Citation: Nevin Gürbüz, Dae Won Yoon. Geometry of curve flows in isotropic spaces[J]. AIMS Mathematics, 2020, 5(4): 3434-3445. doi: 10.3934/math.2020222
[1] | J. Arroyo, O. J. Garay, A. Pámpano, Binormal motion of curves with constant torsion in 3-spaces, Adv. Math. Phys., 2017 (2017), 1-8. doi: 10.1155/2017/7075831 |
[2] | M. Desbrun, M. P. Cani-Gascuel, Active implicit surface for animation, In: Proc. Graphics Interface-Canadian Inf. Process. Soc., 1998, 143-150. |
[3] | R. E. Goldstein, D. M. Petrich, The Kortewege-de Vries hierachy as dynamics of closed curves in the plane, Phys. Rev. Lett., 67 (1991), 3203-3206. doi: 10.1103/PhysRevLett.67.3203 |
[4] | N. Gurbuz, Inextensible flows of spacelike, timelike and null curves, Int. J. Contemp. Math. Sci., 4 (2009), 1599-1604. |
[5] | H. Hasimoto, A soliton on a vortex filament, J. Fluid Mech., 51 (1972), 477-485. doi: 10.1017/S0022112072002307 |
[6] | R. A. Hussien, S. G. Mohamed, Generated surfaces via inextensible flows of curves in $\mathbb{R}^3$, J. Appl. Math., 2016 (2016), 1-8. |
[7] | M. Kass, A. Witkin, D. Terzopoulos, Snakes: Active contour models, In: Proc. 1st Int. Conference on Computer Vision, 1987, 259-268. |
[8] | G. L. Lamb Jr, Elements of Soliton Theory, JohnWiley and Sons, New York, 1980. |
[9] | S. G. Mohamed, Binormal motions of inextensible curves in de-sitter space $\mathbb{S}^{2,1}$, J. Egyptian Math. Soc., 25 (2017), 313-318. |
[10] | C. Qu, J. Han, J. Kang, Bäcklund transformations for integrable geometric curve flows, Symmetry, 7 (2015), 1376-1394. doi: 10.3390/sym7031376 |
[11] | W. K. Schief, C. Rogers, Binormal motion of curves of constant curvature and torsion. Generation of soliton surfaces, Proc. R. Soc. London Ser. A, 455 (1999), 3163-3188. |
[12] | Ž. M. ŠipuŠ, Translation surfaces of constant curvatures in a simpley isotropic space, Period. Math. Hungar., 68 (2014), 160-175. doi: 10.1007/s10998-014-0027-2 |
[13] | M. Yeneroglu, On new characterization of inextensible flows of space-like curves in de Sitter space, Open Math., 14 (2016), 946-954. doi: 10.1515/math-2016-0071 |
[14] | D. W. Yoon, J. W. Lee, Linear Weingarten helicoidal surfaces in isotropic space, Symmerty, 8 (2016), 1-7. |