Research article

Geometry of curve flows in isotropic spaces

  • Received: 06 January 2020 Accepted: 26 March 2020 Published: 07 April 2020
  • MSC : 53B30, 53C40, 53Z05

  • In this paper, we study inextensible flows of a curve in an isotropic 3-space and give a necessary and sufficient condition for inextensible flows of the curve as a partial differential equation involving the curvatures of the curve. Using binormal flows of a space curve we give the Bäcklund transformations of the Schrödinger flows and the extended Harry-Dym flows. Finally, we investigate some geometric properties of Hasimoto surfaces which wiped out by the Schrödinger flows.

    Citation: Nevin Gürbüz, Dae Won Yoon. Geometry of curve flows in isotropic spaces[J]. AIMS Mathematics, 2020, 5(4): 3434-3445. doi: 10.3934/math.2020222

    Related Papers:

  • In this paper, we study inextensible flows of a curve in an isotropic 3-space and give a necessary and sufficient condition for inextensible flows of the curve as a partial differential equation involving the curvatures of the curve. Using binormal flows of a space curve we give the Bäcklund transformations of the Schrödinger flows and the extended Harry-Dym flows. Finally, we investigate some geometric properties of Hasimoto surfaces which wiped out by the Schrödinger flows.


    加载中


    [1] J. Arroyo, O. J. Garay, A. Pámpano, Binormal motion of curves with constant torsion in 3-spaces, Adv. Math. Phys., 2017 (2017), 1-8. doi: 10.1155/2017/7075831
    [2] M. Desbrun, M. P. Cani-Gascuel, Active implicit surface for animation, In: Proc. Graphics Interface-Canadian Inf. Process. Soc., 1998, 143-150.
    [3] R. E. Goldstein, D. M. Petrich, The Kortewege-de Vries hierachy as dynamics of closed curves in the plane, Phys. Rev. Lett., 67 (1991), 3203-3206. doi: 10.1103/PhysRevLett.67.3203
    [4] N. Gurbuz, Inextensible flows of spacelike, timelike and null curves, Int. J. Contemp. Math. Sci., 4 (2009), 1599-1604.
    [5] H. Hasimoto, A soliton on a vortex filament, J. Fluid Mech., 51 (1972), 477-485. doi: 10.1017/S0022112072002307
    [6] R. A. Hussien, S. G. Mohamed, Generated surfaces via inextensible flows of curves in $\mathbb{R}^3$, J. Appl. Math., 2016 (2016), 1-8.
    [7] M. Kass, A. Witkin, D. Terzopoulos, Snakes: Active contour models, In: Proc. 1st Int. Conference on Computer Vision, 1987, 259-268.
    [8] G. L. Lamb Jr, Elements of Soliton Theory, JohnWiley and Sons, New York, 1980.
    [9] S. G. Mohamed, Binormal motions of inextensible curves in de-sitter space $\mathbb{S}^{2,1}$, J. Egyptian Math. Soc., 25 (2017), 313-318.
    [10] C. Qu, J. Han, J. Kang, Bäcklund transformations for integrable geometric curve flows, Symmetry, 7 (2015), 1376-1394. doi: 10.3390/sym7031376
    [11] W. K. Schief, C. Rogers, Binormal motion of curves of constant curvature and torsion. Generation of soliton surfaces, Proc. R. Soc. London Ser. A, 455 (1999), 3163-3188.
    [12] Ž. M. ŠipuŠ, Translation surfaces of constant curvatures in a simpley isotropic space, Period. Math. Hungar., 68 (2014), 160-175. doi: 10.1007/s10998-014-0027-2
    [13] M. Yeneroglu, On new characterization of inextensible flows of space-like curves in de Sitter space, Open Math., 14 (2016), 946-954. doi: 10.1515/math-2016-0071
    [14] D. W. Yoon, J. W. Lee, Linear Weingarten helicoidal surfaces in isotropic space, Symmerty, 8 (2016), 1-7.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3941) PDF downloads(412) Cited by(13)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog