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1. Introduction

In this paper, we consider the initial value problem for a high-order nonlinear dispersive wave
equation

Uy — ey + (k + 2ufu, — (k + D wuy, — ku,,, =0, (1.1)

u(0, x) = up(x), (1.2)

where k € Ny (Ny denotes the set of nonnegative integers ) and u stands for the unknown function
on the line R. Equation (1.1) was known as gkCH equation [18], which admits single peakon and
multi-peakon traveling wave solutions, and possesses conserved laws

f (U + ud)dx = f (Ul + ul dx. (1.3)
R R

It is shown in [18] that this equation is well-posedness in Sobolev spaces H* with s > 3/2 on both the
circle and the line in the sense of Hadamard by using a Galerkin-type approximation scheme. That is,
the data-to-solution map is continuous. Furthermore, it is proved in [18] that this dependence is sharp
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by showing that the solution map is not uniformly continuous. The nonuniform dependence is proved
using the method of approximate solutions and well-posedness estimates.
For k = 1, we obtain the integrable equation with quadratic nonlinearities

Uy — Uper + Uty — 2U, U — Ul = 0, (1.4)

which was derived by Camassa and Holm [1] and by Fokas and Fuchssteiner [12]. It was called as
Camassa-Holm equation. It describes the motion of shallow water waves and possesses a Lax pair,
a bi-Hamiltonian structure and infinitely many conserved integrals [1], and it can be solved by the
inverse scattering method. One of the remarkable features of the CH equation is that it has the single
peakon solutions

u(t,x) = ce ™ ceR

and the multi-peakon solutions

N
u(t,x) =y pin)e -4,
i=1

where p;(t), g;(t) satisfy the Hamilton system [1]

dpi _ 0H . .
dr _5_% = ;Pipjﬂgn(%’ - Clj)elq' o,
dg; _ _OH 94,1
_———_— = . 1 J

dr ~ ap; D.pie

J

with the Hamiltonian H = % ZQ’J-:] pip;el. It is shown that those peaked solitons were orbitally stable
in the energy space [6]. Another remarkable feature of the CH equation is the so-called wave breaking
phenomena, that is, the wave profile remains bounded while its slope becomes unbounded in finite
time [7-9]. Hence, Eq (1.4) has attracted the attention of lots of mathematicians. The dynamic
properties related to the equation can be found in [3-5,10,11, 13-17,22-26,34-36] and the references
therein.

For k = 2, we obtain the integrable equation with cubic nonlinearities

U — Uy + 4u2ux —3uu i, — uzuxxx =0, (1.5

which was derived by Vladimir Novikov in a symmetry classification of nonlocal PDEs [29] and was
known as the Novikov equation. It is shown in [29] that Eq (1.5) possesses soliton solutions, infinitely
many conserved quantities, a Lax pair in matrix form and a bi-Hamiltonian structure. Equation (1.5)
can be thought as a generalization of the Camassa-Holm equation. The conserved quantities

mwm:fw+@m
R

and .
H,(1) = f(u4 + 2u2u)2c - gui)dx
R
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play an important role in the study of the dynamic properties related to the Eq (1.5). More information
about the Novikov equation can be found in Himonas and Holliman [19], F. Tiglay [30], Ni and
Zhou [28], Wu and Yin [31,32], Yan, Li and Zhang [33], Mi and Mu [27] and the references therein.

Inspired by the reference cited above, the objective of this paper is to investigate the dynamic
properties for the Problems (1.1) and (1.2). More precisely, we firstly establish two blow up criteria
and derive a lower bound of the maximal existence time. Then for k = 27 + 1 , p is nonnegative integer,
we derive two blow-up phenomena under different initial data. Motivated by the idea from Chen etal’s
work [2], we apply the characteristic dynamics of P = V2u — u, and Q = V2u + u, to deduce the first
blow-up phenomenon. For the Problems (1.1) and (1.2), in fact, the estimates of P and Q can be closed
in the form of

P'(t) < au)PQ+0,, Q) >—-a(w)PQ + 0, (1.6)

where a(u) > 0 and the nonlocal term ®; (i = 1, 2) can be bounded by the estimates from Problems (1.1)
and (1.2). From (1.6) the monotonicity of P and Q can be established, and hence the finite-time blow-up
follows. In blow-up analysis, one problematic issue is that we have to deal with high order nonlinear
term #*2u> to obtain accurate estimate. Luckily, we overcome the problem by finding a new L*
estimate || u, ||;x< € || uox |lz2x +cot (see Lemma 4.1). It is shown in [18] that Eq (1.1) has peakon
travelling solution u(z, x) = cke =< Follow the Definition 2.1, we show that the peakon solutions are
global weak solutions.

The rest of this paper is organized as follows. For the convenience, Section 2 give some
preliminaries. Two blow-up criteria are established in Section 3. Section 4 give two blow-up

phenomena. In Section 5, we prove that the peakon solutions are global weak solutions.
2. Preliminaries

We rewrite Problems (1.1) and (1.2) as follows

u + ubu, = —0,(1 = )" + %—gluk-lui] -~ 0)2()_1[%%_214)3{], 2.1)
u(0, x) = uo(x), (2.2)
which is also equivalent to
v+ (k+ D uy + uby, =0, (2.3)
Y= U= Uy, (2.4)
(0, x) = uo(x), o = to = Uoxx- (2.5)

Recall that
1
(1-0"f=Gx*f, where G(x)= 5e—"f'

and = denotes the convolution product on R, defined by
6w = [ 066y 26)
R
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Lemma 2.1. Given initial data uy € H*, s > 3, the function u is said to be a weak solution to the

initial-value Problem (1.1) and (1.2) if it satisfies the following identity

T
1 k+1 k+1 2k_lk—12
-— =G T — N
fofR”‘”’ 1 e O T e

k-1
-G * (Tu"—zuiypdxdt - f uo(x)(0, x)dx = 0 2.7)
R
for any smooth test function ¢(t, x) € C.°([0,T) X R). If u is a weak solution on [0, T) for every T > 0,
then it is called a global weak solution.

The characteristics ¢(t, x) relating to (2.3) is governed by
a1, x) = u'(t,q(t, %)), 1 €[0,T)

q0,x)=x, xeR.

Applying the classical results in the theory of ordinary differential equations, one can obtain that the
characteristics g(t, x) € C'([0,T) x R) with g,(z,x) > 0 for all (¢, x) € [0,T) x R. Furthermore, it is
shown in [21] that the potential y = u — u,, satisfies

y(t, q(t, x))qi(t, x) = yo(x)efot(k—l)uk_lux(‘r,q(‘l',x))d‘r. (2.8)
3. Blow-up criteria and a lower bound of the maximal existence time

In this section, we investigate blow-up criteria and a lower bound of the maximal existence time.
Now, we firstly give the first blow-up criterion.

Theorem 3.1. Let ug € H*(R) with s > % Let T > 0 be the maximum existence time of the solution u
to the Problem (1.1) and (1.2) with the initial data uy. Then the corresponding solution u blows up in
finite time if and only if

lim inf ¥ 'y, = —c0.
t—T~ xeR

Proof. Applying a simple density argument, it suffices to consider the case s = 3. Let T > 0 be the
maximal time of existence of solution u to the Problem (1.1) and (1.2) with initial data u, € H>(R).
Due to y = u — u,,, by direct computation, one has

Iy 7= f (U — uy)’dx = f (U + 2u + u? )dx. (3.1)
R R
So,
lu <y IZ.< 20 ull, . (3.2)

Multiplying Eq (2.3) by 2y and integrating by parts, we obtain

d
d—tfyzdx=2fyytdx= —2(k + l)fuk_luxyzdx—f2ukyyxdx
R R R R
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=—@+@j¢“wﬁm. (3.3)
R
If there is a M > O such that «*"'u, > —M, from (3.3) we deduce

d
-—fﬁﬂs@+mefm. (3.4)

By virtue of Gronwall’s inequality, one has

Iy 1= fyzdx < ©PM |y 117, - (3.5)
R

This completes the proof of Theorem 3.1. O
Now we give the second blow-up criterion.

Theorem 3.2. Let ug € H°(R) with s > % Let T > 0 be the maximum existence time of the solution u

to the Problem (1.1) with the initial data uy. Then the corresponding solution u blows up in finite time
if and only if

lim inf | u, |= oo
t—T~ x€R

To complete the proof of Theorem 3.2, the following two lemmas is essential.

Lemma 3.1. ( [11]) The following estimates hold
(i) For s > 0,

I f& < CAL S el 8 Mo + 11 S Hzeell & 1) (3.6)
(i) For s > 0,
I fOxg lls< CAI f sl 8 Nl + 11 S Nzl Ox8 o) (3.7)
Lemma 3.2. ([20]) Letr > 0. Ifu € H' N W"* andv € H' U L™, then
A", ulv |2 < C(l e sl Al + 1L Au 2l v i), (3.8)
where A = (1 — 8%)1.

Proof. Applying A" with r > 1 to two sides of Eq (2.1) and multiplying by A"u and integrating on R

Zdt f(A’ ) = fA’(u u )N udx — LA’f(u)Arudx. 3.9)

where £(0) = 8,1 = ) |aht! + 252 | 4 (1 = )71 5t 2,
Notice that

f A (U u) A udx
R
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= f [A", uFlu, A udx + f WA u AN udx
R R
< Ar k Ar k-1 2
<[ AT wlug |20l AMw Ml +e |l w71 we |zl w ||z
k-1 k
<cllulla (wllps e llzell w llz + 11w gl us llze)
k-1 2
+o |l u e I llzeo ] o Ml
2
<ol uy |zl u Iz
where Lemmas 3.1, 3.2 and the inequality || #* ||z < k || u |[K3] u ||z were used.
In similar way, from Lemmas 3.1 and 3.2, we have

IfA’f(u)A’udx |<Il e {1l A”f ) g2
R

2k -1
2

k-1
+ A = ai)-‘[Tuk-zf] I

I A7 F ) ll2<ll A7D,(1 - ai)-l[uk“ 4 uk-lui] I

X

k+1 k-1 72 k-2 3
< el ™ Mg + 1wy g + 11w uy llge2).

Notice that

k-1 2 -1 k=12
[ 7am ' P | AN T T |
-1 k-17,,2 k=1 Ar-1 2
<A 0 Ju Nl + 11w A g e
2
< (Il wx Nlzoll w e + 11 e Nl e llr)

and

k=23 -2 k=23
| o "uy 2=l A7 "uy |2
-2 k-21..3 k=2 -2 3
<NIA™ w0 Jug 2 + | w A uy |2

-3

k 3 3 k=2
S| 2 [T | e (PP ol |72 [ N | |

Hr-1
k=2 3
+ {1 o] we [l

3 2
< ol s Mzl v Ml +c 1] e Nzl llgr).

Thus, we obtain

| f/\rf(u)/\’udx < cllullfe (i lles + 1 e 1o + 1 i ().
R

It follows from (3.9), (3.10) and (3.15) that

d 2 2 2 3
77 W llr= el iy (U Tl + Tl + 1 lz)-

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

Therefore, if there exists a positive number M such that || u, |[;~< M. The Gronwall’ inequality gives

rise to

2 3
w3 < |l ug [, et MMM

This completes the proof of Theorem 3.2.

(3.17)

O
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Theorem 3.3. Assume that uy € H* with s > % N = max{3, %}. Let || u,(0) ||z=< 00, T > 0 be the
maximum existence time of the solution u to (2.1) and (2.2) with the initial data uy. Then T satisfies

1
< )
2N || uo ||'1f7;2 (I u(0) [Iz= + || ux(0) |Iz=)?

Proof. Notice that the Eq (2.1) is equivalent to the following equation

k+1 2k — 1I/tk 1 2] +G [k 3 1I/tk_21/ti] —

u + uku, + 0,G * |u

+

where G(x) = 1¢7 is the Green function of (1 — 42)'. Multiplying the above equation by u
integrating the resultant with respect to x, in view of Holder’s inequality, we obtain

1 d
2n—1 _ 2n—1
fRu udx = ndi lu (175,=1 u ||LG || u ||,

2k—1
fuz"_lGx [t + U uk_lui]dx

R
2k -1
2n-1 k
<clluliz ullzsll vl +—

and

k-1
fuz"_lG * [—uk_zui]dx
R 2
k 2n—1

2 k=2
< —— || | 72 |2 | 7 3l 7 | P2

Combining (3.19)—(3.21), integrating over [0, ], it follows that

Il u {l 20
2k
<Il u(0) [l + || I (I Il + || w |52 w |I7)dt
+—f 728 [N [ [l 7 2
Letting n tend to infinity in the above inequality, we have
Il u [l <Il u(0) |~ + f =2 (a1
+ u ||| ty |70 +——=— || Uy |l7)dx.
> Il sl e 17 > || « |17
Differentiating (3.18) with respect to x, we obtain
2k -1
e + k" + b, — T - —— 0N+ G |

2

2 k=2
Il e M7l 2 Mlzs7l o Nl 2e),

(3.18)

2n—1 and

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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+§%Jﬂk11 G:ﬁkzlwzﬁ] 0. (3.24)

Multiplying the above equation by u*"~! and integrating the resultant with respect to x over R, still in
view of Holder’s inequality, we get following estimates

1d d
fuin "Updx = s Il w1125, =11 wx ||i’zlnl || Uy ||z, (3.25)
R
| fkuk T S ey O 7 | 70 o 7 PR [P (3.26)
k 2n 1 k 2n—1 2
| Upedx |[< — o LI [ 7780 S 7 e [ PR P (3.27)
| fu"“uﬁ"‘ldx <Dl w1250 0 1G]l ol 2n, (3.28)
R
2k -1
| f uk—luin+ldx |
R 2
2k -1 _ _
< 3 7 [ 70 S [ 7R s [ R7R [P (3.29)

2k—1
| fui”_lG w [ulft + — uk_lui]dx |
R

<l o 1257 (e el el + 7 Zesll w120 M2, (3.30)
and
k-1
|f@H@*p—MﬂmM|
R 2
k-1
<= s 11751 v 7ol 0 520 e [l (3.31)
Combining (3.25)—(3.31), it gives rise to
d
o Il sy Nl <l e Il ((— + 3k — 1) || e 7]l v [l
k-1
L 1l ol +=—=— It 1]l e [lg20)- (3.32)

2

Integrating (3.32) over [0, 7] and letting » tend to infinity, it follows that
Il s =<l ux(0) ll= + f e llE=2 2 1wl
k
+G3k = 1) [l Il vy N7 +—— || iy |I7=)d. (3.33)
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Combining (3.23) and (3.33), we deduce that

o flze + 11 s =
!
<l u(0) [l + [l 12(0) [l +f o llf= Gl u s
0
8k —3)
2

Define h(t) =|| u ||~ + || 4y ||z~ and N = max{3, %}. Then A(0) =|| u(0) ||z~ + || ux(0) ||z~. One can
obtain

+ el w7 +Ck = 1) 1]y 17)d. (3.34)

| uy |l < h(t) < h(0) + j; tN Il uo 15> W (1)d. (3.35)
Solving (3.35), we get
| s Ml2=< h(2) < rO) : (3.36)
V1= 22O [[uo Il 1
Therefore, let T = 1 forallt < T, || u, ||~< h(¢) holds. o

2N||uo||§;12(llu(0)llL°° Hleex (0)llge0)?”
4. Blow-up phenomena

For the convenience, we firstly give several Lemmas.

