eq (5.15), we have
u1(ξo,ξ1,ξ2,ˆt)=A−[1sδA{ρ0(∂2u0∂ξo2+∂2u0∂ξ12+∂2u0∂ξ22)+g1−(u0∂u0∂ξo+μ0∂u0∂ξ1+ν0∂u0∂ξ2)}],μ1(ξo,ξ1,ξ2,ˆt)=A−[1sδA{ρ0(∂2μ0∂ξo2+∂2μ0∂ξ12+∂2μ0∂ξ22)+g2−(u0∂μ0∂ξo+μ0∂μ0∂ξ1+ν0∂μ0∂ξ2)}],ν1(ξo,ξ1,ξ2,ˆt)=A−[1sδA{ρ0(∂2ν0∂ξo2+∂2ν0∂ξ12+∂2ν0∂ξ22)+g3−(u0∂ν0∂ξo+μ0∂ν0∂ξ1+ν0∂ν0∂ξ2)}], |
u1(ξo,ξ1,ξ2,ˆt)=A−[1sδA{g1−((−0.5ξo+ξ1+ξ2)(−0.5)+(ξo−0.5ξ1+ξ2)(1)+(ξo+ξ1−0.5ξ2)(1))}],μ1(ξo,ξ1,ξ2,ˆt)=A−[1sδA{g2−((−0.5ξo+ξ1+ξ2)(1)+(ξo−0.5ξ1+ξ2)(−0.5)+(ξo+ξ1−0.5ξ2)(1))}],ν1(ξo,ξ1,ξ2,ˆt)=A−[1sδA{g3−((−0.5ξo+ξ1+ξ2)(1)+(ξo−0.5ξ1+ξ2)(1)+(ξo+ξ1−0.5ξ2)(−0.5))}], |
u1(ξo,ξ1,ξ2,ˆt)=A−[1sδ{g1s−2.25ξos}]=A−[g1sδ+1−2.25ξosδ+1],μ1(ξo,ξ1,ξ2,ˆt)=A−[1sδ{g2s−2.25ξ1s}]=A−[g2sδ+1−2.25ξ1sδ+1],ν1(ξo,ξ1,ξ2,ˆt)=A−[1sδ{g3s−2.25ξ2s}]=A−[g3sδ+1−2.25ξ2sδ+1], |
u1(ξo,ξ1,ξ2,ˆt)=g1ˆtδΓ(δ+1)−2.25ξoˆtδΓ(δ+1),μ1(ξo,ξ1,ξ2,ˆt)=g2ˆtδΓ(δ+1)−2.25ξ1ˆtδΓ(δ+1),ν1(ξo,ξ1,ξ2,ˆt)=g3ˆtδΓ(δ+1)−2.25ξ2ˆtδΓ(δ+1). |
Put n = 1 in Eq (5.15), we have
u2(ξo,ξ1,ξ2,ˆt)=A−[1sδA{ρ0(∂2u1∂ξo2+∂2u1∂ξ12+∂2u1∂ξ22)+g1−(u1∂u1∂ξo+μ1∂u1∂ξ1+ν1∂u1∂ξ2)}],μ2(ξo,ξ1,ξ2,ˆt)=A−[1sδA{ρ0(∂2μ1∂ξo2+∂2μ1∂ξ12+∂2μ1∂ξ22)+g2−(u1∂μ1∂ξo+μ1∂μ1∂ξ1+ν1∂μ1∂ξ2)}],ν2(ξo,ξ1,ξ2,ˆt)=A−[1sδA{ρ0(∂2ν1∂ξo2+∂2ν1∂ξ12+∂2ν1∂ξ22)+g3−(u1∂ν1∂ξo+μ1∂ν1∂ξ1+ν1∂ν1∂ξ2)}], |
after simplification we get,
u2(ξo,ξ1,ξ2,ˆt)=g1ˆtδΓ(δ+1)+2.25g1ˆt3δΓ(2δ+1)(Γ(δ+1))2Γ(3δ+1)−2.252ξoˆt3δΓ(2δ+1)(Γ(δ+1))2Γ(3δ+1),μ2(ξo,ξ1,ξ2,ˆt)=g2ˆtδΓ(δ+1)+2.25g2ˆt3δΓ(2δ+1)(Γ(δ+1))2Γ(3δ+1)−2.252ξ1ˆt3δΓ(2δ+1)(Γ(δ+1))2Γ(3δ+1),ν2(ξo,ξ1,ξ2,ˆt)=g3ˆtδΓ(δ+1)+2.25g3ˆt3δΓ(2δ+1)(Γ(δ+1))2Γ(3δ+1)−2.252ξ2ˆt3δΓ(2δ+1)(Γ(δ+1))2Γ(3δ+1). |
The approximate NITM solution using the Caputo operator with three terms iterations
u(ξo,ξ1,ξ2,ˆt)=u0(ξo,ξ1,ξ2,ˆt)+u1(ξo,ξ1,ξ2,ˆt)+u2(ξo,ξ1,ξ2,ˆt),μ(ξo,ξ1,ξ2,ˆt)=μ0(ξo,ξ1,ξ2,ˆt)+μ1(ξo,ξ1,ξ2,ˆt)+μ2(ξo,ξ1,ξ2,ˆt),ν(ξo,ξ1,ξ2,ˆt)=ν0(ξo,ξ1,ξ2,ˆt)+ν1(ξo,ξ1,ξ2,ˆt)+ν2(ξo,ξ1,ξ2,ˆt), |
u(ξo,ξ1,ξ2,ˆt)=−0.5ξo+ξ1+ξ2+g1ˆtδΓ(δ+1)−2.25ξoˆtδΓ(δ+1)+g1ˆtδΓ(δ+1)+2.25g1ˆt3δΓ(2δ+1)(Γ(δ+1))2Γ(3δ+1)−2.252ξoˆt3δΓ(2δ+1)(Γ(δ+1))2Γ(3δ+1),μ(ξo,ξ1,ξ2,ˆt)=ξo−0.5ξ1+ξ2+g2ˆtδΓ(δ+1)−2.25ξ1ˆtδΓ(δ+1)+g2ˆtδΓ(δ+1)+2.25g2ˆt3δΓ(2δ+1)(Γ(δ+1))2Γ(3δ+1)−2.252ξ1ˆt3δΓ(2δ+1)(Γ(δ+1))2Γ(3δ+1),ν(ξo,ξ1,ξ2,ˆt)=ξo+ξ1−0.5ξ2+g3ˆtδΓ(δ+1)−2.25ξ2ˆtδΓ(δ+1)+g3ˆtδΓ(δ+1)+2.25g3ˆt3δΓ(2δ+1)(Γ(δ+1))2Γ(3δ+1)−2.252ξ2ˆt3δΓ(2δ+1)(Γ(δ+1))2Γ(3δ+1). |
Case 2: NITM solution of system (5.12) within AB operator.
ApplyAT to both sides of Eq (5.12), we get
A(u(ξo,ξ1,ξ2,ˆt))=u(ξo,ξ1,ξ2,0)s+((1−δ)sδ+δsδ)A[ρ0(∂2u∂ξo2+∂2u∂ξ12+∂2u∂ξ22)+g1−(u∂u∂ξo+μ∂u∂ξ1+ν∂u∂ξ2)],A(μ(ξo,ξ1,ξ2,ˆt))=μ(ξo,ξ1,ξ2,0)s+((1−δ)sδ+δsδ)A[ρ0(∂2μ∂ξo2+∂2μ∂ξ12+∂2μ∂ξ22)+g2−(u∂μ∂ξo+μ∂μ∂ξ1+ν∂μ∂ξ2)],A(ν(ξo,ξ1,ξ2,ˆt))=ν(ξo,ξ1,ξ2,0)s+((1−δ)sδ+δsδ)A[ρ0(∂2ν∂ξo2+∂2ν∂ξ12+∂2ν∂ξ22)+g3−(u∂ν∂ξo+μ∂ν∂ξ1+ν∂ν∂ξ2)], | (5.16) |
applying the inverse AT on Eq (5.16), we have
u(ξo,ξ1,ξ2,ˆt)=u(ξo,ξ1,ξ2,0)+A−[((1−δ)+δsδ)A{ρ0(∂2u∂ξo2+∂2u∂ξ12+∂2u∂ξ22)+g1−(u∂u∂ξo+μ∂u∂ξ1+ν∂u∂ξ2)}],μ(ξo,ξ1,ξ2,ˆt)=μ(ξo,ξ1,ξ2,0)+A−[((1−δ)+δsδ)A{ρ0(∂2μ∂ξo2+∂2μ∂ξ12+∂2μ∂ξ22)+g2−(u∂μ∂ξo+μ∂μ∂ξ1+ν∂μ∂ξ2)}],ν(ξo,ξ1,ξ2,ˆt)=μ(ξo,ξ1,ξ2,0)+A−[((1−δ)+δsδ)A{ρ0(∂2ν∂ξo2+∂2ν∂ξ12+∂2ν∂ξ22)+g3−(u∂ν∂ξo+μ∂ν∂ξ1+ν∂ν∂ξ2)}], | (5.17) |
so the iterative scheme is
u0(ξo,ξ1,ξ2,ˆt)=u(ξo,ξ1,ξ2,0)=−0.5ξo+ξ1+ξ2,μ0(ξo,ξ1,ξ2,ˆt)=μ(ξo,ξ1,ξ2,0)=ξo−0.5ξ1+ξ2,ν0(ξo,ξ1,ξ2,ˆt)=ν(ξo,ξ1,ξ2,0)=ξo+ξ1−0.5ξ2,un+1(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)+δsδ)A{ρ0(∂2un∂ξo2+∂2un∂ξ12+∂2un∂ξ22)+g1−(un∂un∂ξo+μn∂un∂ξ1+νn∂un∂ξ2)}],μn+1(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)+δsδ)A{ρ0(∂2μn∂ξo2+∂2μn∂ξ12+∂2μn∂ξ22)+g2−(un∂μn∂ξo+μn∂μn∂ξ1+νn∂μn∂ξ2)}],νn+1(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)+δsδ)A{ρ0(∂2νn∂ξo2+∂2νn∂ξ12+∂2νn∂ξ22)+g3−(un∂νn∂ξo+μn∂νn∂ξ1+νn∂νn∂ξ2)}], n=0,1,..., | (5.18) |
put n = 0 in Eq (5.18), we have
u1(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)+δsδ)A{ρ0(∂2u0∂ξo2+∂2u0∂ξ12+∂2u0∂ξ22)+g1−(u0∂u0∂ξo+μ0∂u0∂ξ1+ν0∂u0∂ξ2)}],μ1(ξo,ξ1,ξ2,t)=A−[((1−δ)+δsδ)A{ρ0(∂2μ0∂ξo2+∂2μ0∂ξ12+∂2μ0∂ξ22)+g2−(u0∂μ0∂ξo+μ0∂μ0∂ξ1+ν0∂μ0∂ξ2)}],ν1(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)+δsδ)A{ρ0(∂2ν0∂ξo2+∂2ν0∂ξ12+∂2ν0∂ξ22)+g3−(u0∂ν0∂ξo+μ0∂ν0∂ξ1+ν0∂ν0∂ξ2)}], |
u1(ξo,ξ1,ξ2,ˆt)=(1−δ)g1−2.25(1−δ)ξo+δg1ˆtδΓ(δ+1)−2.25δξoˆtδΓ(δ+1),μ1(ξo,ξ1,ξ2,ˆt)=(1−δ)g2−2.25(1−δ)ξ1+δg2ˆtδΓ(δ+1)−2.25δξ1ˆtδΓ(δ+1),ν1(ξo,ξ1,ξ2,ˆt)=(1−δ)g3−2.25(1−δ)ξ2+δg3ˆtδΓ(δ+1)−2.25δξ2ˆtδΓ(δ+1). |
Put n = 1 in Eq (5.18), we have
u2(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)+δsδ)A{ρ0(∂2u1∂ξo2+∂2u1∂ξ12+∂2u1∂ξ22)+g1−(u1∂u1∂ξo+μ1∂u1∂ξ1+ν1∂u1∂ξ2)}],μ2(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)+δsδ)A{ρ0(∂2μ1∂ξo2+∂2μ1∂ξ12+∂2μ1∂ξ22)+g2−(u1∂μ1∂ξo+μ1∂μ1∂ξ1+ν1∂μ1∂ξ2)}],ν2(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)+δsδ)A{ρ0(∂2ν1∂ξo2+∂2ν1∂ξ12+∂2ν1∂ξ22)+g3−(u1∂ν1∂ξo+μ1∂ν1∂ξ1+ν1∂ν1∂ξ2)}], |
u2(ξo,ξ1,ξ2,ˆt)={g1(1−δ)+2.25(1−δ)3g1+2.25δ(1−δ)2g1ˆtδΓ(δ+1)−2.25(1−δ)3ξo−2.25(1−δ)2ξoˆtδΓ(δ+1)+2.25δ(1−δ)2g1ˆtδΓ(δ+1)+2.252δ2(1−δ)g1ˆt2δ+1Γ(δ+1)2−2.252δ(1−δ)2ξoˆtδΓ(δ+1)−2.252δ2(1−δ)ξoˆt2δ+1Γ(δ+1)2+δg1ˆtδΓ(δ+1)+2.25δ(1−δ)2g1ˆtδΓ(δ+1)+2.25δ2(1−δ)g1ˆt2δΓ(2δ+1)−2.25δ(1−δ)2ξoˆtδΓ(δ+1)−2.25δ(1−δ)ξoˆt2δΓ(2δ+1)+2.25δ2(1−δ)g1ˆt2δΓ(2δ+1)+2.252δ3g1ˆt3δΓ(2δ+1)Γ(δ+1)2Γ(3δ+1)−2.252δ2(1−δ)ξoˆt2δΓ(2δ+1)−2.252δ3ξoˆt3δΓ(2δ+1)Γ(δ+1)2Γ(3δ+1),μ2(ξo,ξ1,ξ2,ˆt)={g2(1−δ)+2.25(1−δ)3g2+2.25δ(1−δ)2g2ˆtδΓ(δ+1)−2.25(1−δ)3ξ1−2.25(1−δ)2ξ1ˆtδΓ(δ+1)+2.25δ(1−δ)2g2ˆtδΓ(δ+1)+2.252δ2(1−δ)g2ˆt2δ+1Γ(δ+1)2−2.252δ(1−δ)2ξ1ˆtδΓ(δ+1)−2.252δ2(1−δ)ξ1ˆt2δ+1Γ(δ+1)2+δg2ˆtδΓ(δ+1)+2.25δ(1−δ)2g2ˆtδΓ(δ+1)+2.25δ2(1−δ)g2ˆt2δΓ(2δ+1)−2.25δ(1−δ)2ξ1ˆtδΓ(δ+1)−2.25δ(1−δ)ξ1ˆt2δΓ(2δ+1)+2.25δ2(1−δ)g2ˆt2δΓ(2δ+1)+2.252δ3g2ˆt3δΓ(2δ+1)Γ(δ+1)2Γ(3δ+1)−2.252δ2(1−δ)ξ1ˆt2δΓ(2δ+1)−2.252δ3ξ1ˆt3δΓ(2δ+1)Γ(δ+1)2Γ(3δ+1),ν2(ξo,ξ1,ξ2,ˆt)={g3(1−δ)+2.25(1−δ)3g3+2.25δ(1−δ)2g3ˆtδΓ(δ+1)−2.25(1−δ)3ξ2−2.25(1−δ)2ξ2ˆtδΓ(δ+1)+2.25δ(1−δ)2g3ˆtδΓ(δ+1)+2.252δ2(1−δ)g3ˆt2δ+1Γ(δ+1)2−2.252δ(1−δ)2ξ2ˆtδΓ(δ+1)−2.252δ2(1−δ)ξ2ˆt2δ+1Γ(δ+1)2+δg3ˆtδΓ(δ+1)+2.25δ(1−δ)2g3ˆtδΓ(δ+1)+2.25δ2(1−δ)g3ˆt2δΓ(2δ+1)−2.25δ(1−δ)2ξ2ˆtδΓ(δ+1)−2.25δ(1−δ)ξ2ˆt2δΓ(2δ+1)+2.25δ2(1−δ)g3ˆt2δΓ(2δ+1)+2.252δ3g3ˆt3δΓ(2δ+1)Γ(δ+1)2Γ(3δ+1)−2.252δ2(1−δ)ξ2ˆt2δΓ(2δ+1)−2.252δ3ξ2ˆt3δΓ(2δ+1)Γ(δ+1)2Γ(3δ+1). |
The NITM solution with three terms approximation within the Atangana-Baleanu operator is
u(ξo,ξ1,ξ2,ˆt)=u0(ξo,ξ1,ξ2,ˆt)+u1(ξo,ξ1,ξ2,ˆt)+u2(ξo,ξ1,ξ2,ˆt),μ(ξo,ξ1,ξ2,ˆt)=μ0(ξo,ξ1,ξ2,ˆt)+μ1(ξo,ξ1,ξ2,ˆt)+μ2(ξo,ξ1,ξ2,ˆt),ν(ξo,ξ1,ξ2,ˆt)=ν0(ξo,ξ1,ξ2,ˆt)+ν1(ξo,ξ1,ξ2,ˆt)+ν2(ξo,ξ1,ξ2,ˆt), |
u(ξo,ξ1,ξ2,ˆt)={−0.5ξo+ξ1+ξ2+(1−δ)g1−2.25(1−δ)ξo+δg1ˆtδΓ(δ+1)−2.25δξoˆtδΓ(δ+1)+g1(1−δ)+2.25(1−δ)3g1+2.25δ(1−δ)2g1ˆtδΓ(δ+1)−2.25(1−δ)3ξo−2.25(1−δ)2ξoˆtδΓ(δ+1)+2.25δ(1−δ)2g1ˆtδΓ(δ+1)+2.252δ2(1−δ)g1ˆt2δ+1Γ(δ+1)2−2.252δ(1−δ)2ξoˆtδΓ(δ+1)−2.252δ2(1−δ)ξoˆt2δ+1Γ(δ+1)2+δg1ˆtδΓ(δ+1)+2.25δ(1−δ)2g1ˆtδΓ(δ+1)+2.25δ2(1−δ)g1ˆt2δΓ(2δ+1)−2.25δ(1−δ)2ξoˆtδΓ(δ+1)−2.25δ(1−δ)ξoˆt2δΓ(2δ+1)+2.25δ2(1−δ)g1ˆt2δΓ(2δ+1)+2.252δ3g1ˆt3δΓ(2δ+1)Γ(δ+1)2Γ(3δ+1)−2.252δ2(1−δ)ξoˆt2δΓ(2δ+1)−2.252δ3ξoˆt3δΓ(2δ+1)Γ(δ+1)2Γ(3δ+1),μ(ξo,ξ1,ξ2,ˆt)={ξo−0.5ξ1+ξ2+(1−δ)g2−2.25(1−δ)ξ1+δg2ˆtδΓ(δ+1)−2.25δξ1ˆtδΓ(δ+1)+g2(1−δ)+2.25(1−δ)3g2+2.25δ(1−δ)2g2ˆtδΓ(δ+1)−2.25(1−δ)3ξ1−2.25(1−δ)2ξ1ˆtδΓ(δ+1)+2.25δ(1−δ)2g2ˆtδΓ(δ+1)+2.252δ2(1−δ)g2ˆt2δ+1Γ(δ+1)2−2.252δ(1−δ)2ξ1ˆtδΓ(δ+1)−2.252δ2(1−δ)ξ1ˆt2δ+1Γ(δ+1)2+δg2ˆtδΓ(δ+1)+2.25δ(1−δ)2g2ˆtδΓ(δ+1)+2.25δ2(1−δ)g2ˆt2δΓ(2δ+1)−2.25δ(1−δ)2ξ1ˆtδΓ(δ+1)−2.25δ(1−δ)ξ1ˆt2δΓ(2δ+1)+2.25δ2(1−δ)g2ˆt2δΓ(2δ+1)+2.252δ3g2ˆt3δΓ(2δ+1)Γ(δ+1)2Γ(3δ+1)−2.252δ2(1−δ)ξ1ˆt2δΓ(2δ+1)−2.252δ3ξ1ˆt3δΓ(2δ+1)Γ(δ+1)2Γ(3δ+1),ν(ξo,ξ1,ξ2,ˆt)={ξo+ξ1−0.5ξ2+(1−δ)g3−2.25(1−δ)ξ2+δg3ˆtδΓ(δ+1)−2.25δξ2ˆtδΓ(δ+1)+g3(1−δ)+2.25(1−δ)3g3+2.25δ(1−δ)2g3ˆtδΓ(δ+1)−2.25(1−δ)3ξ2−2.25(1−δ)2ξ2ˆtδΓ(δ+1)+2.25δ(1−δ)2g3ˆtδΓ(δ+1)+2.252δ2(1−δ)g3ˆt2δ+1Γ(δ+1)2−2.252δ(1−δ)2ξ2ˆtδΓ(δ+1)−2.252δ2(1−δ)ξ2ˆt2δ+1Γ(δ+1)2+δg3ˆtδΓ(δ+1)+2.25δ(1−δ)2g3ˆtδΓ(δ+1)+2.25δ2(1−δ)g3ˆt2δΓ(2δ+1)−2.25δ(1−δ)2ξ2ˆtδΓ(δ+1)−2.25δ(1−δ)ξ2ˆt2δΓ(2δ+1)+2.25δ2(1−δ)g3ˆt2δΓ(2δ+1)+2.252δ3g3ˆt3δΓ(2δ+1)Γ(δ+1)2Γ(3δ+1)−2.252δ2(1−δ)ξ2ˆt2δΓ(2δ+1)−2.252δ3ξ2ˆt3δΓ(2δ+1)Γ(δ+1)2Γ(3δ+1). |
Case 3: The solution of system(5.12), using NITM with a Caputo Fabrizio operator.
Applying AT to Eq (5.12), we obtain
A(u(ξo,ξ1,ξ2,ˆt))=u(ξo,ξ1,ξ2,0)s+(s+(1−s)δs)A[ρ0(∂2u∂ξo2+∂2u∂ξ12+∂2u∂ξ22)+g1−(u∂u∂ξo+μ∂u∂ξ1+ν∂u∂ξ2)],A(μ(ξo,ξ1,ξ2,ˆt))=μ(ξo,ξ1,ξ2,0)s+(s+(1−s)δs)A[ρ0(∂2μ∂ξo2+∂2μ∂ξ12+∂2μ∂ξ22)+g2−(u∂μ∂ξo+μ∂μ∂ξ1+ν∂μ∂ξ2)],A(ν(ξo,ξ1,ξ2,ˆt))=ν(ξo,ξ1,ξ2,0)s+(s+(1−s)δs)A[ρ0(∂2ν∂ξo2+∂2ν∂ξ12+∂2ν∂ξ22)+g3−(u∂ν∂ξo+μ∂ν∂ξ1+ν∂ν∂ξ2)], | (5.19) |
applying the inverse AT on Eq (5.19), we have
u(ξo,ξ1,ξ2,ˆt)=u(ξo,ξ1,ξ2,0)+A−[((1−δ)+δs)A{ρ0(∂2u∂ξo2+∂2u∂ξ12+∂2u∂ξ22)+g1−(u∂u∂ξo+μ∂u∂ξ1+ν∂u∂ξ2)}],μ(ξo,ξ1,ξ2,ˆt)=μ(ξo,ξ1,ξ2,0)+A−[((1−δ)+δs)A{ρ0(∂2μ∂ξo2+∂2μ∂ξ12+∂2μ∂ξ22)+g2−(u∂μ∂ξo+μ∂μ∂ξ1+ν∂μ∂ξ2)}],ν(ξo,ξ1,ξ2,ˆt)=μ(ξo,ξ1,ξ2,0)+A−[((1−δ)+δs)A{ρ0(∂2ν∂ξo2+∂2ν∂ξ12+∂2ν∂ξ22)+g3−(u∂ν∂ξo+μ∂ν∂ξ1+ν∂ν∂ξ2)}], | (5.20) |
so the iterative scheme is
u0(ξo,ξ1,ξ2,ˆt)=u(ξo,ξ1,ξ2,0)=−0.5ξo+ξ1+ξ2,μ0(ξo,ξ1,ξ2,ˆt)=μ(ξo,ξ1,ξ2,0)=ξo−0.5ξ1+ξ2,ν0(ξo,ξ1,ξ2,ˆt)=ν(ξo,ξ1,ξ2,0)=ξo+ξ1−0.5ξ2,un+1(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)+δs)A{ρ0(∂2un∂ξo2+∂2un∂ξ12+∂2un∂ξ22)+g1−(un∂un∂ξo+μn∂un∂ξ1+νn∂un∂ξ2)}],μn+1(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)+δs)A{ρ0(∂2μn∂ξo2+∂2μn∂ξ12+∂2μn∂ξ22)+g2−(un∂μn∂ξo+μn∂μn∂ξ1+νn∂μn∂ξ2)}],νn+1(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)+δs)A{ρ0(∂2νn∂ξo2+∂2νn∂ξ12+∂2νn∂ξ22)+g3−(un∂νn∂ξo+μn∂νn∂ξ1+νn∂νn∂ξ2)}], n=0,1,⋯, | (5.21) |
