Research article Special Issues

The Cauchy problem to a gkCH equation with peakon solutions

  • Received: 07 March 2022 Revised: 02 April 2022 Accepted: 15 April 2022 Published: 05 May 2022
  • MSC : 35D05, 35G25, 35L05, 35Q35

  • Considered in this paper is a generalized Camassa-Holm equation, which includes both the Camassa-Holm equation and the Novikov equation as two special cases. Firstly, two blow-up criteria are established for the generalized Camassa-Holm equation. Then we derive two blow-up phenomena, where a new $ L^{2k} $ estimate plays a crucial role. In addition, we also show that peakon solutions are global weak solutions.

    Citation: Yunxi Guo, Ying Wang. The Cauchy problem to a gkCH equation with peakon solutions[J]. AIMS Mathematics, 2022, 7(7): 12781-12801. doi: 10.3934/math.2022707

    Related Papers:

  • Considered in this paper is a generalized Camassa-Holm equation, which includes both the Camassa-Holm equation and the Novikov equation as two special cases. Firstly, two blow-up criteria are established for the generalized Camassa-Holm equation. Then we derive two blow-up phenomena, where a new $ L^{2k} $ estimate plays a crucial role. In addition, we also show that peakon solutions are global weak solutions.



    加载中


    [1] R. Camassa, D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661. http://dx.doi.org/10.1103/PhysRevLett.71.1661 doi: 10.1103/PhysRevLett.71.1661
    [2] R. Chen, F. Guo, Y. Liu, C. Qu, Analysis on the blow-up of solutions to a class of integrable peakon equations, J. Funct. Anal., 270 (2016), 2343–2374. http://dx.doi.org/10.1016/j.jfa.2016.01.017 doi: 10.1016/j.jfa.2016.01.017
    [3] G. Coclite, H. Holden, K. Karlsen, Wellposedness of a parabolic-elliptic system, Discrete Contin. Dyn. syst., 13 (2005), 659–682. http://dx.doi.org/10.3934/dcds.2005.13.659 doi: 10.3934/dcds.2005.13.659
    [4] G. Coclite, H. Holden, Stability of solutions of quasilinear parabolic equations, J. Math. Anal. Appl., 308 (2005), 221–239. http://dx.doi.org/10.1016/j.jmaa.2005.01.026 doi: 10.1016/j.jmaa.2005.01.026
    [5] G. Coclite, H. Holden, K. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044–1069. http://dx.doi.org/10.1137/040616711 doi: 10.1137/040616711
    [6] A. Constantin, W. Strauss, Stability of peakons, Commun. Pur. Appl. Math., 53 (2000), 603–610.
    [7] A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Annales de l'Institut Fourier, 50 (2000), 321–362. http://dx.doi.org/10.5802/aif.1757 doi: 10.5802/aif.1757
    [8] A. Constantin, J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229–243. http://dx.doi.org/10.1007/BF02392586 doi: 10.1007/BF02392586
    [9] A. Constantin, J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75–91. http://dx.doi.org/10.1007/PL00004793 doi: 10.1007/PL00004793
    [10] A. Constantin, J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm.-Sci., 26 (1998), 303–328.
    [11] R. Danchin, A note on well-posedness for Camassa-Holm equation, J. Differ. Equations, 192 (2003), 429–444. http://dx.doi.org/10.1016/S0022-0396(03)00096-2 doi: 10.1016/S0022-0396(03)00096-2
    [12] B. Fuchssteiner, A. Fokas, Symplectic structures, their Baklund transformations and hereditary symmetries, Physica D, 4 (1981), 47–66. http://dx.doi.org/10.1016/0167-2789(81)90004-X doi: 10.1016/0167-2789(81)90004-X
    [13] Y. Fu, B. Guo, Time periodic solution of the viscous Camassa-Holm equation, J. Math. Anal. Appl., 313 (2006), 311–321. http://dx.doi.org/10.1016/j.jmaa.2005.08.073 doi: 10.1016/j.jmaa.2005.08.073
    [14] S. Hakkaev, K. Kirchev, Local well-posedness and orbital stability of solitary wave solutions for the generalized Camassa-Holm equation, Commun. Part. Diff. Eq., 30 (2005), 761–781. http://dx.doi.org/10.1081/PDE-200059284 doi: 10.1081/PDE-200059284
    [15] A. Himonas, C. Kenig, Non-uniform dependence on initial data for the CH equation on the line, Differ. Integral Equ., 22 (2009), 201–224.
    [16] A. Himonas, C. Kenig, G. Misiolek, Non-uniform dependence for the periodic CH equation, Commun. Part. Diff. Eq., 35 (2010), 1145–1162. http://dx.doi.org/10.1080/03605300903436746 doi: 10.1080/03605300903436746