Lemma 4.1. (L* estimate )Let uy € H*, s > 3/2 and || uoy ||jx< o0, k = 27 + 1, p is nonnegative
integer. Let T be the lifespan of the solution to problem (1.1). The estimate

cot

Il Nl < (| uox It +cot)

holds fort € [0, T).
Proof. Differentiating the first equation of Problem (2.1) respect with to x, we have

2k -1
— uk_lui)

-1
-9(1 - ai)—‘(kTu"—zui). 4.1)

1
k=12 |k k+1 20—1, k+l
utx+§u Uyt uug=u —1-0) W +

2k—1
X

Multiplying the above equation by 2ku*~" and integrating the resultant over R, we obtain

d 2k d 2k w1 4
EL”" de =~ e o= 2k W Ml = [l
2k~1

2%k~1 3
< co [l ux Iz +co llw™ Mol g fler (4.2)

L2k

In view of Holder’s inequality, we derive the following estimates
s ([t [ @2, @3)
R R
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and
Il < ( f wh )+ iTE e ( f 1210 )
R R
On the other hand,
3 2 1 4 L
A f ) f )t
R R
s ([ ot [dant,
R R
Il |l < ( f 12dx) P ( f u'0dx),
R R
and

1,1,1,1 1
i 1< € f ) f uldx)’s,
R R

Therefore, if 2k — 2 = 2 (k = 2), combining (4.3) and (4.7), we have
a2 Nl N <l uo Iz m) j};uikdx.
If 2k — 4 = 2 (k = 3), combining (4.4) and (4.8), we have
e il e <l uo Nl ey fRui"dX-
If 2k — 8 =2 (k = 5), combining (4.5) and (4.9), we have
a3 el e <l uo llan ey fRuikdX-
and if 2k — 16 = 2 (k = 9), combining (4.6) and (4.10), we have

2k-1 3 2k
| u, (111 u, 2 <I| uo ”H'(R) f”x dx.
R

AIMS Mathematics

4.4)

4.5)

(4.6)

4.7)

(4.8)

4.9)

(4.10)

4.11)

(4.12)

(4.13)

(4.14)
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Therefore, if and only if k£ = 27 + 1, p is nonnegative integer, the following inequality follows

2k-1 2k-1 2k—1 3
2l I || e |l co [ w720 +co Il ™ o] o flo
- 2k
< co |l ux ”sz +co || ux ”sza (4.15)

where ¢y = co(ll uo llg1@))-

7 it Nl co + o [l ae [l - (4.16)

In view of Gronwall’s inequality, we have forr € [0,T)

It (2 < e

(Il wox [ z2x +cot). (4.17)
This completes the proof of Lemma 4.1. O
Remark. In case of p = 0, then k = 2, and we obtain

(I o Il +cot), (4.18)

luxlls<e

which is exactly the same as the Lemma 3.2 in [23].

Lemma 4.2. Given that uy € H®, s > 3/2. Let || uo, ||;x< 00, k = 2P + 1, p is nonnegative integer and
T be the lifespan of the solution to Problem (1.1) and (1.2). The estimate

k=2 3 T
flu w)ldx < @ = (" (|| uox Il +coT)) |l uo Il
R

holds.

Proof. Applying Holder’inequality, Lemma 4.1 and (1.3), we have

fmk 2 3|dx<<f<u> dx>2k<f<uk 2)t3dx) %
R
<( f ()% ( f B2 g4

2h(k=2) _ 5y 2% 23
< (" || ugy Il +eot)’ |l u II(L2“ i (f u'dx) =

: 3 k-2
< (" | oy Nl +cot)” |l uo ™

Lemma 4.3. Given that uy € H*, s > 3. For k = 27 + 1 and p is nonnegative integer. Then

u(t,q(t,x1)) >0, for 0<t<T:=

AIMS Mathematics Volume 7, Issue 7, 12781-12801.
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Proof. From the Young’s inequality, Lemma 4.2 and (1.3), it follows that

