Citation: Zengtai Gong, Xuyang Kou, Ting Xie. Interval-valued Choquet integral for set-valued mappings: definitions, integral representations and primitive characteristics[J]. AIMS Mathematics, 2020, 5(6): 6277-6297. doi: 10.3934/math.2020404
[1] | R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl., 12 (1965), 1-12. doi: 10.1016/0022-247X(65)90049-1 |
[2] | P. Billingsley, Probability and Measure, Wiley, 1994. |
[3] | D. Candeloro, R. Mesiar, A. R. Sambucini, A special class of fuzzy measures: Choquet integral and applications, Fuzzy Sets and Systems, 355 (2019), 83-99. doi: 10.1016/j.fss.2018.04.008 |
[4] | G. Choquet, Theory of capacities, J. Annals det Institut Fourier, 5 (1955), 131-295 |
[5] | S. J. Cho, B. S. Lee, G. M. Lee, et al. Fuzzy integrals for set-valued mappings, Fuzzy Sets and Systems, 117 (2001), 333-337. doi: 10.1016/S0165-0114(98)00385-6 |
[6] | M. Grabisch, T. Murofushi, M, Sugeno, Fuzzy Measures and Integrals: Theory and Applications, Physica-verlag, Heidelberg, 2000. |
[7] | M. Grabisch, C. Labreuche, A decade of applications of the Choquet and Sugeno integrals in multicriteria decision aid, Ann. Oper. Res., 175 (2010), 247-286. doi: 10.1007/s10479-009-0655-8 |
[8] | Z. T. Gong, Z. Q. Wei, Choquet integral of set-valued functions with respect to multisubmeasures, Journal of Shandong University (Natural Science) (in Chinese), 50 (2015), 63-71. |
[9] | Y. Huang, C. X. Wu, Real-valued Choquet integral for set-valued mappings, Int. J. Approx. Reason., 55 (2014), 683-688. doi: 10.1016/j.ijar.2013.09.011 |
[10] | L. C. Jang, J. S. Kwon, On the represtentation of Choquet of set-valued functions and null set, Fuzzy Sets and Systems, 112 (2000), 233-239. doi: 10.1016/S0165-0114(98)00184-5 |
[11] | L. C. Jang, B. M. Kil, Y. K. Kim, et al. Some properties of Choquet integrals of set-valued functions, Fuzzy Sets and Systems, 91 (1997), 95-98. doi: 10.1016/S0165-0114(96)00124-8 |
[12] | J. Li, Order continuity of monotone set function and convergence of measurable functions sequence, Appl. Math. Comput., 135 (2003), 211-218. |
[13] | T. Murofushi, M. Sugeno, An integral of fuzzy measures and the Choquet integral as integral with respect to a fuzzy measure, Fuzzy Sets and Systems, 29 (1989), 201-227. doi: 10.1016/0165-0114(89)90194-2 |
[14] | F. Y. Meng, Q. Zhang, Induced continuous Choquet integral operators and their application to group decision making, Comput. Ind. Eng., 68 (2014), 42-53. doi: 10.1016/j.cie.2013.11.013 |
[15] | Y. Ouyang, J. Li, Some properties of monotone set functions defined by Choquet integral, Journal of Southeast University (in Chinese), 19 (2003), 424-427. |
[16] | E. Pap, A. Iosif, A. Gavrilut, Integrability of an interval-valued multifunction with respect to an interval-valued set multifunction, Iranian Journal of Fuzzy Systems, 15 (2018), 47-63. |
[17] | D. Paternain, L. De Miguel, G. Ochoa, et al, The interval-Valued Choquet integral based on admissible permutations, IEEE T. Fuzzy Syst., 27 (2019), 1638-1647. doi: 10.1109/TFUZZ.2018.2886157 |
[18] | C. Stamate, A. Croitoru, The general Pettis-Sugeno integral of vector multifunctions relative to a vector fuzzy multimeasure, Fuzzy Sets and Systems, 327 (2017), 123-136. doi: 10.1016/j.fss.2017.07.007 |
[19] | M. Sugeno, A note on derivatives of functions with respect to fuzzy measures, Fuzzy Sets and Systems, 222 (2013), 1-17. doi: 10.1016/j.fss.2012.11.003 |
[20] | V. Torra, Y. Narukawa, Numerical integration for the Choquet integral, Inform. Fusion, 31 (2016), 137-145. doi: 10.1016/j.inffus.2016.02.007 |
[21] | V. Torra, Y. Narukawa, The interpretation of fuzzy integrals and their application to fuzzy systems, Int. J. Approx. Reason., 41 (2006), 43-58. doi: 10.1016/j.ijar.2005.08.001 |
[22] | A. Tversky, D. Kahneman, Advances in prospect theory: cumulative representation of uncertainty, J. Risk Uncertain, 5 (1992), 297-323. doi: 10.1007/BF00122574 |
[23] | C. X. Wu, M. Ma, The Foundament of Fuzzy Analysis, National Defense Industry Press (in Chinese), Beijing, 1991. |