Citation: Huafei Di, Yadong Shang, Jiali Yu. Blow-up analysis of a nonlinear pseudo-parabolic equation with memory term[J]. AIMS Mathematics, 2020, 5(4): 3408-3422. doi: 10.3934/math.2020220
[1] | A. B. Al'shin, M. O. Korpusov, A. G. Siveshnikov, Blow up in nonlinear Sobolev type equations, De Gruyter Series in Nonlinear Aanlysis and Applicationss, Walter de Gruyter, 2011. |
[2] | A. Y. Kolesov, E. F. Mishchenko, N. K. Rozov, Asymptotic methods of investigation of periodic solutions of nonlinear hyperbolic equations, Trudy Matematicheskogo Instituta im. V. A. Steklova RAN, 222 (1998), 3-191. |
[3] | B. K. Shivamoggi, A symmetric regularized long wave equation for shallow water waves, Phys. Fluids, 29 (1986), 890-891. doi: 10.1063/1.865895 |
[4] | P. Rosenau, Evolution and breaking of the ion-acoustic waves, Phys. Fluids, 31 (1988), 1317-1319. doi: 10.1063/1.866723 |
[5] | E. S. Dzektser, Generalization of the equations of motion of ground waters with free surface, Dokl. Akad. Nauk. SSSR., 202 (1972), 1031-1033. |
[6] | M. O. Korpusov, A. G. Sveshnikov, Three-dimensional nonlinear evolution equations of pseudoparabolic type in problems of mathematicial physics, Comp. Math. Math. Phys., 43 (2003), 1765-1797. |
[7] | R. E. Showalter, Existence and representation theorem for a semilinear Sobolev equation in Banach space, SIAM. J. Math. Anal., 3 (1972), 527-543. doi: 10.1137/0503051 |
[8] | R. Z. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763. doi: 10.1016/j.jfa.2013.03.010 |
[9] | P. Luo, Blow-up phenomena for a pseudo-parabolic equation, Math. Method. Appl. Sci., 38 (2015), 2636-2641. doi: 10.1002/mma.3253 |
[10] | H. F. Di, Y. D. Shang, X. M. Peng, Blow-up phenomena for a pseudo-parabolic equation with variable exponents, Appl. Math. Lett., 64 (2017), 67-73. doi: 10.1016/j.aml.2016.08.013 |
[11] | Y. Liu, W. S. Jiang, F. L. Huang, Asymptotic behaviour of solutions to some pseudo-parabolic equations, Appl. Math. Lett., 25 (2012), 111-114. doi: 10.1016/j.aml.2011.07.012 |
[12] | Z. Dong, J. Zhou, Blow-up of solutions to a parabolic system with nonlocal source, Appl. Anal., 97 (2018), 825-841. doi: 10.1080/00036811.2017.1292351 |
[13] | M. Marras, S. Vernier-Piro, G. Viglialoro, Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term, Discrete Cont. Dyn-B., 22 (2017), 2291-2300. |
[14] | G. Gripenberg, Global existence of solutions of volterra integro-differential equations of parabolic type, J. Differ. Equations, 102 (1993), 382-390. doi: 10.1006/jdeq.1993.1035 |
[15] | H. M. Yin, Weak and classical solutions of some nonlinear volterra intergro-differential equations, Commun. Part. Diff. Eq., 17 (1992), 1369-1385. doi: 10.1080/03605309208820889 |
[16] | S. A. Messaoudi, Blow-up of solutions of a semilinear heat equation with a visco-elastic term, Nonlinear Elliptic and Parabolic Problems, Birkhauser Basel, 2005. |
[17] | Y. D. Shang, B. L. Guo, On the problem of the existence of global solutions for a class of nonlinear convolutional integro-differential equations of pseudoparabolic type, Acta Math. Appl. Sin., 26 (2003), 511-524. |
[18] | Y. D. Shang, B. L. Guo, Initial-boundary value problems and initial value problems for nonlinear pseudoparabolic integro-differential equations, Math. Appl., 15 (2002), 40-45. |
[19] | M. Ptashnyk, Degenerate quasilinear pseudoparabolic equations with memory terms and variational inequalities, Nonlinear Analysis: Theory, Methods & Applications, 66 (2007), 2653-2675. |
[20] | R. W. Carroll, R. E. Showalter, Singular and degenerate Cauchy problems, Academic Press, 1976. |
[21] | H. F. Di, Y. D. Shang, Global existence and nonexistence of solutions for the nonlinear pseudoparabolic equation with amemory term, Math. Method. Appl. Sci., 38 (2015), 3923-3936. doi: 10.1002/mma.3327 |
[22] | F. L. Sun, L. S. Liu, Y. H. Wu, Global existence and finite time blow-up of solutions for the semilinear pseudo-parabolic equation with a memory term, Appl Anal., 98 (2019), 735-755. doi: 10.1080/00036811.2017.1400536 |
[23] | H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equation of the form Put=-Au + F(u), Arch. Ration. Mech. An., 51 (1973), 371-386. |
[24] | H. F. Di, Y. D. Shang, X. X. Zheng, Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms, Discrete Cont. Dyn-B., 21 (2017), 781-801. |
[25] | R. Z. Xu, L. Wei, Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 62 (2020), 321-356. |
[26] | M. R. Li, L. Y. Tsai, Existence and nonexistence of global solutions of some system of semilinear wave equations, Nonlinear Analysis: Theory, Methods & Applications, 54 (2003), 1397-1415. |
[27] | J. L. Lions, Quelques méthodes de résolutions des probléms aux limites non linéaires, Paris: Dunod, 1969. |
[28] | M. Escobedo, M. A. Herrero, A semilinear parabolic system in bounded domain, Ann. Mat. Pur. Appl., 165 (1993), 315-336. doi: 10.1007/BF01765854 |