    [17] A. Himonas, G. Misiolek, G. Ponce, Non-uniform continuity in H1 of the solution map of the CH equation, Asian J. Math., 11 (2007), 141–150. http://dx.doi.org/10.4310/ajm.2007.v11.n1.a13 doi: 10.4310/ajm.2007.v11.n1.a13
    [18] A. Himonas, C. Holliman, The Cauchy problem for a generalized Camassa-Holm equation, Adv. differential equations, 19 (2014), 161–200.
    [19] A. Himonas, C. Holliman, The Cauchy problem for the Novikov equation, Nonlinearity, 25 (2012), 449.
    [20] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pur. Appl. Math., 41 (1988), 891–907. http://dx.doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704
    [21] S. Lai, The Global Weak solution for a generalized Camassa-Holm equation, Abstr. Appl. Anal., 2013 (2013), 838302. http://dx.doi.org/10.1155/2013/838302 doi: 10.1155/2013/838302
    [22] S. Lai, Y. Wu, The local well-posedness and existence of weak solutions for a generalized Camassa-Holm equation, J. Differ. Equations, 248 (2010), 2038–2063. http://dx.doi.org/10.1016/j.jde.2010.01.008 doi: 10.1016/j.jde.2010.01.008
    [23] S. Lai, Global weak solutions to the Novikov equation, J. Funct. Anal., 265 (2013), 520–544. http://dx.doi.org/10.1016/j.jfa.2013.05.022 doi: 10.1016/j.jfa.2013.05.022
    [24] J. Lenells, Stability of periodic peakons, Int. Math. Res. Notices, 2004 (2004), 485–499. http://dx.doi.org/10.1155/S1073792804132431 doi: 10.1155/S1073792804132431
    [25] Y. Li, P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differ. Equations, 162 (2000), 27–63. http://dx.doi.org/10.1006/jdeq.1999.3683 doi: 10.1006/jdeq.1999.3683
    [26] X. Liu, Z. Yin, Local well-posedness and stability of peakons for a generalized Dullin-Gottwald-Holm equation, Nonlinear Anal.-Theor., 74 (2011), 2497–2507. http://dx.doi.org/10.1016/j.na.2010.12.005 doi: 10.1016/j.na.2010.12.005
    [27] Y. Mi, C. Mu, Well-posedness and analyticity for the Cauchy problem for the generalized Camassa-Holm equation, J. Math. Anal. Appl., 405 (2013), 173–182. http://dx.doi.org/10.1016/j.jmaa.2013.03.020 doi: 10.1016/j.jmaa.2013.03.020
    [28] L. Ni, Y. Zhou, Well-posedness and persistence properties for the Novikov equation, J. Differ. Equations, 250 (2011), 3002–3021. http://dx.doi.org/10.1016/j.jde.2011.01.030 doi: 10.1016/j.jde.2011.01.030
    [29] V. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor., 42 (2009), 342002. http://dx.doi.org/10.1088/1751-8113/42/34/342002 doi: 10.1088/1751-8113/42/34/342002
    [30] F. Tiglay, The periodic Cauchy problem for Novikov's equation, Int. Math. Res. Notices, 2011 (2011), 4633–4648. http://dx.doi.org/10.1093/imrn/rnq267 doi: 10.1093/imrn/rnq267
    [31] X. Wu, Z. Yin, Well-posedness and global existence for the Novikov equation, Ann. Sc. Norm. Super. Pisa CI. Sci., 11 (2012), 707–727. http://dx.doi.org/10.2422/2036-2145.201007_001 doi: 10.2422/2036-2145.201007_001
    [32] X. Wu, Z. Yin, Global weak solutions for the Novikov equation, J. Phys. A: Math. Theor., 44 (2011), 055202. http://dx.doi.org/10.1088/1751-8113/44/5/055202 doi: 10.1088/1751-8113/44/5/055202
    [33] W. Yan, Y. Li, Y. Zhang, The Cauchy problem for the integrable Novikov equation, J. Differ. Equations, 253 (2012), 298–318. http://dx.doi.org/10.1016/j.jde.2012.03.015 doi: 10.1016/j.jde.2012.03.015
    [34] W. Yan, Y. Li, Y. Zhang, The Cauchy problem for the generalized Camassa-Holm equation in Besov space, J. Differ. Equations, 256 (2014), 2876–2901. http://dx.doi.org/10.1016/j.jde.2014.01.023 doi: 10.1016/j.jde.2014.01.023
    [35] S. Zhou, Persistence properties for a generalized Camassa-Holm equation in weighted $L^{p}$ spaces, J. Math. Anal. Appl., 410 (2014), 932–938. http://dx.doi.org/10.1016/j.jmaa.2013.09.022 doi: 10.1016/j.jmaa.2013.09.022
    [36] Y. Zhou, J. Fan, Regularity criteria for the viscous Camassa-Holm equation, Int. Math. Res. Notices, 2009 (2009), 2508–2518. http://dx.doi.org/10.1093/imrn/rnp023 doi: 10.1093/imrn/rnp023
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1250) PDF downloads(64) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog