Citation: Hsiu-Chuan Wei. Mathematical modeling of ER-positive breast cancer treatment with AZD9496 and palbociclib[J]. AIMS Mathematics, 2020, 5(4): 3446-3455. doi: 10.3934/math.2020223
[1] | A. Pawlik, M. Słomińska-Wojewódzka and A. Herman-Antosiewicz, Sensitization of estrogen receptor-positive breast cancer cell lines to 4-hydroxytamoxifen by isothiocyanates present in cruciferous plants, Eur. J. Nutr., 55 (2016), 1165-1180. doi: 10.1007/s00394-015-0930-1 |
[2] | J. Z. Drago, S. Chandarlapaty and K. Jhaveri, Targeting apoptosis: a new paradigm for the treatment of estrogen receptor-positive breast cancer, Cancer Discov., 9 (2019), 323-325. doi: 10.1158/2159-8290.CD-19-0050 |
[3] | F. Lumachi, D. A. Santeufemia, S. M. M. Basso, Current medical treatment of estrogen receptor-positive breast cancer, World J. Biol. Chem., 6 (2015), 231. doi: 10.4331/wjbc.v6.i3.231 |
[4] | A. Nardone, H. Weir, O. Delpuech, et al. The oral selective oestrogen receptor degrader SERD AZD9496 is comparable to fulvestrant in antagonising ER and circumventing endocrine resistance, Br. J. Cancer, 120 (2019), 331. doi: 10.1038/s41416-018-0354-9 |
[5] | H. M. Weir, R. H. Bradbury, M. Lawson, et al. AZD9496: an oral estrogen receptor inhibitor that blocks the growth of ER-positive and ESR1-mutant breast tumors in preclinical models, Cancer Res., 76 (2016), 3307-3318. doi: 10.1158/0008-5472.CAN-15-2357 |
[6] | V. C. Jordan, Tamoxifen resistance trumped and oral selective estrogen receptor degraders arrive, Clin. Cancer Res., 24 (2018), 3480-3482. doi: 10.1158/1078-0432.CCR-18-0759 |
[7] | C. De Savi, R. H. Bradbury, A. A. Rabow, et al. Optimization of a novel binding motif to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2, 3, 4, 9-tetrahydro-1H-pyrido [3,4-b]indol-1-yl) phenyl) acrylic acid (AZD9496), a potent and orally bioavailable selective estrogen receptor downregulator and antagonist, J. Med. Chem., 58 (2015), 8128-8140. doi: 10.1021/acs.jmedchem.5b00984 |
[8] | J. McCain, First-in-class CDK4/6 inhibitor palbociclib could usher in a new wave of combination therapies for HR+, HER2- breast cancer, Pharm. Ther., 40 (2015), 511. |
[9] | E. P. Hamilton, M. R. Patel, A. C. Armstrong, et al. A first-in-human study of the new oral selective estrogen receptor degrader AZD9496 for ER+/HER2- advanced breast cancer, Clin. Cancer Res., 24 (2018), 3510-3518. doi: 10.1158/1078-0432.CCR-17-3102 |
[10] | C. Paoletti, G. Schiavon, E. M. Dolce, et al. Circulating biomarkers and resistance to endocrine therapy in metastatic breast cancers: correlative results from AZD9496 oral SERD Phase I trial, Clin. Cancer Res., 24 (2018), 5860-5872. doi: 10.1158/1078-0432.CCR-18-1569 |
[11] | A. D. Leo, G. Jerusalem, L. Petruzelka, et al. Final overall survival: fulvestrant 500mg vs 250mg in the randomized confirm trial, J. Natl. Cancer Inst. 106 (2014), djt337. |
[12] | M. Thill and M. Schmidt, Management of adverse events during cyclin-dependent kinase 4/6 (CDK4/6) inhibitor-based treatment in breast cancer, Ther. Adv. Med. Oncol., 10 (2018), 1758835918793326. |
[13] | E. Lim, J. Beith, F. Boyle, et al. Emerging data and future directions for CDK4/6 inhibitor treatment of patients with hormone receptor positive HER2-non-amplified metastatic breast cancer, Asia. Pac. J. Clin. Oncol., 14 (2018), 12-21. doi: 10.1111/ajco.13065 |
[14] | H.-C. Wei, Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line, Clin. Cancer Res., 16 (2019), 6512-6535. |
[15] | A. K. Gupta, S. Sharma, N. Dahiya, et al. Palbociclib: a breakthrough in breast carcinoma in women, Med. J. Armed Forces India, 72 (2016), S37-S42. doi: 10.1016/j.mjafi.2016.01.002 |
[16] | P. V. Sivakumar, R. Garcia, K. S. Waggie, et al. Comparison of vascular leak syndrome in mice treated with IL21 or IL2, Comparative Med., 63 (2013), 13-21. |
[17] | J. E. Berrington, D. Barge, A. C. Fenton, et al. Lymphocyte subsets in term and significantly preterm UK infants in the first year of life analysed by single platform flow cytometry, Clin. Exp. Immunol., 140 (2005), 289-292. doi: 10.1111/j.1365-2249.2005.02767.x |
[18] | H. Nawata, M. T. Chong, D. Bronzert, et al. Estradiol-independent growth of a subline of MCF-7 human breast cancer cells in culture, J. Biol. Chem., 256 (1981), 6895-6902. doi: 10.1016/S0021-9258(19)69076-9 |
[19] | R. Clarke, N. Brünner, B. S. Katzenellenbogen, et al. Progression of human breast cancer cells from hormone-dependent to hormone-independent growth both in vitro and in vivo, Proceedings of the National Academy of Sciences, 86 (1989), 3649-3653. doi: 10.1073/pnas.86.10.3649 |