put n = 0 in Eq (5.21) we have
u1(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)+δs)A{ρ0(∂2u0∂ξo2+∂2u0∂ξ12+∂2u0∂ξ22)+g1−(u0∂u0∂ξo+μ0∂u0∂ξ1+ν0∂u0∂ξ2)}],μ1(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)+δs)A{ρ0(∂2μ0∂ξo2+∂2μ0∂ξ12+∂2μ0∂ξ22)+g2−(u0∂μ0∂ξo+μ0∂μ0∂ξ1+ν0∂μ0∂ξ2)}], |
ν1(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)+δs)A{ρ0(∂2ν0∂ξo2+∂2ν0∂ξ12+∂2ν0∂ξ22)+g3−(u0∂ν0∂ξo+μ0∂ν0∂ξ1+ν0∂ν0∂ξ2)}], |
u1(ξo,ξ1,ξ2,ˆt)=(1−δ)g1−2.25(1−δ)ξo+δg1ˆt−2.25δξoˆt,μ1(ξo,ξ1,ξ2,ˆt)=(1−δ)g2−2.25(1−δ)ξ1+δg2ˆt−2.25δξ1ˆt,ν1(ξo,ξ1,ξ2,ˆt)=(1−δ)g3−2.25(1−δ)ξ2+δg3ˆt−2.25δξ2ˆt. |
Put n = 1 in Eq (5.21), we have
u2(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)+δs)A{ρ0(∂2u1∂ξo2+∂2u1∂ξ12+∂2u1∂ξ22)+g1−(u1∂u1∂ξo+μ1∂u1∂ξ1+ν1∂u1∂ξ2)}],μ2(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)+δs)A{ρ0(∂2μ1∂ξo2+∂2μ1∂ξ12+∂2μ1∂ξ22)+g2−(u1∂μ1∂ξo+μ1∂μ1∂ξ1+ν1∂μ1∂ξ2)}],ν2(ξo,ξ1,ξ2,ˆt)=A−[((1−δ)+δs)A{ρ0(∂2ν1∂ξo2+∂2ν1∂ξ12+∂2ν1∂ξ22)+g3−(u1∂ν1∂ξo+μ1∂ν1∂ξ1+ν1∂ν1∂ξ2)}], |
u2(ξo,ξ1,ξ2,ˆt)={(1−δ)g1+2.25(1−δ)3g1−2.252(1−δ)3ξo+2.25δ(1−δ)2g1ˆt−2.252δ(1−δ)2ξoˆt+2.25δ(1−δ)2g1ˆt−2.252δ(1−δ)2ξoˆt+2.25δ2(1−δ)g1ˆt2−2.252δ2(1−δ)ξoˆt2+δg1ˆt+2.25δ(1−δ)2g1ˆt−2.252δ(1−δ)2ξoˆt+2.25δ2(1−δ)g1ˆt2Γ(3)−2.252δ2(1−δ)ξoˆt2Γ(3)+2.25δ2(1−δ)g1ˆt2Γ(3)−2.252δ2(1−δ)ξoˆt2Γ(3)+2.25δ3g1ˆt3Γ(3)Γ(4)−2.252δ3ξoˆt3Γ(3)Γ(4),μ2(ξo,ξ1,ξ2,ˆt)={(1−δ)g2+2.25(1−δ)3g2−2.252(1−δ)3ξ1+2.25δ(1−δ)2g2ˆt−2.252δ(1−δ)2ξ1ˆt+2.25δ(1−δ)2g2ˆt−2.252δ(1−δ)2ξ1ˆt+2.25δ2(1−δ)g2ˆt2−2.252δ2(1−δ)ξ1ˆt2+δg2ˆt+2.25δ(1−δ)2g2ˆt−2.252δ(1−δ)2ξ1ˆt+2.25δ2(1−δ)g2ˆt2Γ(3)−2.252δ2(1−δ)ξ1ˆt2Γ(3)+2.25δ2(1−δ)g2ˆt2Γ(3)−2.252δ2(1−δ)ξ1ˆt2Γ(3)+2.25δ3g2ˆt3Γ(3)Γ(4)−2.252δ3ξ1ˆt3Γ(3)Γ(4),ν2(ξo,ξ1,ξ2,ˆt)={(1−δ)g3+2.25(1−δ)3g3−2.252(1−δ)3ξ2+2.25δ(1−δ)2g3ˆt−2.252δ(1−δ)2ξ2ˆt+2.25δ(1−δ)2g3ˆt−2.252δ(1−δ)2ξ2ˆt+2.25δ2(1−δ)g3ˆt2−2.252δ2(1−δ)ξ2ˆt2+δg3ˆt+2.25δ(1−δ)2g3ˆt−2.252δ(1−δ)2ξ2ˆt+2.25δ2(1−δ)g3ˆt2Γ(3)−2.252δ2(1−δ)ξ2ˆt2Γ(3)+2.25δ2(1−δ)g3ˆt2Γ(3)−2.252δ2(1−δ)ξ2ˆt2Γ(3)+2.25δ3g3ˆt3Γ(3)Γ(4)−2.252δ3ξ2ˆt3Γ(3)Γ(4). |
The NITM solution with three terms approximation within Caputo Fabrizio operator is
u(ξo,ξ1,ξ2,ˆt)=u0(ξo,ξ1,ξ2,ˆt)+u1(ξo,ξ1,ξ2,ˆt)+u2(ξo,ξ1,ξ2,ˆt),μ(ξo,ξ1,ξ2,ˆt)=μ0(ξo,ξ1,ξ2,ˆt)+μ1(ξo,ξ1,ξ2,ˆt)+μ2(ξo,ξ1,ξ2,ˆt),ν(ξo,ξ1,ξ2,ˆt)=ν0(ξo,ξ1,ξ2,ˆt)+ν1(ξo,ξ1,ξ2,ˆt)+ν2(ξo,ξ1,ξ2,ˆt), |
the series form solution is obtain by
u(ξo,ξ1,ξ2,ˆt)={−0.5ξo+ξ1+ξ2+(1−δ)g1−2.25(1−δ)ξo+δg1ˆt−2.25δξoˆt+(1−δ)g1+2.25(1−δ)3g1−2.252(1−δ)3ξo+2.25δ(1−δ)2g1ˆt−2.252δ(1−δ)2ξoˆt+2.25δ(1−δ)2g1ˆt−2.252δ(1−δ)2ξoˆt+2.25δ2(1−δ)g1ˆt2−2.252δ2(1−δ)ξoˆt2+δg1ˆt+2.25δ(1−δ)2g1ˆt−2.252δ(1−δ)2ξoˆt+2.25δ2(1−δ)g1ˆt2Γ(3)−2.252δ2(1−δ)ξoˆt2Γ(3)+2.25δ2(1−δ)g1ˆt2Γ(3)−2.252δ2(1−δ)ξoˆt2Γ(3)+2.25δ3g1ˆt3Γ(3)Γ(4)−2.252δ3ξoˆt3Γ(3)Γ(4),μ(ξo,ξ1,ξ2,ˆt)={ξo−0.5ξ1+ξ2+(1−δ)g2−2.25(1−δ)ξ1+δg2ˆt−2.25δξ1ˆt+(1−δ)g2+2.25(1−δ)3g2−2.252(1−δ)3ξ1+2.25δ(1−δ)2g2ˆt−2.252δ(1−δ)2ξ1ˆt+2.25δ(1−δ)2g2ˆt−2.252δ(1−δ)2ξ1ˆt+2.25δ2(1−δ)g2ˆt2−2.252δ2(1−δ)ξ1ˆt2+δg2ˆt+2.25δ(1−δ)2g2ˆt−2.252δ(1−δ)2ξ1ˆt+2.25δ2(1−δ)g2ˆt2Γ(3)−2.252δ2(1−δ)ξ1ˆt2Γ(3)+2.25δ2(1−δ)g2ˆt2Γ(3)−2.252δ2(1−δ)ξ1ˆt2Γ(3)+2.25δ3g2ˆt3Γ(3)Γ(4)−2.252δ3ξ1ˆt3Γ(3)Γ(4),ν(ξo,ξ1,ξ2,ˆt)={ξo+ξ1−0.5ξ2+(1−δ)g3−2.25(1−δ)ξ2+δg3ˆt−2.25δξ2ˆt+(1−δ)g3+2.25(1−δ)3g3−2.252(1−δ)3ξ2+2.25δ(1−δ)2g3ˆt−2.252δ(1−δ)2ξ2ˆt+2.25δ(1−δ)2g3ˆt−2.252δ(1−δ)2ξ2ˆt+2.25δ2(1−δ)g3ˆt2−2.252δ2(1−δ)ξ2ˆt2+δg3ˆt+2.25δ(1−δ)2g3ˆt−2.252δ(1−δ)2ξ2ˆt+2.25δ2(1−δ)g3ˆt2Γ(3)−2.252δ2(1−δ)ξ2ˆt2Γ(3)+2.25δ2(1−δ)g3ˆt2Γ(3)−2.252δ2(1−δ)ξ2ˆt2Γ(3)+2.25δ3g3ˆt3Γ(3)Γ(4)−2.252δ3ξ2ˆt3Γ(3)Γ(4). |
We used an approximate analytical scheme, and the obtained solution is displayed through graphs and tables. Figure 1 shows the comparison 2D solution plots of the example (5.1) for different fractional order δ and with different fractional operators. Figures 2–4 are the solution plots for the N.S. system (5.2) at different fractional operators and various fractional order δ respectively. Figure 5 is the compression 2D-solution plots of exact and approximate solutions for the N.S. system (5.2). Table 1 is the comparison table of example (5.1) between the exact solution and approximate solution at δ=1 and with three different operators. Table 2 shows the numerical simulation of example (5.1) at different fractional orders, space and time levels while the derivative is used in the Caputo sense. Tables 3–5 represent a numerical simulation of example (5.2) at different fractional operators, orders, space, and time levels for u, μ, and ν respectively. Graphs and tables show the accuracy of the proposed techniques. All the numerical simulations are done by Maple code on maple 2023.
CO | ABO | CFO | Exact | AE | AE | AE | ||
ξo | ˆt | CO | ABO | CFO | ||||
δ=1 | δ=1 | δ=1 | δ=1 | δ=1 | δ=1 | δ=1 | ||
0.25 | 1.2832415 | 1.2839915 | 1.2832415 | 1.2837420 | 5.0050×10−4 | 2.4950×10−4 | 5.0050×10−4 | |
0.50 | 0.001 | 1.6480728 | 1.6485728 | 1.6480728 | 1.6480733 | 5.0000×10−4 | 4.9950×10−4 | 5.0000×10−4 |
0.75 | 2.1163835 | 2.1166335 | 2.1163835 | 2.1158840 | 4.9950×10−4 | 7.4950×10−4 | 4.9950×10−4 | |
1 | 2.7175644 | 2.7175644 | 2.7175644 | 2.7165649 | 9.9950×10−4 | 9.9950×10−4 | 9.9950×10−4 |
ξo | t | Exact solution | Approximate | AE at δ=0.99 | AE at δ=0.90 | AE at δ=0.80 |
0.001 | 1.283181953 | 1.282991533 | 0.000190420 | 0.000591967 | 0.002314176 | |
0.002 | 1.282350466 | 1.281957932 | 0.000392534 | 0.000965369 | 0.003757763 | |
0.003 | 1.281523640 | 1.280924613 | 0.000599027 | 0.001266220 | 0.004951399 | |
0.004 | 1.280699938 | 1.279891574 | 0.000808364 | 0.001521869 | 0.005996186 | |
0.25 | 0.005 | 1.279878630 | 1.278858813 | 0.001019817 | 0.001744804 | 0.006936485 |
0.006 | 1.279059290 | 1.277826330 | 0.001232960 | 0.001942193 | 0.007797048 | |
0.007 | 1.278241634 | 1.276794124 | 0.001447510 | 0.002118675 | 0.008593574 | |
0.008 | 1.277425463 | 1.275762193 | 0.001663270 | 0.002277489 | 0.009336846 | |
0.009 | 1.276610626 | 1.274730535 | 0.001880091 | 0.002421028 | 0.010034701 | |
0.010 | 1.275797006 | 1.273699150 | 0.002097856 | 0.002551126 | 0.010693077 | |
0.001 | 1.648072874 | 1.647572874 | 0.000500000 | 0.000450736 | 0.000195889 | |
0.002 | 1.647425125 | 1.646425123 | 0.001000002 | 0.000911208 | 0.000209887 | |
0.003 | 1.646778026 | 1.645278019 | 0.001500007 | 0.001375353 | 0.000163031 | |
0.004 | 1.646131576 | 1.644131558 | 0.002000018 | 0.001841897 | 0.000078045 | |
0.5 | 0.005 | 1.645485774 | 1.642985739 | 0.002500035 | 0.002310239 | 0.000034670 |
0.006 | 1.644840620 | 1.641840561 | 0.003000059 | 0.002780021 | 0.000169136 | |
0.007 | 1.644196116 | 1.640696021 | 0.003500095 | 0.003251011 | 0.000321484 | |
0.008 | 1.643552260 | 1.639552119 | 0.004000141 | 0.003723045 | 0.000488997 | |
0.009 | 1.642909053 | 1.638408853 | 0.004500200 | 0.004195995 | 0.000669674 | |
0.010 | 1.642266494 | 1.637266220 | 0.005000274 | 0.004669771 | 0.000861976 | |
0.001 | 2.338959359 | 2.338157875 | 0.000801484 | 0.000165158 | 0.001230254 | |
0.002 | 2.338282899 | 2.336670234 | 0.001612665 | 0.000511426 | 0.001738675 | |
0.003 | 2.337611483 | 2.335183929 | 0.002427554 | 0.000919095 | 0.002035230 | |
0.004 | 2.336943842 | 2.333698957 | 0.003244885 | 0.001365587 | 0.002203814 | |
0.85 | 0.005 | 2.336279381 | 2.332215315 | 0.004064066 | 0.001840538 | 0.002281462 |
0.006 | 2.335617740 | 2.330733000 | 0.004884740 | 0.002337980 | 0.002288952 | |
0.007 | 2.334958687 | 2.329252012 | 0.005706675 | 0.002854027 | 0.002239532 | |
0.008 | 2.334302054 | 2.327772347 | 0.006529707 | 0.003385957 | 0.002142342 | |
0.009 | 2.333647715 | 2.326294002 | 0.007353713 | 0.003931753 | 0.002004063 | |
0.010 | 2.332995574 | 2.324816977 | 0.008178597 | 0.004489858 | 0.001829773 | |
0.001 | 2.717509945 | 2.716564405 | 0.000945540 | 0.000231370 | 0.001333724 | |
0.002 | 2.716750692 | 2.714848698 | 0.001901994 | 0.000666649 | 0.001854647 | |
0.003 | 2.715997341 | 2.713134703 | 0.002862638 | 0.001171307 | 0.002136123 | |
0.004 | 2.715248472 | 2.711422418 | 0.003826054 | 0.001719936 | 0.002272635 | |
1 | 0.005 | 2.714503404 | 2.709711841 | 0.004791563 | 0.002300863 | 0.002305932 |
0.006 | 2.713761742 | 2.708002969 | 0.005758773 | 0.002907364 | 0.002259461 | |
0.007 | 2.713023220 | 2.706295798 | 0.006727422 | 0.003535055 | 0.002148184 | |
0.008 | 2.712287647 | 2.704590327 | 0.007697320 | 0.004180866 | 0.001982435 | |
0.009 | 2.711554884 | 2.702886553 | 0.008668331 | 0.004842513 | 0.001769765 | |
0.010 | 2.710824822 | 2.701184472 | 0.009640350 | 0.005518245 | 0.001515921 |
Operators | ξo,ξ1,ξ2 | t | Approximate | Exact solution | AE at δ=0.90 | AE at δ=0.95 | AE at δ=0.99 | AE at δ=1 |
