Research article

Stein’s lemma for truncated generalized skew-elliptical random vectors

  • Received: 20 February 2020 Accepted: 30 March 2020 Published: 02 April 2020
  • MSC : 62E10, 62H05

  • Inspired by Shushi [1] and Adcock et al. [2], we consider Stein's lemma for truncated generalized skew-elliptical random vectors. We provide two Stein's lemmas. One is Stein's lemma for truncated generalized skew-elliptical random vectors, the other is a special form of Stein's lemma for truncated generalized skew-elliptical random vectors. Finally, the conditional tail expectation allocation, the lower-orthant conditional tail expectation at probability level q, the upper-orthant conditional tail expectation at probability level q, the truncated version of Wang's premium, the multivariate tail conditional expectation and the multivariate tail covariance matrix as applications are given.

    Citation: Baishuai Zuo, Chuancun Yin. Stein’s lemma for truncated generalized skew-elliptical random vectors[J]. AIMS Mathematics, 2020, 5(4): 3423-3433. doi: 10.3934/math.2020221

    Related Papers:

  • Inspired by Shushi [1] and Adcock et al. [2], we consider Stein's lemma for truncated generalized skew-elliptical random vectors. We provide two Stein's lemmas. One is Stein's lemma for truncated generalized skew-elliptical random vectors, the other is a special form of Stein's lemma for truncated generalized skew-elliptical random vectors. Finally, the conditional tail expectation allocation, the lower-orthant conditional tail expectation at probability level q, the upper-orthant conditional tail expectation at probability level q, the truncated version of Wang's premium, the multivariate tail conditional expectation and the multivariate tail covariance matrix as applications are given.


    加载中


    [1] T. Shushi, Stein's lemma for truncated elliptical random vectors, Stat. Probabil. Lett., 137 (2018), 297-303. doi: 10.1016/j.spl.2018.02.008
    [2] C. Adcock, Z. Landsman, T. Shushi, Stein's lemma for generalized skew-elliptical random vectors, Commun. Stat-Theor. M., 2019.
    [3] C. M. Stein, Estimation of the mean of a multivariate normal distribution, The Annals of Statistics, 9 (1981), 1135-1151. doi: 10.1214/aos/1176345632
    [4] Z. Landsman, On the generalization of Stein's lemma for elliptical class of distributions, Stat. Probabil. Lett., 76 (2006), 1012-1016. doi: 10.1016/j.spl.2005.11.004
    [5] Z. Landsman, J. Nešlehová, Stein's lemma for elliptical random vectors, J. Multivariate Anal., 99 (2008), 912-927. doi: 10.1016/j.jmva.2007.05.006
    [6] Z. Landsman, S. Vanduffel, J. Yao, A note on Stein's lemma for multivariate elliptical distributions, J. Stat. Plan. Infer., 143 (2013), 2016-2022. doi: 10.1016/j.jspi.2013.06.003
    [7] C. J. Adcock, K. Shutes, On the multivariate extended skew-normal, normal-exponential, and normal-gamma distributions, Journal of Statistical Theory and Practice, 6 (2012), 636-664. doi: 10.1080/15598608.2012.719799
    [8] C. J. Adcock, Mean-variance-skewness efficient surfaces, Stein's lemma and the multivariate extended skew-Student distribution, Eur. J. Oper. Res., 234 (2014), 392-401. doi: 10.1016/j.ejor.2013.07.011
    [9] J. S. Liu, Siegel's formula via Stein's identities, Stat. Probabil. Lett., 21 (1994), 247-251. doi: 10.1016/0167-7152(94)90121-X
    [10] K. C. Li, On principal Hessian directions for data visualization and dimension reduction: Another application of Stein's lemma, J. Am. Stat. Assoc., 87 (1992), 1025-1039. doi: 10.1080/01621459.1992.10476258
    [11] Z. Landsman, U. Makov, T. Shushi, A multivariate tail covariance measure for elliptical distributions, Insurance: Mathematics and Economics, 81 (2018), 27-35. doi: 10.1016/j.insmatheco.2018.04.002
    [12] K. T. Fang, S. Kotz, K. W. Ng, Symmetric Multivariate and Related Distributions, CRC Press, New York, 1990.
    [13] Z. M. Landsman, E. A. Valdez, Tail conditional expectations for elliptical distributions, North American Actuarial Journal, 7 (2003), 55-71. doi: 10.1080/10920277.2003.10596118
    [14] N. Loperfido, Skewness-based projection pursuit: A computational approach, Comput. Stat. Data An., 120 (2018), 42-57. doi: 10.1016/j.csda.2017.11.001
    [15] J. H. T. Kim, S. Y. Kim, Tail risk measures and risk allocation for the class of multivariate normal mean-variance mixture distributions, Insurance: Mathematics and Economics, 86 (2019), 145-157. doi: 10.1016/j.insmatheco.2019.02.010
    [16] A. Cousin, E. D. Bernardino, On multivariate extensions of conditional-tail-expectation, Insurance: Mathematics and Economics, 55 (2014), 272-282. doi: 10.1016/j.insmatheco.2014.01.013
    [17] G. De Luca, M. Genton, N. Loperfido, A multivariate skew-GARCH model, In: Econometric Analysis of Financial and Economic Time Series, Emerald Group Publishing Limited, Bingley, 2006, 33-57.
    [18] G. De Luca, N. Loperfido, Modelling multivariate skewness in financial returns: a SGARCH approach, The European Journal of Finance, 21 (2015), 1113-1131. doi: 10.1080/1351847X.2011.640342
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3273) PDF downloads(364) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog