Citation: Jiayin Liu. On stability and instability of standing waves for the inhomogeneous fractional Schrodinger equation[J]. AIMS Mathematics, 2020, 5(6): 6298-6312. doi: 10.3934/math.2020405
[1] | N. Laskin, Fractional quantum mechanics and Lèvy path integrals, Phys. Lett. A, 268 (2000), 298-304. doi: 10.1016/S0375-9601(00)00201-2 |
[2] | N. Laskin, Fractional Schrödinger equations, Phys. Rev. E, 66 (2002), 056108. |
[3] | T. Boulenger, D. Himmelsbach, E. Lenzmann, Blowup for fractional NLS, J. Funct. Anal., 271 (2016), 2569-2603. doi: 10.1016/j.jfa.2016.08.011 |
[4] | B. Wang, Y. Wang, Fractional white noise functional soliton solutions of a wick-type stochastic fractional NLSE, Appl. Math. Lett., 110 (2020), 106583. |
[5] | G. Wu, C. Dai, Nonautonomous soliton solutions of variable-coefficient fractional nonlinear Schrödinger equation, Appl. Math. Lett., 106 (2020), 106365. |
[6] | C. Dai, J. Zhang, Controlling effect of vector and scalar crossed double-Ma breathers in a partially nonlocal nonlinear medium with a linear potential, Nonlinear Dyn., 100 (2020), 1621-1628. doi: 10.1007/s11071-020-05603-9 |
[7] | L. Yu, G. Wu, Y. Wang, et al. Traveling wave solutions constructed by Mittag-Leffler function of a (2 + 1)-dimensional space-time fractional NLS equation, Results Phys., 17 (2020), 103156. |
[8] | Y. Cho, H. Hajaiej, G. Hwang, et al. On the Cauchy problem of fractional Schrödinger equations with Hartree type nonlimearity, Funkcial. Ekvac., 56 (2013), 193-224. doi: 10.1619/fesi.56.193 |
[9] | Y. Cho, H. Hajaiej, G. Hwang, et al. On the orbital stability of fractional Schrödinger equations, Commun. Pure Appl. Anal., 13 (2013), 1267-1282. |
[10] | Y. Cho, G. Hwang, S. Kwon, et al. Profile decompositions and Blow-up phenomena of mass critical fractional Schrödinger equations, Nonlinear Anal., 86 (2013), 12-29. doi: 10.1016/j.na.2013.03.002 |
[11] | Y. Cho, G. Hwang, S. Kwon, et al. On finite time blow-up for the mass-critical Hartree equations, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 467-479. doi: 10.1017/S030821051300142X |
[12] | Y. Cho, G. Hwang, S. Kwon, et al. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations, Discrete Contin. Dyn. Syst., 35 (2015), 2863-2880. doi: 10.3934/dcds.2015.35.2863 |
[13] | V. D. Dinh, Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces, Int. J. Appl. Math., 31 (2018), 483-525. |
[14] | V. D. Dinh, A study on blowup solutions to the focusing L2-supercritical nonlinear fractional Schrödinger equation, J. Math. Phys., 59 (2018), 071506. |
[15] | V. D. Dinh, B. Feng, On fractional nonlinear Schrödinger equation with combined power-type nonlinearities, Discrete Contin. Dyn. Syst., 39 (2019), 4565-4612. doi: 10.3934/dcds.2019188 |
[16] | B. Feng, On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Pure Appl. Anal., 17 (2018), 1785-1804. doi: 10.3934/cpaa.2018085 |
[17] | B. Feng, J. Ren, Q. Wang, Existence and instability of normalized standing waves for the fractional Schrödinger equations in the L2-supercritical case, J. Math. Phys., 61 (2020), 071511. |
[18] | S. Zhu, Existence of stable standing waves for the fractional Schrödinger equations with combined nonlinearities, J. Evol. Equations, 17 (2017), 1003-1021. doi: 10.1007/s00028-016-0363-1 |
[19] | B. Feng, H. Zhang, Stability of standing waves for the fractional Schrödinger-Choquard equation, Comput. Math. Appl., 75 (2018), 2499-2507. doi: 10.1016/j.camwa.2017.12.025 |
[20] | B. Feng, H. Zhang, Stability of standing waves for the fractional Schrödinger-Hartree equation, J. Math. Anal. Appl., 460 (2018), 352-364. doi: 10.1016/j.jmaa.2017.11.060 |
[21] | Q. Guo, S. Zhu, Sharp threshold of blow-up and scattering for the fractional Hartree equation, J. Differ. Equations, 264 (2018), 2802-2832. doi: 10.1016/j.jde.2017.11.001 |