0.001 | 0.374437500 | 0.374438342 | 0.000605299 | 0.000249210 | 0.000043607 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.001456767 | 0.000622670 | 0.000116025 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.002176140 | 0.000949425 | 0.000186502 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.002828462 | 0.001253588 | 0.000258784 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.003437432 | 0.001544171 | 0.000334285 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.001210599 | 0.000498421 | 0.000087214 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.002913535 | 0.001245340 | 0.000232051 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.004352280 | 0.001898850 | 0.000373004 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.005656925 | 0.002507176 | 0.000517569 | 0.000082118 | ||
C-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.006874865 | 0.003088343 | 0.000668570 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.501815898 | 0.000747630 | 0.000130820 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.504370302 | 0.001868010 | 0.000348076 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.506528420 | 0.002848275 | 0.000559506 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.508485386 | 0.003760763 | 0.000776353 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.510312297 | 0.004632514 | 0.001002855 | 0.000203223 | ||
0.001 | 1.497749998 | 1.874441717 | 0.000608674 | 0.000252584 | 0.000046982 | 0.376691719 | ||
0.003 | 1.493249954 | 1.873350435 | 0.001487143 | 0.000653045 | 0.000146401 | 0.380100481 | ||
1 | 0.005 | 1.488749789 | 1.872292816 | 0.002260519 | 0.001033805 | 0.000270882 | 0.383543027 | |
0.007 | 1.484249421 | 1.871268807 | 0.002993855 | 0.001418981 | 0.000424178 | 0.387019386 | ||
0.009 | 1.479748770 | 1.870278358 | 0.003710857 | 0.001817596 | 0.000607710 | 0.390529588 | ||
0.001 | 0.374437500 | 0.374438342 | 0.058076048 | 0.028505113 | 0.005664253 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.058855962 | 0.028829615 | 0.005725785 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.059513521 | 0.029110717 | 0.005785674 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.060110751 | 0.029371626 | 0.005847630 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.060670143 | 0.029620993 | 0.005913049 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.116152097 | 0.057010225 | 0.011328506 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.117711924 | 0.057659231 | 0.011451571 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.119027042 | 0.058221435 | 0.011571349 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.120221502 | 0.058743252 | 0.011695260 | 0.000082118 | ||
CF-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.121340285 | 0.059241987 | 0.011826098 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.674228145 | 0.085515337 | 0.016992759 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.676567886 | 0.086488846 | 0.017177357 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.678540563 | 0.087332152 | 0.017357024 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.680332252 | 0.088114877 | 0.017542890 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.682010428 | 0.088862980 | 0.017739146 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.232302506 | 0.114018763 | 0.022655325 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.235408661 | 0.115303274 | 0.022887954 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.238011895 | 0.116400680 | 0.023100508 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.240360307 | 0.117403807 | 0.023307824 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.242543858 | 0.118347262 | 0.023515483 | 0.749865749 | ||
0.001 | 0.374437500 | 0.374438342 | 0.057494595 | 0.028265053 | 0.005621884 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.057458804 | 0.028234478 | 0.005618312 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.057431335 | 0.028211504 | 0.005621628 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.057412144 | 0.028196086 | 0.005631792 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.057401187 | 0.028188186 | 0.005648765 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.114989190 | 0.056530106 | 0.011243769 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.114917608 | 0.056468957 | 0.011236624 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.114862670 | 0.056423007 | 0.011243256 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.114824288 | 0.056392173 | 0.011263584 | 0.000082118 | ||
A-BFDO | 0.009 | 0.739874385 | 0.740009867 | 0.114802374 | 0.056376371 | 0.011297530 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.672483784 | 0.084795158 | 0.016865652 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.672376412 | 0.084703435 | 0.016854936 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.672294006 | 0.084634510 | 0.016864884 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.672236432 | 0.084588259 | 0.016895375 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.672203560 | 0.084564556 | 0.016946295 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.229976692 | 0.113058524 | 0.022485850 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.229820028 | 0.112922726 | 0.022458061 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.229683151 | 0.112803824 | 0.022444322 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.229565880 | 0.112701649 | 0.022444471 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.229468035 | 0.112616030 | 0.022458348 | 0.749865749 |
Operators | ξo,ξ1,ξ2 | t | Approximate | Exact solution | AE at δ=0.90 | AE at δ=0.95 | AE at δ=0.99 | AE at δ=1 |
0.001 | 0.374437500 | 0.374438342 | 0.000605299 | 0.000249210 | 0.000043607 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.001456767 | 0.000622670 | 0.000116025 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.002176140 | 0.000949425 | 0.000186502 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.002828462 | 0.001253588 | 0.000258784 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.003437432 | 0.001544171 | 0.000334285 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.001210599 | 0.000498421 | 0.000087214 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.002913535 | 0.001245340 | 0.000232051 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.004352280 | 0.001898850 | 0.000373004 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.005656925 | 0.002507176 | 0.000517569 | 0.000082118 | ||
C-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.006874865 | 0.003088343 | 0.000668570 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.501815898 | 0.000747630 | 0.000130820 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.504370302 | 0.001868010 | 0.000348076 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.506528420 | 0.002848275 | 0.000559506 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.508485386 | 0.003760763 | 0.000776353 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.510312297 | 0.004632514 | 0.001002855 | 0.000203223 | ||
0.001 | 1.497749998 | 1.874441717 | 0.000608674 | 0.000252584 | 0.000046982 | 0.376691719 | ||
0.003 | 1.493249954 | 1.873350435 | 0.001487143 | 0.000653045 | 0.000146401 | 0.380100481 | ||
1 | 0.005 | 1.488749789 | 1.872292816 | 0.002260519 | 0.001033805 | 0.000270882 | 0.383543027 | |
0.007 | 1.484249421 | 1.871268807 | 0.002993855 | 0.001418981 | 0.000424178 | 0.387019386 | ||
0.009 | 1.479748770 | 1.870278358 | 0.003710857 | 0.001817596 | 0.000607710 | 0.390529588 | ||
0.001 | 0.374437500 | 0.374438342 | 0.058076048 | 0.028505113 | 0.005664253 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.058855962 | 0.028829615 | 0.005725785 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.059513521 | 0.029110717 | 0.005785674 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.060110751 | 0.029371626 | 0.005847630 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.060670143 | 0.029620993 | 0.005913049 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.116152097 | 0.057010225 | 0.011328506 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.117711924 | 0.057659231 | 0.011451571 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.119027042 | 0.058221435 | 0.011571349 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.120221502 | 0.058743252 | 0.011695260 | 0.000082118 | ||
CF-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.121340285 | 0.059241987 | 0.011826098 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.674228145 | 0.085515337 | 0.016992759 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.676567886 | 0.086488846 | 0.017177357 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.678540563 | 0.087332152 | 0.017357024 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.680332252 | 0.088114877 | 0.017542890 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.682010428 | 0.088862980 | 0.017739146 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.232302506 | 0.114018763 | 0.022655325 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.235408661 | 0.115303274 | 0.022887954 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.238011895 | 0.116400680 | 0.023100508 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.240360307 | 0.117403807 | 0.023307824 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.242543858 | 0.118347262 | 0.023515483 | 0.749865749 | ||
