Citation: Haikun Liu, Yongqiang Fu. On the variable exponential fractional Sobolev space Ws(·),p(·)[J]. AIMS Mathematics, 2020, 5(6): 6261-6276. doi: 10.3934/math.2020403
[1] | R. A. Adams, Sobolev Spaces, New York: Academic Press, 1975. |
[2] | E. Azroul, A. Benkirane, M. Shimi, Eigenvalue problems involving the fractional p(x)-Laplacian operator, Adv. Oper. Theory, 4 (2019), 539-555. doi: 10.15352/aot.1809-1420 |
[3] | E. Azroul, A. Benkirane, M. Shimi, et al. On a class of fractional p(x)-Kirchhoff type problems, Appl. Anal., (2019),1-20. Available from: https://www.tandfonline.com/doi/full/10.1080/00036811.2019.1603372 |
[4] | A. Baalal, M. Berghout, Traces and fractional Sobolev extension domains with variable exponent, Int. J. Math. Anal., 12 (2018), 85-98. doi: 10.12988/ijma.2018.815 |
[5] | A. Bahrouni, Comparison and sub-supersolution principles for the fractional p(x)-Laplacian, J. Math. Anal. Appl., 458 (2018), 1363-1372. doi: 10.1016/j.jmaa.2017.10.025 |
[6] | A. Bahrouni, V. Rădulescu, On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 379- 389. |
[7] | D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces, Foundations and harmonic analysis, Heidelberg: Birkhäuser/Springer, 2013. |
[8] | L. M. Del Pezzo, J. D. Rossi, Traces for fractional Sobolev spaces with variable exponents, Adv. Oper. Theory, 2 (2017), 435-446. |
[9] | L. Diening, P. Harjulehto, P. Hästö, et al. Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics 2017, Heidelberg: Springer, 2011. |
[10] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004 |
[11] | D. E. Edmunds, J. Lang, A. Nekvinda, On Lp(x) norms, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 219-225. doi: 10.1098/rspa.1999.0309 |
[12] | D. E. Edmunds, J. Rákosník, Density of smooth functions in Wk,p(x)(Ω), Proc. Roy. Soc. London Ser. A, 437 (1992), 229-236. |
[13] | X. L. Fan, D. Zhao, On the spaces spaces Lp(x)(Ω) and Wk,p(x)(Ω), J. Math. Anal. Appl., 263 (2001), 424-446. |
[14] | Y. Q. Fu, X. Zhang, Application of variable exponential function space in partial differential equations (in Chinese), Beijing: Science Press, 2011. |
[15] | K. Ho, Y. H. Kim, A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional p(.)-Laplacian, Nonlinear Anal., 188 (2019), 179-201. doi: 10.1016/j.na.2019.06.001 |
[16] | U. Kaufmann, J. D. Rossi, R. Vidal, Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians, Electron. J. Qual. Theory Differ. Equ., 76 (2017), 1-10. |
[17] | O. Kováčik, J. Rákosník, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 41 (1991), 592-618. |
[18] | J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics 1034, Berlin: Springer-Verlag, 1983. |
[19] | T. C. Nguyen, Eigenvalue problems for fractional p(x, y)-Laplacian equations with indefinite weight, Taiwanese J. Math., 23 (2019), 1153-1173. doi: 10.11650/tjm/190404 |
[20] | S. Samko, Denseness of C0∞(Rn) in the generalized Sobolev spaces Wm,p(x)(Rn) (Russian), Dokl. Akad. Nauk, 369 (1999), 451-454. |
[21] | S. J. Shi, S. T. Chen, Some rotundities musielak-orlicz spaces Lp(x)(Ω) (in Chinese), J. Math., 29 (2009), 211-216. |
[22] | I. Singer, On the set of best approximation of an element in a normed linear space, Rev. Math. Pures Appl., 5 (1960), 383-402. |
[23] | M. Q. Xiang, B. L. Zhang, D. Yang, Multiplicity results for variable-order fractional Laplacian equations with variable growth, Nonlinear Anal., 178 (2019), 190-204. doi: 10.1016/j.na.2018.07.016 |
[24] | D. J. Guo, Nonlinear functional analysis (in Chinese), Jinan: Shandong Science and Technology Press, 2002. |