[22] | Y. Hong, Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Commun. Pure Appl. Anal., 14 (2015), 2265-2282. doi: 10.3934/cpaa.2015.14.2265 |
[23] | J. Zhang, S. Zhu, Stability of standing waves for the nonlinear fractional Schrödinger equation, J. Dyn. Differ. Equations, 29 (2017), 1017-1030. doi: 10.1007/s10884-015-9477-3 |
[24] | S. Zhu, On the blow-up solutions for the nonlinear fractional Schrödinger equation, J. Differ. Equations, 261 (2016), 1506-1531. doi: 10.1016/j.jde.2016.04.007 |
[25] | B. Feng, R. Chen, J. Ren, Existence of stable standing waves for the fractional Schrödinger equations with combined power-type and Choquard-type nonlinearities, J. Math. Phys., 60 (2019), 051512. |
[26] | T. Saanouni, Remarks on damped fractional Schrödinger equation with pure power nonlinearity, J. Math. Phys., 56 (2015), 061502. |
[27] | T. Saanouni, Remarks on the inhomogeneous fractional nonlinear Schrödinger equation, J. Math. Phys., 57 (2016), 081503. |
[28] | T. Saanouni, Strong instability of standing waves for the fractional Choquard equation, J. Math. Phys., 59 (2018), 081509. |
[29] | B. Feng, R. Chen, J. Liu, Blow-up criteria and instability of normalized standing waves for the fractional Schrödinger-Choquard equation, Adv. Nonlinear Anal., 10 (2021), 311-330. |
[30] | I. V. Barashenkov, N. V. Alexeeva, E. V. Zemlianaya, Two and three dimensional oscillons in nonlinear Faradey resonance, Phys. Rev. Lett., 89 (2002), 104101. |
[31] | T. S. Gill, Optical guiding of laser beam in nonuniform plasma, Pramana, 55 (2000), 835-842. doi: 10.1007/s12043-000-0051-z |
[32] | C. S. Liu, V. K. Tripathi, Laser guiding in an axially nonuniform plasma channel, Phys. Plasmas, 1 (1994), 3100-3103. doi: 10.1063/1.870501 |
[33] | F. Genoud, C.A. Stuart, Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves, Discrete Contin. Dyn. Syst., 21 (2008), 137-286. doi: 10.3934/dcds.2008.21.137 |
[34] | T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 10 (2003). |
[35] | F. Genoud, Bifurcation and stability of travelling waves in self-focusing planar waveguides, Adv. Nonlinear Stud., 10 (2010), 357-400. |
[36] | L. G. Farah, Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation, J. Evol. Equations, 16 (2016), 193-208.37. L. G. Farah, C. M. Guzman, Scattering for the radial focusing INLS equation in higher dimensions, doi: 10.1007/s00028-015-0298-y |
[37] | 2017. preprint arXiv:1703.10 988. |
[38] | L. G. Farah, C. M. Guzman, et al. Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation, J. Differ. Equations, 262 (2017), 4175-4231. doi: 10.1016/j.jde.2017.01.013 |
[39] | V. D. Dinh, Blowup of H1 solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal., 174 (2018), 169-188. doi: 10.1016/j.na.2018.04.024 |
[40] | T. Cazenave, P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85 (1982), 549-561. doi: 10.1007/BF01403504 |
[41] | A. Bensouilah, V. D. Dinh, S. H. Zhu, On stability and instability of standing waves for the nonlinear Schrödinger equation with an inverse-square potential, J. Math. Phys., 59 (2018), 101505. |
[42] | B. Feng, R. Chen, Q. Wang, Instability of standing waves for the nonlinear Schrödinger-Poisson equation in the L2-critical case, J. Dyn. Differ. Equations, 32 (2020), 1357-1370. doi: 10.1007/s10884-019-09779-6 |
[43] | B. Feng, J. Liu, H. Niu, et al. Strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions, Nonlinear Anal., 196 (2020), 111791. |
[44] | C. Peng, D. Zhao, Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation, Discrete Contin. Dyn. Syst. B, 24 (2019), 3335-3356. doi: 10.3934/dcdsb.2018323 |
[45] | B. Feng, On the blow-up solutions for the nonlinear Schrödinger equation with combined powertype nonlinearities, J. Evol. Equations, 18 (2018), 203-220. doi: 10.1007/s00028-017-0397-z |