0.001 | 0.374437500 | 0.374438342 | 0.057494595 | 0.028265053 | 0.005621884 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.057458804 | 0.028234478 | 0.005618312 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.057431335 | 0.028211504 | 0.005621628 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.057412144 | 0.028196086 | 0.005631792 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.057401187 | 0.028188186 | 0.005648765 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.114989190 | 0.056530106 | 0.011243769 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.114917608 | 0.056468957 | 0.011236624 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.114862670 | 0.056423007 | 0.011243256 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.114824288 | 0.056392173 | 0.011263584 | 0.000082118 | ||
A-BFDO | 0.009 | 0.739874385 | 0.740009867 | 0.114802374 | 0.056376371 | 0.011297530 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.672483784 | 0.084795158 | 0.016865652 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.672376412 | 0.084703435 | 0.016854936 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.672294006 | 0.084634510 | 0.016864884 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.672236432 | 0.084588259 | 0.016895375 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.672203560 | 0.084564556 | 0.016946295 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.229976692 | 0.113058524 | 0.022485850 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.229820028 | 0.112922726 | 0.022458061 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.229683151 | 0.112803824 | 0.022444322 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.229565880 | 0.112701649 | 0.022444471 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.229468035 | 0.112616030 | 0.022458348 | 0.749865749 |
Operators | ξo,ξ1,ξ2 | t | Approximate | Exact solution | AE at δ=0.90 | AE at δ=0.95 | AE at δ=0.99 | AE at δ=1 |
0.001 | 0.374437500 | 0.374438342 | 0.000605299 | 0.000249210 | 0.000043607 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.001456767 | 0.000622670 | 0.000116025 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.002176140 | 0.000949425 | 0.000186502 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.002828462 | 0.001253588 | 0.000258784 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.003437432 | 0.001544171 | 0.000334285 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.001210599 | 0.000498421 | 0.000087214 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.002913535 | 0.001245340 | 0.000232051 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.004352280 | 0.001898850 | 0.000373004 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.005656925 | 0.002507176 | 0.000517569 | 0.000082118 | ||
C-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.006874865 | 0.003088343 | 0.000668570 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.501815898 | 0.000747630 | 0.000130820 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.504370302 | 0.001868010 | 0.000348076 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.506528420 | 0.002848275 | 0.000559506 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.508485386 | 0.003760763 | 0.000776353 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.510312297 | 0.004632514 | 0.001002855 | 0.000203223 | ||
0.001 | 1.497749998 | 1.874441717 | 0.000608674 | 0.000252584 | 0.000046982 | 0.376691719 | ||
0.003 | 1.493249954 | 1.873350435 | 0.001487143 | 0.000653045 | 0.000146401 | 0.380100481 | ||
1 | 0.005 | 1.488749789 | 1.872292816 | 0.002260519 | 0.001033805 | 0.000270882 | 0.383543027 | |
0.007 | 1.484249421 | 1.871268807 | 0.002993855 | 0.001418981 | 0.000424178 | 0.387019386 | ||
0.009 | 1.479748770 | 1.870278358 | 0.003710857 | 0.001817596 | 0.000607710 | 0.390529588 | ||
0.001 | 0.374437500 | 0.374438342 | 0.058076048 | 0.028505113 | 0.005664253 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.058855962 | 0.028829615 | 0.005725785 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.059513521 | 0.029110717 | 0.005785674 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.060110751 | 0.029371626 | 0.005847630 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.060670143 | 0.029620993 | 0.005913049 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.116152097 | 0.057010225 | 0.011328506 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.117711924 | 0.057659231 | 0.011451571 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.119027042 | 0.058221435 | 0.011571349 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.120221502 | 0.058743252 | 0.011695260 | 0.000082118 | ||
CF-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.121340285 | 0.059241987 | 0.011826098 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.674228145 | 0.085515337 | 0.016992759 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.676567886 | 0.086488846 | 0.017177357 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.678540563 | 0.087332152 | 0.017357024 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.680332252 | 0.088114877 | 0.017542890 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.682010428 | 0.088862980 | 0.017739146 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.232302506 | 0.114018763 | 0.022655325 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.235408661 | 0.115303274 | 0.022887954 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.238011895 | 0.116400680 | 0.023100508 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.240360307 | 0.117403807 | 0.023307824 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.242543858 | 0.118347262 | 0.023515483 | 0.749865749 | ||
0.001 | 0.374437500 | 0.374438342 | 0.057494595 | 0.028265053 | 0.005621884 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.057458804 | 0.028234478 | 0.005618312 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.057431335 | 0.028211504 | 0.005621628 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.057412144 | 0.028196086 | 0.005631792 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.057401187 | 0.028188186 | 0.005648765 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.114989190 | 0.056530106 | 0.011243769 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.114917608 | 0.056468957 | 0.011236624 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.114862670 | 0.056423007 | 0.011243256 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.114824288 | 0.056392173 | 0.011263584 | 0.000082118 | ||
A-BFDO | 0.009 | 0.739874385 | 0.740009867 | 0.114802374 | 0.056376371 | 0.011297530 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.672483784 | 0.084795158 | 0.016865652 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.672376412 | 0.084703435 | 0.016854936 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.672294006 | 0.084634510 | 0.016864884 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.672236432 | 0.084588259 | 0.016895375 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.672203560 | 0.084564556 | 0.016946295 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.229976692 | 0.113058524 | 0.022485850 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.229820028 | 0.112922726 | 0.022458061 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.229683151 | 0.112803824 | 0.022444322 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.229565880 | 0.112701649 | 0.022444471 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.229468035 | 0.112616030 | 0.022458348 | 0.749865749 |
In the present paper, the fractional views of the three-dimensional Navier-Stokes and non-homogeneous equations are examined by using the new iterative transform method (NITM). The fractional derivatives are replaced with different operators such as Atangana Baleanu, Caputo, and Caputo Fabrizio operators. The nonlinear terms in each problem are represented by the Jafaari polynomial, which has direct implementation over the entire problem. The solutions are obtained with the singular and non-singular kernels of the operators and confirm their effectiveness in the simulation of every problem. It is observed that the solutions under different operators are identical and verify the valuable dynamics of the suggested problems. Considering the benefits of the present operators, the expansion will be greatly appreciated in order to add new operators and approaches in the future. The current approach can be extended to solve other fractional problems due to its simple and straightforward implementation.
FC | Fractional calculus |
DEs | Differential equations |
NITM | New iterative transform method |
FPDEs | fractional partial differentia equations |
C-FDO | Caputo fractional differential operator |
C-FFDO | Caputo-Fabrizio fractional differential operators |
A-BFDO | Atangana-Baleanu fractional differential operator |
FDOs | fractional differential operators |
AT | Aboodh transform |
LT | Laplace transform |
AE | Absolute error |
The authors acknowledge the financial support provided by the Center of Excellence in Theoretical and Computational Science (TaCS-CoE), KMUTT. Moreover, this research project is supported by Thailand Science Research and Innovation (TSRI) Basic Research Fund: Fiscal year 2023 under project number FRB660073/0164.
Qasim khan (Methodology, Software, Conceptualization, & Writing original draft);
Anthony Suen (Supervision, Writing-review);
Hassan Khan (Conceptualization, Draft Writing);
Poom Kummam (Funding, Draft Writing).
The authors declare there are no conflicts of interest.
[1] | K. Diethelm, The analysis of fractional differential equations, Springer, 2010. |
[2] | C. Huang, B. Liu, New studies on dynamic analysis of inertial neural networks involving non-reduced order method, Neurocomputing, 325 (2019), 283–287. |
[3] | J. Wang, X. Chen, L. Huang, The number and stability of limit cycles for planar piecewise linear systems of node-saddle type, J. Math. Anal. Appl., 469 (2019), 405–427. |
[4] | Y. Zuo, Y. Wang, X. Liu, Adaptive robust control strategy for rhombus-type lunar exploration wheeled mobile robot using wavelet transform and probabilistic neural network, Comput. Appl. Math., 37 (2018), 314–337. |
[5] | C. Song, S. Fei, J. Cao, C. Huang, Robust synchronization of fractional-order uncertain chaotic systems based on output feedback sliding mode control, Mathematics, 7 (2019), 599. |
[6] | C. Huang, J. Cao, F. Wen, X. Yang, Stability analysis of SIR model with distributed delay on complex networks, PLOS One, 11 (2016). |
[7] | I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5 (2002), 367–386. |
[8] | Z. Rashidnejad, P. Karimaghaee, Synchronization of a class of uncertain chaotic systems utilizing a new finite-time fractional adaptive sliding mode control, Chaos, Solitons and Fractals: X, 5 (2020), 100042. |
[9] | Y. Zhou, F. Jiao, J. Pecaric, On the Cauchy problem for fractional functional differential equations in Banach spaces, Topol. Method. Nonl. An., 42 (2013), 119–136. |
[10] | A. Chauhan, J. Dabas, Local and global existence of mild solution to an impulsive fractional functional integro-differential equation with nonlocal condition, Commun. Nonlinear Sci., 19 (2014), 821–829. |
[11] | L. Xu, X. Chu, H. Hu, Exponential ultimate bounded ness of non-autonomous fractional differential systems with time delay and impulses, Appl. Math. Lett., 99 (2020), 106000. |
[12] | J. T. Edwards, N. J. Ford, A. C. Simpson, The numerical solution of linear multi-term fractional differential equations: systems of equations, J. Comput. Appl. Math., 148 (2002), 401–418. |
[13] | A. Arbi, J. Cao, Pseudo-almost periodic solution on time-space scales for a novel class of competitive neutral-type neural networks with mixed time-varying delays and leakage delays, Neural Process. Lett., 46 (2017), 719–745. |
[14] | Y. Liu, W. Liu, M. A. Obaid, I. A. Abbas, Exponential stability of Markovian jumping Cohen-Grossberg neural networks with mixed mode-dependent time-delays, Neurocomputing, 177 (2016), 409–415. |
[15] | I. Stamova, T. Stamov, X. Li, Global exponential stability of a class of impulsive cellular neural networks with Supremums, Int. J. Adapt. Control, 28 (2014), 1227–1239. |
[16] | X. Li, S. Song, Impulsive control for existence, uniqueness and global stability of periodic solutions of recurrent neural networks with discrete and continuously distributed delays, IEEE T. Neur. Net. Lear., 24(2013), 868–877. |
[17] | Q. Zhu, J. Cao, Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays, IEEE T. Neur. Net. Lear., 23 (2012), 467–479. |
[18] | M. Syed Ali, P. Balasubramaniam, F. A. Rihan, S. Lakshmanan, Stability criteria for stochastic Takagi-Sugeno fuzzy Cohen-Grossberg BAM neural networks with mixed time-varying delays, Complexity, 21 (2016), 143–154. |
[19] | H. Zhang, M. Ye, J. Cao, A. Alsaedi, Synchronization control of Riemann-Liouville fractional competitive network systems with time-varying delay and different time scales, Int. J. Control Autom., 16 (2018), 1–11. |
[20] | P. Liu, X. Nie, J. Liang, J. Cao, Multiple Mittag-Leffler stability of fractional-order competitive neural networks with gaussian activation functions, Neural Networks, 108 (2018), 452–465. |
[21] | L. J. Banu, P. Balasubramaniam, Robust stability analysis for discrete-time neural networks with time-varying leakage delays and random parameter uncertainties, Neurocomputing, 179 (2016), 126–134. |
[22] | D. J. Lu, C. J. Li, Exponential stability of stochastic high-order BAM neural networks with time delays and impulsive effects, Neural Comput. Appl., 23 (2013), 1–8. |
[23] | X. Lv, X. Li, Finite time stability and controller design for nonlinear impulsive sampled-data systems with applications, ISA T., 70 (2017), 30–36. |
[24] | A. L. Wu, Z. G. Zeng, X. G. Song, Global Mittag-Leffler stabilization of fractional-order bidirectional associative memory neural networks, Neurocomputing, 177 (2016), 489–496. |
[25] | F. Wang, Y. Q. Yang, X. Y. Xu, L. Li, Global asymptotic stability of impulsive fractional-order BAM neural networks with time delay, Neural Comput. Appl., 28 (2017), 345–352. |
[26] | W. Chen, W. Zheng, Robust stability analysis for stochastic neural networks with time-varying delay, IEEE T. Neural Networks, 21 (2010), 508–514. |
[27] | H. Gu, Adaptive synchronization for competitive neural networks with different time scales and stochastic perturbation, Neurocomputing, 73 (2009), 350–356. |
[28] | O. M. Kwon, S. M. Lee, J. H. Park, Improved delay-dependent exponential stability for uncertain stochastic neural networks with time-varying delays, Phys. Lett. A, 374 (2010), 1232–1241. |
[29] | J. H. Park, O. M. Kwon, Analysis on global stability of stochastic neural networks of neutral type, Mod. Phys. Lett. B, 22 (2008), 3159–3170. |
[30] | J. H. Park, O. M. Kwon, Synchronization of neural networks of neutral type with stochastic perturbation, Mod. Phys. Lett. B, 23 (2009), 1743–1751. |
[31] | J. H. Park, S. M. Lee, H. Y. Jung, LMI optimization approach to synchronization of stochastic delayed discrete-time complex networks, J. Optimiz. Theory Appl., 143 (2009), 357–367. |
[32] | W. Su, Y. Chen, Global robust stability criteria of stochastic Cohen-Grossberg neural networks with discrete and distributed time-varying delays, Commun. Nonlinear Sci., 14 (2009), 520–528. |
[33] | X. Yang, J. Cao, Y. Long, R. Wei, Adaptive lag synchronization for competitive neural networks with mixed delays and uncertain hybrid perturbations, IEEE T. Neural Networks, 21 (2010), 1656–1667. |
[34] | X. Yang, C. Huang, J. Cao, An LMI approach for exponential synchronization of switched stochastic competitive neural networks with mixed delays, Neural Comput. Appl., 21 (2012), 2033–2047. |
[35] | D. G. Hobson, L. C. G. Rogers, Complete models with stochastic volatility, Mathematical Finance, 8 (1998), 27–48. |
[36] | J. Hull, A. White, The pricing of options on assets with stochastic volatilities, Journal of Finance, 42 (1987), 281–300. |
[37] | I. Karatzas, Steven E. Shreve, Brownian motion and stochastic calculus, Springer-Verlag, 1991. |
[38] | N. Laskin, Fractional market dynamics, Physica A, 287 (2000), 482–492. |
[39] | C. Andoh, Stochastic variance models in discrete time with feed forward neural networks, Neural Computation, 21 (2009), 1990–2008. |
[40] | S. Giebel, M. Rainer, Neural network calibrated stochastic processes: forecasting financial assets, Cent. Eur. J. Oper. Res., 21 (2013), 277–293. |
[41] | J. Cao, Q. Yang, Z. Huang, Q. Liu, Asymptotically almost periodic solutions of stochastic functional differential equations, Appl. Math. Comput., 218 (2011), 1499–1511. |
[42] | V. B. Kolmanovskii, A. Myshkis, Applied Theory of Functional Differential Equations, Kluwer Academic Publishers, Norwell, 1992. |
[43] | Y. Ren, L. Chen, A note on the neutral stochastic functional differential equations with infinite delay and Possion jumps in an abstract space, J. Math. Phys., 50 (2009), 082704. |
[44] | Y. Ren, N. Xia, Existence uniqueness and stability of the solutions to neutral stochastic functional differential equations with infinite delay, Appl. Math. Comput., 210 (2009), 72–79. |
[45] | R. Sakthivel, J. Luo, Asymptotic stability of impulsive stochastic partial differential equations with infinite delays, J. Math. Anal. Appl., 356 (2009), 1–6. |
[46] | R. Sakthivel, J. Luo, Asymptotic stability of nonlinear impulsive stochastic differential equations, Stat. Probabil. Lett., 79 (2009), 1219–1223. |
[47] | R. Sakthivel, J. J. Nieto, N. I. Mahmudov, Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay, Taiwan. J. Math., 14 (2010), 1777–1797. |
[48] | B. Xie, Stochastic differential equations with non-lipschitz coefficients in Hilbert spaces, Stoch. Anal. Appl., 26 (2008), 408–433. |
[49] | L. Arnold, Stochastic differential equations: theory and applications, Wiley, 1974. |
[50] | I. I. Gihman, A. V. Skorohod, Stochastic differential equations, Springer, 1972. |
[51] | G. S. Ladde, V. Lakshmikantham, Random differential inequalities, New York: Academic Press, 1980. |
[52] | A. Friedman, Stochastic differential equations and Applications, Academic Press, 1975. |
[53] | H. Holden, B. Oksendal, J. Uboe, T. Zhang, Stochastic partial differential equations: A modeling, white noise functional approach, Boston: BirkhMauser, 1996. |
[54] | F. Biagini, Y. Hu, B. Oksendal, T. Zhang, Stochastic calculus for fractional Brownian motion and applications, Springer, 2008. |
[55] | D. He, L. Xu, Boundedness analysis of stochastic integro-differential systems with Levy noise, J. Taibah Univ. Sci., 14 (2020), 87–93. |
[56] | A. G. Ladde, G. S. Ladde, Dynamic processes under random Environment, Bulletin of the Marathwada Mathematical Society, 8 (2007), 96–123. |
[57] | J. Chen, Z. Zeng, P. Jiang, Global mittag-leffler stability and synchronization of memristor-based fractional-order neural networks, Neural Networks, 51 (2014), 1–8. |
[58] | P. L. Butzer, U. Westphal, An Introduction to Fractional Calculus, World Scientific: Singapore, 2001. |
[59] | X. Yang, Q. Song, Y. Liu, Z. Zhao, Finite-time stability analysis of fractional-order neural networks with delay, Neurocomputing, 152 (2015), 19–26. |
[60] | L. Chen, R. Wu, D. Pan, Mean square exponential stability of impulsive stochastic fuzzy cellular neural networks with distributed delays, Expert Syst. Appl., 38 (2011), 6294–6299. |
1. | Chein-Shan Liu, Chung-Lun Kuo, Chih-Wen Chang, Decomposition–Linearization–Sequential Homotopy Methods for Nonlinear Differential/Integral Equations, 2024, 12, 2227-7390, 3557, 10.3390/math12223557 | |
2. | Ahmed E. Abouelregal, Faisal Alsharif, Hashem Althagafi, Yazeed Alhassan, Fractional heat transfer DPL model incorporating an exponential Rabotnov kernel to study an infinite solid with a spherical cavity, 2024, 9, 2473-6988, 18374, 10.3934/math.2024896 | |
3. | Qasim Khan, Anthony Suen, Hassan Khan, Application of an efficient analytical technique based on Aboodh transformation to solve linear and non-linear dynamical systems of integro-differential equations, 2024, 11, 26668181, 100848, 10.1016/j.padiff.2024.100848 | |
4. | Qasim Khan, Anthony Suen, Iterative procedure for non-linear fractional integro-differential equations via Daftardar–Jafari polynomials, 2025, 26668181, 101167, 10.1016/j.padiff.2025.101167 |
CO | ABO | CFO | Exact | AE | AE | AE | ||
ξo | ˆt | CO | ABO | CFO | ||||
δ=1 | δ=1 | δ=1 | δ=1 | δ=1 | δ=1 | δ=1 | ||
0.25 | 1.2832415 | 1.2839915 | 1.2832415 | 1.2837420 | 5.0050×10−4 | 2.4950×10−4 | 5.0050×10−4 | |
0.50 | 0.001 | 1.6480728 | 1.6485728 | 1.6480728 | 1.6480733 | 5.0000×10−4 | 4.9950×10−4 | 5.0000×10−4 |
0.75 | 2.1163835 | 2.1166335 | 2.1163835 | 2.1158840 | 4.9950×10−4 | 7.4950×10−4 | 4.9950×10−4 | |
1 | 2.7175644 | 2.7175644 | 2.7175644 | 2.7165649 | 9.9950×10−4 | 9.9950×10−4 | 9.9950×10−4 |
ξo | t | Exact solution | Approximate | AE at δ=0.99 | AE at δ=0.90 | AE at δ=0.80 |
0.001 | 1.283181953 | 1.282991533 | 0.000190420 | 0.000591967 | 0.002314176 | |
0.002 | 1.282350466 | 1.281957932 | 0.000392534 | 0.000965369 | 0.003757763 | |
0.003 | 1.281523640 | 1.280924613 | 0.000599027 | 0.001266220 | 0.004951399 | |
0.004 | 1.280699938 | 1.279891574 | 0.000808364 | 0.001521869 | 0.005996186 | |
0.25 | 0.005 | 1.279878630 | 1.278858813 | 0.001019817 | 0.001744804 | 0.006936485 |
0.006 | 1.279059290 | 1.277826330 | 0.001232960 | 0.001942193 | 0.007797048 | |
0.007 | 1.278241634 | 1.276794124 | 0.001447510 | 0.002118675 | 0.008593574 | |
0.008 | 1.277425463 | 1.275762193 | 0.001663270 | 0.002277489 | 0.009336846 | |
0.009 | 1.276610626 | 1.274730535 | 0.001880091 | 0.002421028 | 0.010034701 | |
0.010 | 1.275797006 | 1.273699150 | 0.002097856 | 0.002551126 | 0.010693077 | |
0.001 | 1.648072874 | 1.647572874 | 0.000500000 | 0.000450736 | 0.000195889 | |
0.002 | 1.647425125 | 1.646425123 | 0.001000002 | 0.000911208 | 0.000209887 | |
0.003 | 1.646778026 | 1.645278019 | 0.001500007 | 0.001375353 | 0.000163031 | |
0.004 | 1.646131576 | 1.644131558 | 0.002000018 | 0.001841897 | 0.000078045 | |
0.5 | 0.005 | 1.645485774 | 1.642985739 | 0.002500035 | 0.002310239 | 0.000034670 |
0.006 | 1.644840620 | 1.641840561 | 0.003000059 | 0.002780021 | 0.000169136 | |
0.007 | 1.644196116 | 1.640696021 | 0.003500095 | 0.003251011 | 0.000321484 | |
0.008 | 1.643552260 | 1.639552119 | 0.004000141 | 0.003723045 | 0.000488997 | |
0.009 | 1.642909053 | 1.638408853 | 0.004500200 | 0.004195995 | 0.000669674 | |
0.010 | 1.642266494 | 1.637266220 | 0.005000274 | 0.004669771 | 0.000861976 | |
0.001 | 2.338959359 | 2.338157875 | 0.000801484 | 0.000165158 | 0.001230254 | |
0.002 | 2.338282899 | 2.336670234 | 0.001612665 | 0.000511426 | 0.001738675 | |
0.003 | 2.337611483 | 2.335183929 | 0.002427554 | 0.000919095 | 0.002035230 | |
0.004 | 2.336943842 | 2.333698957 | 0.003244885 | 0.001365587 | 0.002203814 | |
0.85 | 0.005 | 2.336279381 | 2.332215315 | 0.004064066 | 0.001840538 | 0.002281462 |
0.006 | 2.335617740 | 2.330733000 | 0.004884740 | 0.002337980 | 0.002288952 | |
0.007 | 2.334958687 | 2.329252012 | 0.005706675 | 0.002854027 | 0.002239532 | |
0.008 | 2.334302054 | 2.327772347 | 0.006529707 | 0.003385957 | 0.002142342 | |
0.009 | 2.333647715 | 2.326294002 | 0.007353713 | 0.003931753 | 0.002004063 | |
0.010 | 2.332995574 | 2.324816977 | 0.008178597 | 0.004489858 | 0.001829773 | |
0.001 | 2.717509945 | 2.716564405 | 0.000945540 | 0.000231370 | 0.001333724 | |
0.002 | 2.716750692 | 2.714848698 | 0.001901994 | 0.000666649 | 0.001854647 | |
0.003 | 2.715997341 | 2.713134703 | 0.002862638 | 0.001171307 | 0.002136123 | |
0.004 | 2.715248472 | 2.711422418 | 0.003826054 | 0.001719936 | 0.002272635 | |
1 | 0.005 | 2.714503404 | 2.709711841 | 0.004791563 | 0.002300863 | 0.002305932 |
0.006 | 2.713761742 | 2.708002969 | 0.005758773 | 0.002907364 | 0.002259461 | |
0.007 | 2.713023220 | 2.706295798 | 0.006727422 | 0.003535055 | 0.002148184 | |
0.008 | 2.712287647 | 2.704590327 | 0.007697320 | 0.004180866 | 0.001982435 | |
0.009 | 2.711554884 | 2.702886553 | 0.008668331 | 0.004842513 | 0.001769765 | |
0.010 | 2.710824822 | 2.701184472 | 0.009640350 | 0.005518245 | 0.001515921 |
Operators | ξo,ξ1,ξ2 | t | Approximate | Exact solution | AE at δ=0.90 | AE at δ=0.95 | AE at δ=0.99 | AE at δ=1 |
0.001 | 0.374437500 | 0.374438342 | 0.000605299 | 0.000249210 | 0.000043607 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.001456767 | 0.000622670 | 0.000116025 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.002176140 | 0.000949425 | 0.000186502 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.002828462 | 0.001253588 | 0.000258784 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.003437432 | 0.001544171 | 0.000334285 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.001210599 | 0.000498421 | 0.000087214 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.002913535 | 0.001245340 | 0.000232051 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.004352280 | 0.001898850 | 0.000373004 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.005656925 | 0.002507176 | 0.000517569 | 0.000082118 | ||
C-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.006874865 | 0.003088343 | 0.000668570 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.501815898 | 0.000747630 | 0.000130820 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.504370302 | 0.001868010 | 0.000348076 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.506528420 | 0.002848275 | 0.000559506 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.508485386 | 0.003760763 | 0.000776353 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.510312297 | 0.004632514 | 0.001002855 | 0.000203223 | ||
0.001 | 1.497749998 | 1.874441717 | 0.000608674 | 0.000252584 | 0.000046982 | 0.376691719 | ||
0.003 | 1.493249954 | 1.873350435 | 0.001487143 | 0.000653045 | 0.000146401 | 0.380100481 | ||
1 | 0.005 | 1.488749789 | 1.872292816 | 0.002260519 | 0.001033805 | 0.000270882 | 0.383543027 | |
0.007 | 1.484249421 | 1.871268807 | 0.002993855 | 0.001418981 | 0.000424178 | 0.387019386 | ||
0.009 | 1.479748770 | 1.870278358 | 0.003710857 | 0.001817596 | 0.000607710 | 0.390529588 | ||
0.001 | 0.374437500 | 0.374438342 | 0.058076048 | 0.028505113 | 0.005664253 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.058855962 | 0.028829615 | 0.005725785 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.059513521 | 0.029110717 | 0.005785674 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.060110751 | 0.029371626 | 0.005847630 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.060670143 | 0.029620993 | 0.005913049 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.116152097 | 0.057010225 | 0.011328506 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.117711924 | 0.057659231 | 0.011451571 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.119027042 | 0.058221435 | 0.011571349 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.120221502 | 0.058743252 | 0.011695260 | 0.000082118 | ||
CF-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.121340285 | 0.059241987 | 0.011826098 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.674228145 | 0.085515337 | 0.016992759 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.676567886 | 0.086488846 | 0.017177357 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.678540563 | 0.087332152 | 0.017357024 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.680332252 | 0.088114877 | 0.017542890 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.682010428 | 0.088862980 | 0.017739146 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.232302506 | 0.114018763 | 0.022655325 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.235408661 | 0.115303274 | 0.022887954 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.238011895 | 0.116400680 | 0.023100508 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.240360307 | 0.117403807 | 0.023307824 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.242543858 | 0.118347262 | 0.023515483 | 0.749865749 | ||
0.001 | 0.374437500 | 0.374438342 | 0.057494595 | 0.028265053 | 0.005621884 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.057458804 | 0.028234478 | 0.005618312 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.057431335 | 0.028211504 | 0.005621628 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.057412144 | 0.028196086 | 0.005631792 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.057401187 | 0.028188186 | 0.005648765 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.114989190 | 0.056530106 | 0.011243769 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.114917608 | 0.056468957 | 0.011236624 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.114862670 | 0.056423007 | 0.011243256 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.114824288 | 0.056392173 | 0.011263584 | 0.000082118 | ||
A-BFDO | 0.009 | 0.739874385 | 0.740009867 | 0.114802374 | 0.056376371 | 0.011297530 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.672483784 | 0.084795158 | 0.016865652 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.672376412 | 0.084703435 | 0.016854936 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.672294006 | 0.084634510 | 0.016864884 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.672236432 | 0.084588259 | 0.016895375 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.672203560 | 0.084564556 | 0.016946295 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.229976692 | 0.113058524 | 0.022485850 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.229820028 | 0.112922726 | 0.022458061 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.229683151 | 0.112803824 | 0.022444322 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.229565880 | 0.112701649 | 0.022444471 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.229468035 | 0.112616030 | 0.022458348 | 0.749865749 |
Operators | ξo,ξ1,ξ2 | t | Approximate | Exact solution | AE at δ=0.90 | AE at δ=0.95 | AE at δ=0.99 | AE at δ=1 |
0.001 | 0.374437500 | 0.374438342 | 0.000605299 | 0.000249210 | 0.000043607 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.001456767 | 0.000622670 | 0.000116025 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.002176140 | 0.000949425 | 0.000186502 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.002828462 | 0.001253588 | 0.000258784 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.003437432 | 0.001544171 | 0.000334285 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.001210599 | 0.000498421 | 0.000087214 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.002913535 | 0.001245340 | 0.000232051 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.004352280 | 0.001898850 | 0.000373004 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.005656925 | 0.002507176 | 0.000517569 | 0.000082118 | ||
C-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.006874865 | 0.003088343 | 0.000668570 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.501815898 | 0.000747630 | 0.000130820 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.504370302 | 0.001868010 | 0.000348076 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.506528420 | 0.002848275 | 0.000559506 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.508485386 | 0.003760763 | 0.000776353 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.510312297 | 0.004632514 | 0.001002855 | 0.000203223 | ||
0.001 | 1.497749998 | 1.874441717 | 0.000608674 | 0.000252584 | 0.000046982 | 0.376691719 | ||
0.003 | 1.493249954 | 1.873350435 | 0.001487143 | 0.000653045 | 0.000146401 | 0.380100481 | ||
1 | 0.005 | 1.488749789 | 1.872292816 | 0.002260519 | 0.001033805 | 0.000270882 | 0.383543027 | |
0.007 | 1.484249421 | 1.871268807 | 0.002993855 | 0.001418981 | 0.000424178 | 0.387019386 | ||
0.009 | 1.479748770 | 1.870278358 | 0.003710857 | 0.001817596 | 0.000607710 | 0.390529588 | ||
0.001 | 0.374437500 | 0.374438342 | 0.058076048 | 0.028505113 | 0.005664253 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.058855962 | 0.028829615 | 0.005725785 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.059513521 | 0.029110717 | 0.005785674 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.060110751 | 0.029371626 | 0.005847630 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.060670143 | 0.029620993 | 0.005913049 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.116152097 | 0.057010225 | 0.011328506 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.117711924 | 0.057659231 | 0.011451571 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.119027042 | 0.058221435 | 0.011571349 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.120221502 | 0.058743252 | 0.011695260 | 0.000082118 | ||
CF-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.121340285 | 0.059241987 | 0.011826098 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.674228145 | 0.085515337 | 0.016992759 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.676567886 | 0.086488846 | 0.017177357 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.678540563 | 0.087332152 | 0.017357024 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.680332252 | 0.088114877 | 0.017542890 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.682010428 | 0.088862980 | 0.017739146 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.232302506 | 0.114018763 | 0.022655325 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.235408661 | 0.115303274 | 0.022887954 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.238011895 | 0.116400680 | 0.023100508 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.240360307 | 0.117403807 | 0.023307824 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.242543858 | 0.118347262 | 0.023515483 | 0.749865749 | ||
0.001 | 0.374437500 | 0.374438342 | 0.057494595 | 0.028265053 | 0.005621884 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.057458804 | 0.028234478 | 0.005618312 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.057431335 | 0.028211504 | 0.005621628 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.057412144 | 0.028196086 | 0.005631792 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.057401187 | 0.028188186 | 0.005648765 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.114989190 | 0.056530106 | 0.011243769 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.114917608 | 0.056468957 | 0.011236624 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.114862670 | 0.056423007 | 0.011243256 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.114824288 | 0.056392173 | 0.011263584 | 0.000082118 | ||
A-BFDO | 0.009 | 0.739874385 | 0.740009867 | 0.114802374 | 0.056376371 | 0.011297530 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.672483784 | 0.084795158 | 0.016865652 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.672376412 | 0.084703435 | 0.016854936 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.672294006 | 0.084634510 | 0.016864884 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.672236432 | 0.084588259 | 0.016895375 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.672203560 | 0.084564556 | 0.016946295 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.229976692 | 0.113058524 | 0.022485850 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.229820028 | 0.112922726 | 0.022458061 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.229683151 | 0.112803824 | 0.022444322 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.229565880 | 0.112701649 | 0.022444471 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.229468035 | 0.112616030 | 0.022458348 | 0.749865749 |
Operators | ξo,ξ1,ξ2 | t | Approximate | Exact solution | AE at δ=0.90 | AE at δ=0.95 | AE at δ=0.99 | AE at δ=1 |
0.001 | 0.374437500 | 0.374438342 | 0.000605299 | 0.000249210 | 0.000043607 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.001456767 | 0.000622670 | 0.000116025 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.002176140 | 0.000949425 | 0.000186502 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.002828462 | 0.001253588 | 0.000258784 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.003437432 | 0.001544171 | 0.000334285 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.001210599 | 0.000498421 | 0.000087214 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.002913535 | 0.001245340 | 0.000232051 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.004352280 | 0.001898850 | 0.000373004 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.005656925 | 0.002507176 | 0.000517569 | 0.000082118 | ||
C-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.006874865 | 0.003088343 | 0.000668570 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.501815898 | 0.000747630 | 0.000130820 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.504370302 | 0.001868010 | 0.000348076 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.506528420 | 0.002848275 | 0.000559506 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.508485386 | 0.003760763 | 0.000776353 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.510312297 | 0.004632514 | 0.001002855 | 0.000203223 | ||
0.001 | 1.497749998 | 1.874441717 | 0.000608674 | 0.000252584 | 0.000046982 | 0.376691719 | ||
0.003 | 1.493249954 | 1.873350435 | 0.001487143 | 0.000653045 | 0.000146401 | 0.380100481 | ||
1 | 0.005 | 1.488749789 | 1.872292816 | 0.002260519 | 0.001033805 | 0.000270882 | 0.383543027 | |
0.007 | 1.484249421 | 1.871268807 | 0.002993855 | 0.001418981 | 0.000424178 | 0.387019386 | ||
0.009 | 1.479748770 | 1.870278358 | 0.003710857 | 0.001817596 | 0.000607710 | 0.390529588 | ||
0.001 | 0.374437500 | 0.374438342 | 0.058076048 | 0.028505113 | 0.005664253 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.058855962 | 0.028829615 | 0.005725785 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.059513521 | 0.029110717 | 0.005785674 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.060110751 | 0.029371626 | 0.005847630 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.060670143 | 0.029620993 | 0.005913049 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.116152097 | 0.057010225 | 0.011328506 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.117711924 | 0.057659231 | 0.011451571 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.119027042 | 0.058221435 | 0.011571349 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.120221502 | 0.058743252 | 0.011695260 | 0.000082118 | ||
CF-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.121340285 | 0.059241987 | 0.011826098 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.674228145 | 0.085515337 | 0.016992759 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.676567886 | 0.086488846 | 0.017177357 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.678540563 | 0.087332152 | 0.017357024 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.680332252 | 0.088114877 | 0.017542890 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.682010428 | 0.088862980 | 0.017739146 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.232302506 | 0.114018763 | 0.022655325 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.235408661 | 0.115303274 | 0.022887954 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.238011895 | 0.116400680 | 0.023100508 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.240360307 | 0.117403807 | 0.023307824 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.242543858 | 0.118347262 | 0.023515483 | 0.749865749 | ||
0.001 | 0.374437500 | 0.374438342 | 0.057494595 | 0.028265053 | 0.005621884 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.057458804 | 0.028234478 | 0.005618312 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.057431335 | 0.028211504 | 0.005621628 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.057412144 | 0.028196086 | 0.005631792 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.057401187 | 0.028188186 | 0.005648765 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.114989190 | 0.056530106 | 0.011243769 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.114917608 | 0.056468957 | 0.011236624 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.114862670 | 0.056423007 | 0.011243256 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.114824288 | 0.056392173 | 0.011263584 | 0.000082118 | ||
A-BFDO | 0.009 | 0.739874385 | 0.740009867 | 0.114802374 | 0.056376371 | 0.011297530 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.672483784 | 0.084795158 | 0.016865652 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.672376412 | 0.084703435 | 0.016854936 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.672294006 | 0.084634510 | 0.016864884 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.672236432 | 0.084588259 | 0.016895375 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.672203560 | 0.084564556 | 0.016946295 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.229976692 | 0.113058524 | 0.022485850 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.229820028 | 0.112922726 | 0.022458061 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.229683151 | 0.112803824 | 0.022444322 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.229565880 | 0.112701649 | 0.022444471 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.229468035 | 0.112616030 | 0.022458348 | 0.749865749 |
CO | ABO | CFO | Exact | AE | AE | AE | ||
ξo | ˆt | CO | ABO | CFO | ||||
δ=1 | δ=1 | δ=1 | δ=1 | δ=1 | δ=1 | δ=1 | ||
0.25 | 1.2832415 | 1.2839915 | 1.2832415 | 1.2837420 | 5.0050×10−4 | 2.4950×10−4 | 5.0050×10−4 | |
0.50 | 0.001 | 1.6480728 | 1.6485728 | 1.6480728 | 1.6480733 | 5.0000×10−4 | 4.9950×10−4 | 5.0000×10−4 |
0.75 | 2.1163835 | 2.1166335 | 2.1163835 | 2.1158840 | 4.9950×10−4 | 7.4950×10−4 | 4.9950×10−4 | |
1 | 2.7175644 | 2.7175644 | 2.7175644 | 2.7165649 | 9.9950×10−4 | 9.9950×10−4 | 9.9950×10−4 |
ξo | t | Exact solution | Approximate | AE at δ=0.99 | AE at δ=0.90 | AE at δ=0.80 |
0.001 | 1.283181953 | 1.282991533 | 0.000190420 | 0.000591967 | 0.002314176 | |
0.002 | 1.282350466 | 1.281957932 | 0.000392534 | 0.000965369 | 0.003757763 | |
0.003 | 1.281523640 | 1.280924613 | 0.000599027 | 0.001266220 | 0.004951399 | |
0.004 | 1.280699938 | 1.279891574 | 0.000808364 | 0.001521869 | 0.005996186 | |
0.25 | 0.005 | 1.279878630 | 1.278858813 | 0.001019817 | 0.001744804 | 0.006936485 |
0.006 | 1.279059290 | 1.277826330 | 0.001232960 | 0.001942193 | 0.007797048 | |
0.007 | 1.278241634 | 1.276794124 | 0.001447510 | 0.002118675 | 0.008593574 | |
0.008 | 1.277425463 | 1.275762193 | 0.001663270 | 0.002277489 | 0.009336846 | |
0.009 | 1.276610626 | 1.274730535 | 0.001880091 | 0.002421028 | 0.010034701 | |
0.010 | 1.275797006 | 1.273699150 | 0.002097856 | 0.002551126 | 0.010693077 | |
0.001 | 1.648072874 | 1.647572874 | 0.000500000 | 0.000450736 | 0.000195889 | |
0.002 | 1.647425125 | 1.646425123 | 0.001000002 | 0.000911208 | 0.000209887 | |
0.003 | 1.646778026 | 1.645278019 | 0.001500007 | 0.001375353 | 0.000163031 | |
0.004 | 1.646131576 | 1.644131558 | 0.002000018 | 0.001841897 | 0.000078045 | |
0.5 | 0.005 | 1.645485774 | 1.642985739 | 0.002500035 | 0.002310239 | 0.000034670 |
0.006 | 1.644840620 | 1.641840561 | 0.003000059 | 0.002780021 | 0.000169136 | |
0.007 | 1.644196116 | 1.640696021 | 0.003500095 | 0.003251011 | 0.000321484 | |
0.008 | 1.643552260 | 1.639552119 | 0.004000141 | 0.003723045 | 0.000488997 | |
0.009 | 1.642909053 | 1.638408853 | 0.004500200 | 0.004195995 | 0.000669674 | |
0.010 | 1.642266494 | 1.637266220 | 0.005000274 | 0.004669771 | 0.000861976 | |
0.001 | 2.338959359 | 2.338157875 | 0.000801484 | 0.000165158 | 0.001230254 | |
0.002 | 2.338282899 | 2.336670234 | 0.001612665 | 0.000511426 | 0.001738675 | |
0.003 | 2.337611483 | 2.335183929 | 0.002427554 | 0.000919095 | 0.002035230 | |
0.004 | 2.336943842 | 2.333698957 | 0.003244885 | 0.001365587 | 0.002203814 | |
0.85 | 0.005 | 2.336279381 | 2.332215315 | 0.004064066 | 0.001840538 | 0.002281462 |
0.006 | 2.335617740 | 2.330733000 | 0.004884740 | 0.002337980 | 0.002288952 | |
0.007 | 2.334958687 | 2.329252012 | 0.005706675 | 0.002854027 | 0.002239532 | |
0.008 | 2.334302054 | 2.327772347 | 0.006529707 | 0.003385957 | 0.002142342 | |
0.009 | 2.333647715 | 2.326294002 | 0.007353713 | 0.003931753 | 0.002004063 | |
0.010 | 2.332995574 | 2.324816977 | 0.008178597 | 0.004489858 | 0.001829773 | |
0.001 | 2.717509945 | 2.716564405 | 0.000945540 | 0.000231370 | 0.001333724 | |
0.002 | 2.716750692 | 2.714848698 | 0.001901994 | 0.000666649 | 0.001854647 | |
0.003 | 2.715997341 | 2.713134703 | 0.002862638 | 0.001171307 | 0.002136123 | |
0.004 | 2.715248472 | 2.711422418 | 0.003826054 | 0.001719936 | 0.002272635 | |
1 | 0.005 | 2.714503404 | 2.709711841 | 0.004791563 | 0.002300863 | 0.002305932 |
0.006 | 2.713761742 | 2.708002969 | 0.005758773 | 0.002907364 | 0.002259461 | |
0.007 | 2.713023220 | 2.706295798 | 0.006727422 | 0.003535055 | 0.002148184 | |
0.008 | 2.712287647 | 2.704590327 | 0.007697320 | 0.004180866 | 0.001982435 | |
0.009 | 2.711554884 | 2.702886553 | 0.008668331 | 0.004842513 | 0.001769765 | |
0.010 | 2.710824822 | 2.701184472 | 0.009640350 | 0.005518245 | 0.001515921 |
Operators | ξo,ξ1,ξ2 | t | Approximate | Exact solution | AE at δ=0.90 | AE at δ=0.95 | AE at δ=0.99 | AE at δ=1 |
0.001 | 0.374437500 | 0.374438342 | 0.000605299 | 0.000249210 | 0.000043607 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.001456767 | 0.000622670 | 0.000116025 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.002176140 | 0.000949425 | 0.000186502 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.002828462 | 0.001253588 | 0.000258784 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.003437432 | 0.001544171 | 0.000334285 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.001210599 | 0.000498421 | 0.000087214 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.002913535 | 0.001245340 | 0.000232051 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.004352280 | 0.001898850 | 0.000373004 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.005656925 | 0.002507176 | 0.000517569 | 0.000082118 | ||
C-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.006874865 | 0.003088343 | 0.000668570 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.501815898 | 0.000747630 | 0.000130820 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.504370302 | 0.001868010 | 0.000348076 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.506528420 | 0.002848275 | 0.000559506 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.508485386 | 0.003760763 | 0.000776353 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.510312297 | 0.004632514 | 0.001002855 | 0.000203223 | ||
0.001 | 1.497749998 | 1.874441717 | 0.000608674 | 0.000252584 | 0.000046982 | 0.376691719 | ||
0.003 | 1.493249954 | 1.873350435 | 0.001487143 | 0.000653045 | 0.000146401 | 0.380100481 | ||
1 | 0.005 | 1.488749789 | 1.872292816 | 0.002260519 | 0.001033805 | 0.000270882 | 0.383543027 | |
0.007 | 1.484249421 | 1.871268807 | 0.002993855 | 0.001418981 | 0.000424178 | 0.387019386 | ||
0.009 | 1.479748770 | 1.870278358 | 0.003710857 | 0.001817596 | 0.000607710 | 0.390529588 | ||
0.001 | 0.374437500 | 0.374438342 | 0.058076048 | 0.028505113 | 0.005664253 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.058855962 | 0.028829615 | 0.005725785 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.059513521 | 0.029110717 | 0.005785674 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.060110751 | 0.029371626 | 0.005847630 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.060670143 | 0.029620993 | 0.005913049 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.116152097 | 0.057010225 | 0.011328506 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.117711924 | 0.057659231 | 0.011451571 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.119027042 | 0.058221435 | 0.011571349 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.120221502 | 0.058743252 | 0.011695260 | 0.000082118 | ||
CF-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.121340285 | 0.059241987 | 0.011826098 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.674228145 | 0.085515337 | 0.016992759 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.676567886 | 0.086488846 | 0.017177357 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.678540563 | 0.087332152 | 0.017357024 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.680332252 | 0.088114877 | 0.017542890 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.682010428 | 0.088862980 | 0.017739146 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.232302506 | 0.114018763 | 0.022655325 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.235408661 | 0.115303274 | 0.022887954 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.238011895 | 0.116400680 | 0.023100508 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.240360307 | 0.117403807 | 0.023307824 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.242543858 | 0.118347262 | 0.023515483 | 0.749865749 | ||
0.001 | 0.374437500 | 0.374438342 | 0.057494595 | 0.028265053 | 0.005621884 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.057458804 | 0.028234478 | 0.005618312 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.057431335 | 0.028211504 | 0.005621628 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.057412144 | 0.028196086 | 0.005631792 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.057401187 | 0.028188186 | 0.005648765 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.114989190 | 0.056530106 | 0.011243769 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.114917608 | 0.056468957 | 0.011236624 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.114862670 | 0.056423007 | 0.011243256 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.114824288 | 0.056392173 | 0.011263584 | 0.000082118 | ||
A-BFDO | 0.009 | 0.739874385 | 0.740009867 | 0.114802374 | 0.056376371 | 0.011297530 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.672483784 | 0.084795158 | 0.016865652 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.672376412 | 0.084703435 | 0.016854936 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.672294006 | 0.084634510 | 0.016864884 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.672236432 | 0.084588259 | 0.016895375 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.672203560 | 0.084564556 | 0.016946295 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.229976692 | 0.113058524 | 0.022485850 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.229820028 | 0.112922726 | 0.022458061 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.229683151 | 0.112803824 | 0.022444322 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.229565880 | 0.112701649 | 0.022444471 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.229468035 | 0.112616030 | 0.022458348 | 0.749865749 |
Operators | ξo,ξ1,ξ2 | t | Approximate | Exact solution | AE at δ=0.90 | AE at δ=0.95 | AE at δ=0.99 | AE at δ=1 |
0.001 | 0.374437500 | 0.374438342 | 0.000605299 | 0.000249210 | 0.000043607 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.001456767 | 0.000622670 | 0.000116025 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.002176140 | 0.000949425 | 0.000186502 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.002828462 | 0.001253588 | 0.000258784 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.003437432 | 0.001544171 | 0.000334285 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.001210599 | 0.000498421 | 0.000087214 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.002913535 | 0.001245340 | 0.000232051 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.004352280 | 0.001898850 | 0.000373004 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.005656925 | 0.002507176 | 0.000517569 | 0.000082118 | ||
C-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.006874865 | 0.003088343 | 0.000668570 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.501815898 | 0.000747630 | 0.000130820 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.504370302 | 0.001868010 | 0.000348076 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.506528420 | 0.002848275 | 0.000559506 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.508485386 | 0.003760763 | 0.000776353 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.510312297 | 0.004632514 | 0.001002855 | 0.000203223 | ||
0.001 | 1.497749998 | 1.874441717 | 0.000608674 | 0.000252584 | 0.000046982 | 0.376691719 | ||
0.003 | 1.493249954 | 1.873350435 | 0.001487143 | 0.000653045 | 0.000146401 | 0.380100481 | ||
1 | 0.005 | 1.488749789 | 1.872292816 | 0.002260519 | 0.001033805 | 0.000270882 | 0.383543027 | |
0.007 | 1.484249421 | 1.871268807 | 0.002993855 | 0.001418981 | 0.000424178 | 0.387019386 | ||
0.009 | 1.479748770 | 1.870278358 | 0.003710857 | 0.001817596 | 0.000607710 | 0.390529588 | ||
0.001 | 0.374437500 | 0.374438342 | 0.058076048 | 0.028505113 | 0.005664253 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.058855962 | 0.028829615 | 0.005725785 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.059513521 | 0.029110717 | 0.005785674 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.060110751 | 0.029371626 | 0.005847630 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.060670143 | 0.029620993 | 0.005913049 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.116152097 | 0.057010225 | 0.011328506 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.117711924 | 0.057659231 | 0.011451571 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.119027042 | 0.058221435 | 0.011571349 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.120221502 | 0.058743252 | 0.011695260 | 0.000082118 | ||
CF-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.121340285 | 0.059241987 | 0.011826098 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.674228145 | 0.085515337 | 0.016992759 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.676567886 | 0.086488846 | 0.017177357 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.678540563 | 0.087332152 | 0.017357024 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.680332252 | 0.088114877 | 0.017542890 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.682010428 | 0.088862980 | 0.017739146 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.232302506 | 0.114018763 | 0.022655325 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.235408661 | 0.115303274 | 0.022887954 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.238011895 | 0.116400680 | 0.023100508 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.240360307 | 0.117403807 | 0.023307824 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.242543858 | 0.118347262 | 0.023515483 | 0.749865749 | ||
0.001 | 0.374437500 | 0.374438342 | 0.057494595 | 0.028265053 | 0.005621884 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.057458804 | 0.028234478 | 0.005618312 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.057431335 | 0.028211504 | 0.005621628 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.057412144 | 0.028196086 | 0.005631792 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.057401187 | 0.028188186 | 0.005648765 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.114989190 | 0.056530106 | 0.011243769 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.114917608 | 0.056468957 | 0.011236624 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.114862670 | 0.056423007 | 0.011243256 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.114824288 | 0.056392173 | 0.011263584 | 0.000082118 | ||
A-BFDO | 0.009 | 0.739874385 | 0.740009867 | 0.114802374 | 0.056376371 | 0.011297530 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.672483784 | 0.084795158 | 0.016865652 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.672376412 | 0.084703435 | 0.016854936 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.672294006 | 0.084634510 | 0.016864884 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.672236432 | 0.084588259 | 0.016895375 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.672203560 | 0.084564556 | 0.016946295 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.229976692 | 0.113058524 | 0.022485850 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.229820028 | 0.112922726 | 0.022458061 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.229683151 | 0.112803824 | 0.022444322 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.229565880 | 0.112701649 | 0.022444471 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.229468035 | 0.112616030 | 0.022458348 | 0.749865749 |
Operators | ξo,ξ1,ξ2 | t | Approximate | Exact solution | AE at δ=0.90 | AE at δ=0.95 | AE at δ=0.99 | AE at δ=1 |
0.001 | 0.374437500 | 0.374438342 | 0.000605299 | 0.000249210 | 0.000043607 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.001456767 | 0.000622670 | 0.000116025 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.002176140 | 0.000949425 | 0.000186502 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.002828462 | 0.001253588 | 0.000258784 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.003437432 | 0.001544171 | 0.000334285 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.001210599 | 0.000498421 | 0.000087214 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.002913535 | 0.001245340 | 0.000232051 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.004352280 | 0.001898850 | 0.000373004 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.005656925 | 0.002507176 | 0.000517569 | 0.000082118 | ||
C-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.006874865 | 0.003088343 | 0.000668570 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.501815898 | 0.000747630 | 0.000130820 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.504370302 | 0.001868010 | 0.000348076 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.506528420 | 0.002848275 | 0.000559506 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.508485386 | 0.003760763 | 0.000776353 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.510312297 | 0.004632514 | 0.001002855 | 0.000203223 | ||
0.001 | 1.497749998 | 1.874441717 | 0.000608674 | 0.000252584 | 0.000046982 | 0.376691719 | ||
0.003 | 1.493249954 | 1.873350435 | 0.001487143 | 0.000653045 | 0.000146401 | 0.380100481 | ||
1 | 0.005 | 1.488749789 | 1.872292816 | 0.002260519 | 0.001033805 | 0.000270882 | 0.383543027 | |
0.007 | 1.484249421 | 1.871268807 | 0.002993855 | 0.001418981 | 0.000424178 | 0.387019386 | ||
0.009 | 1.479748770 | 1.870278358 | 0.003710857 | 0.001817596 | 0.000607710 | 0.390529588 | ||
0.001 | 0.374437500 | 0.374438342 | 0.058076048 | 0.028505113 | 0.005664253 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.058855962 | 0.028829615 | 0.005725785 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.059513521 | 0.029110717 | 0.005785674 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.060110751 | 0.029371626 | 0.005847630 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.060670143 | 0.029620993 | 0.005913049 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.116152097 | 0.057010225 | 0.011328506 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.117711924 | 0.057659231 | 0.011451571 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.119027042 | 0.058221435 | 0.011571349 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.120221502 | 0.058743252 | 0.011695260 | 0.000082118 | ||
CF-FDO | 0.009 | 0.739874385 | 0.740009867 | 0.121340285 | 0.059241987 | 0.011826098 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.674228145 | 0.085515337 | 0.016992759 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.676567886 | 0.086488846 | 0.017177357 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.678540563 | 0.087332152 | 0.017357024 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.680332252 | 0.088114877 | 0.017542890 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.682010428 | 0.088862980 | 0.017739146 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.232302506 | 0.114018763 | 0.022655325 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.235408661 | 0.115303274 | 0.022887954 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.238011895 | 0.116400680 | 0.023100508 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.240360307 | 0.117403807 | 0.023307824 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.242543858 | 0.118347262 | 0.023515483 | 0.749865749 | ||
0.001 | 0.374437500 | 0.374438342 | 0.057494595 | 0.028265053 | 0.005621884 | 0.000000843 | ||
0.003 | 0.373312489 | 0.373320060 | 0.057458804 | 0.028234478 | 0.005618312 | 0.000007571 | ||
0.25 | 0.005 | 0.372187447 | 0.372208437 | 0.057431335 | 0.028211504 | 0.005621628 | 0.000020989 | |
0.007 | 0.371062355 | 0.371103414 | 0.057412144 | 0.028196086 | 0.005631792 | 0.000041059 | ||
0.009 | 0.369937192 | 0.370004933 | 0.057401187 | 0.028188186 | 0.005648765 | 0.000067741 | ||
0.001 | 0.748874999 | 0.748876685 | 0.114989190 | 0.056530106 | 0.011243769 | 0.000001686 | ||
0.003 | 0.746624977 | 0.746640120 | 0.114917608 | 0.056468957 | 0.011236624 | 0.000015142 | ||
0.50 | 0.005 | 0.744374894 | 0.744416873 | 0.114862670 | 0.056423007 | 0.011243256 | 0.000041979 | |
0.007 | 0.742124711 | 0.742206828 | 0.114824288 | 0.056392173 | 0.011263584 | 0.000082118 | ||
A-BFDO | 0.009 | 0.739874385 | 0.740009867 | 0.114802374 | 0.056376371 | 0.011297530 | 0.000135482 | |
0.001 | 1.123312499 | 1.123315027 | 0.672483784 | 0.084795158 | 0.016865652 | 0.000002528 | ||
0.003 | 1.119937466 | 1.119960179 | 0.672376412 | 0.084703435 | 0.016854936 | 0.000022713 | ||
0.75 | 0.005 | 1.116562342 | 1.116625310 | 0.672294006 | 0.084634510 | 0.016864884 | 0.000062968 | |
0.007 | 1.113187066 | 1.113310242 | 0.672236432 | 0.084588259 | 0.016895375 | 0.000123176 | ||
0.009 | 1.109811577 | 1.110014800 | 0.672203560 | 0.084564556 | 0.016946295 | 0.000203223 | ||
0.001 | 1.497749998 | 0.747751682 | 0.229976692 | 0.113058524 | 0.022485850 | 0.749998316 | ||
0.003 | 1.493249954 | 0.743265051 | 0.229820028 | 0.112922726 | 0.022458061 | 0.749984903 | ||
1 | 0.005 | 1.488749789 | 0.738791557 | 0.229683151 | 0.112803824 | 0.022444322 | 0.749958232 | |
0.007 | 1.484249421 | 0.734330960 | 0.229565880 | 0.112701649 | 0.022444471 | 0.749918461 | ||
0.009 | 1.479748770 | 0.729883021 | 0.229468035 | 0.112616030 | 0.022458348 | 0.749865749 |