2k -1
/(1) 1=] =01 = )7 @+ =)

k-1
+(1 - ai)-l(TuHui) |

2k — 1
< =0,(1 =)' W + Tuk—lui) |

k-1
+[ (1 - Oi)_l(Tuk_zui) |

< ¢p + ca. 4.19)
Therefore,
—co—ca < u'(t) < ¢y + ca.
Integrating over the time interval [0, ¢] yields

uo(x1) — [co + calt < u(t, q(t, x1))
< up(xy) + [co + ca]t. (4.20)

So,

M(t, Q(f, xl)) > 0, fOr O <tr< T] =

O

Theorem 4.1. Let || ug, ||;x< oo, k = 27 + 1, p is nonnegative integer and uy € H*(R) for s > %

Suppose that there exist some 0 < A1 < 1 and x, € R such that %u'é_] (21/[% - u(z)x) +C?<0, \/§u0 < —Ugy,
uo(x1) > 0 and

. (uo(x1))'= ug — 5,) + V2C - (1 = urg(n) Ny
(up(x) = g —up) - V2€*— VC

(X)) 7

Then the corresponding solution u(t, x) blows up in finite time T with

T <Ty= 1 In (/Wo(x1))%(2u§ - u(z)x) +V2C |
V2(Aug(x1)) T C (/luo(xl))%(zu% —u2) - \2C

where C = +Jca + cy.

Proof. We track the dynamics of P(f) = (V2u — u,)(t, q(t, x1)) and Q(f) = (V2u + u,)(t, q(t, x1)) along
the characteristics

P'(1) = V2(u, + u,q)) — (yy + gy

1 2k — 1
= —Euk_](2u2 —u?) = V20,1 - )7 W + k—uk_]MZ)

2 X

AIMS Mathematics Volume 7, Issue 7, 12781-12801.
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~1 2k -1
+V2(1 - ai)-l(—k > W2y + (1= + = W)
-1
~0 (1 - 057! (kTuHui)
> —luk‘lPQ -C?
2
and
Q'(1) = V2(uy + uxqy) + (s + aqy)
1 2k —1
= zu"_l(Zu2 —ul) - V20,(1 - W + —k2 )

2k—-1
)

+V2(1 - ai)-‘(l%luk-%) — (=AW + > u?)

X

X

k-1
+9(1 — ai)—‘(Tuk—%ﬁ)
1
< —u*'PQ + C2.
2
Then we obtain
1 1
P'(t) > —Euk‘lPQ -C% QWm< 5uk—IPQ +C2

The expected monotonicity conditions on P and Q indicate that we would like to have

1
Euk-l}DQ +C?<0.

It is shown from assumptions of Theorem 4.1 that the initial data satisfies

1
§u§_1(2u3 - u(z)x) +C? <0, \/Euo < —Ugy.

Therefore, along the characteristics emanating from x;, the following inequalities hold
%u’é‘lP(O)Q(O) +C*<0, P0O)>0, Q@0)<O0
and
P'(0)>0, Q(0)<O0.
Therefore over the time of existence the following inequalities always hold
P >0, Q@<D0.
Letting i(t) = v—=PQ(t) and using the estimate %) > h(f), we have

_PQ+PQ  GUTIPQ+CHO - PGUTIPO + C?)

0= o o 2N-F0

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)
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~(u'PQ+ C*)(P - Q)

2V=P0
> %u"‘lhz - C, (4.29)
We focus on the time interval 0 < ¢t < T, := %, it implies that
0 < Aug(xy) < u(t, q(t, x1)) < (2 — Dup(xy). (4.30)
Solving for0 <t < T,
W(t) > 1/l" Yuo(x) ' - CP, (4.31)

we obtain

(Au()(xl)) > h - \2C

(/lug(xl)) h+ V2C
(uuo(xl» hy — V2 2C)
(Aug(x1)) ho + \/_

+ V2(ug(xy)) 7 Ct, (4.32)

It is observed from assumption of Theorem 4.1 that Ty < T5, (4.32) implies that h — +c0 ast — T*

T" < Ty = ! in(AHole) * ho + ‘/QC). (4.33)

V2(up(x1)'T C - (Aug(x1))'T hg — V2C

O

Theorem 4.2. Let || ug, ||;2x< oo, k = 2P + 1, p is nonnegative integer and uy € H*(R) for s > %

Suppose that there exist some 0 < A < 1 and x; € R such that uy(x;) > 0, up,(x;) < — \/é and

1n(_uOX(x2) i f) < 2(1 = Dug(x) \[ (4.34)

—uUox(x2) —

where a = 2t (xy) and b = ¢y + ca. Then the corresponding solution u(t, x) blows up in finite

time T with
1 —Uox(X2) + \/é
In ( ),
ST

a

T < T, = (4.35)

Proof. Now, we prove the blow-up phenomenon along the characteristics ¢(z, x,). From (2.1), it follows
that

2% -1
() = 0,1 — aﬁ)—l(u"“ r uk—lui)
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X

1
(1 - ai)—l(kTuk-zf), (4.36)
and

-1 2k —1
u'(t) = 7uk_lu§ +uft — (1 - ai)_l(uk“ + —— uk_lui)

k-1
8,1 - aﬁ)—l(Tu"—zf). 4.37)

X

Setting M(t) = u(t, q(t, x;)) and using the Young’s inequality, Lemmas 4.2 and 4.3 and (2.8) again,
from (4.37), we get

1
M.(t) < —EM"‘IM)% +b. (4.38)
where b = ¢y + ca. Now, we focus on the time interval 0 < ¢ < T3 := %, it implying that
0 < Aup(xz) < u(t, q(t, x3)) < (2 = Dup(xz). (4.39)
Therefore, for 0 < ¢t < T3, we deduce from (4.38) that
M.(t) < —aM? + b, (4.40)

where a = 245 (x).

It is observed from assumption of Theorem 4.2 that ug,(x;) < — \/é and T, < T3. Solving (4.40)
results in

M,— —c0 as t— T, 4.41)
ugx(x2)—\/ 2

where T** < T, = 2\}% ln( OXE 2;&). o
upx(x2 a

5. Peakon solutions

In this section, we will turn our attention to peakon solution for the Problem (1.1).

Theorem 5.1. The peakon function of the form
u(t, x) = c%e"x_c’l, c#0 is arbitary constant, (5.1

is a global weak solution to (1.1) and (1.2) in the sense of Definition 2.1.

Proof. Let u = ae " be peakon solution for the Problems (1.1) and (1.2), where a # 0 is an
undetermined constant. We firstly claim that

u, = asign(x — ctiu, u, = —sign(x — ct)u. (5.2)

Hence, using (2.6), (5.2) and integration by parts, we derive that

T 1
f fmp, + o dxdt + fuo(x)go(O, x)dx
0o Jr k+1 R
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T
= —f f{p(ut + ufu,)dxdt
0o Jr
T
- f fgosign(x — ct)(cu — UM Y)dxdt.
0 Jr

k-1
f fG (uk+l k 1 2)90,\* [ 5 Mk_zl/li](pd.x{it
R

o

—¢p*[

On the other hand,

S
N

-1
> o u — (k + Dilbu,\dxdt.

Directly calculate

E%EH@+&+DMM
=(k+ l)uk(—sign(x 7 uk_z(—sign3(x —cHud)
—[k+1)+ k- 1]sign()c — ctu*!
k-1
1 k+1
[2(k D + 110, (u™).

Therefore, we obtain

! 2k -1 1
f fG*(uk+l + k— k—1 2) -G [k k 2 3](,061)6'6”
0o Jr 2 2

T 2k -1 k-1
::j‘b[¢Gx*L"———ﬂb%é—(ﬂk+l)+1M“ﬁdﬂh

ff k(k+ )k”)dd

Note that G, = —3 sign(x)e™™. For x > ct,

k(k+2) 4

Gy [( 1 X ]

1 . o k(k+2) _
— [x—y| k+l (k+1)|y—ct|

2fszgn(x y)e (————= 1 dy

k(k + 2

= __(f f f )sign(x — y)e ==y 22 T = ( ) a*tlekrDb- ctldy
= Il + IQ + 13.

We directly compute /; as follows

1 [ k(k +2
I = —3 j;o sign(x — y)e ! —5{ 3 )ak“e_(k“)'y_”'dy

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)
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lk(k +2) s ft —x—(k+1)ct ,(k+2)y

= - * ‘ d
2 k+1 ¢ Y
Lk(k+2) G+ o3kt D) tfa (k+2)y

xX— l& d
T L
_ 1 k(k + 2) ak+le—x+ct‘

20k+2) k+1

—00

In a similar procedure, we obtain

1 fx . —lx—y] k(k +2) k+1 —(k+1)y—ct|
—— | sign(x—ye "' ———=a""e " dy
. k+1

1 k(k + 2) k+1 f —x+(k+1)ct ,—ky
X C d
ka1 )¢ ¢

lk(k+2) o< Xk et fx —ky
T LY

_ 1 k(k+2) k+1
T2k k+1

12:

1

(e—(k+1)(x—ct) _ e—x+cl)

and

[ k(k +2 \
L= ) j; sign(x — y)e ™™ —(k g )ak”e_(k”)'y_“'dy

1k(k +2) k+1 f ~ x+(k+1)ct —(k+2)y
2 k +1 X ¢ ‘ dy
Lk(k+2) 44 foo —(k+2)y

= = d
2 k+1 ¢ )€ Y

_ I k(k+2) g+ g~ D=en
2k+2) k+1 '

Substituting (5.8)—(5.10) into (5.7), we deduce that for x > ct

k(k + 2) uk+1 2(k + 1) Qe+t _ 2(k + 1)Qe—(k+1)(x—ct)

w1 Y T k(k + 2)

k+1e—x+ct + ak+le—(k+1)(x—ct)’

Gexl
=-a

— _ 1 kk+2) k+1
where QQ = 3@

For x < ct,
kk+2

I

1 . e Kk +2) _
— [x—y] k+1 (k+1)[y—ct|

) fszgn(x y)e (——— ) dy
= __(f f f )szgn(x y) —|x— ylk(k+ 2) k+1 —(k+1)|y ct|d
=A1+ A+ As.

AIMS Mathematics
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We directly compute A; as follows

Ay = —% fx sign(x — y)e_“_y'—k(k +2) aktlem kb=l gy,

- k+1
1 k(k +2) k+1 fx —x—(k+1)ct ,(k+2)y
A X Ci d
2 k+1 ¢ )¢ © v
1 k(k +2) g+ ==tk et fx (k+2)y
_ M) x— C d
2kl ©€ WY
I k(k+2) g+ gtk Dx=en)
Z(k +2) k+1

In a similar procedure, one has

1 k(k +2
Ay = —§£ sign(x — y)e ™! —5{ 1 )ak“e_(k“)'y_“'dy

Lk(k+2) 14 fﬂ —(k+1)ct ky
-0 e d
2 k+1 ¢ ) € o

lk(k+ 2) k+1 e (k+1)ct f"t ky
T2 k41 ¢ L P
1 k(k+2) 41

_ (k+1)(x—ct) + x—ct
ok kel ¢ e e )

and

Az = —% f ) sign(x — y)e " e a*lemtrbb=el gy
ct

k+1

_ Lkk+2) 4 f +k et ~(kt2)y
X C d
"2 k1 ), € ¢ Y

_ 1 k(k +2) k+1 x+(k+1)ct f - —(k+2)y
T Lo
1 k(k + 2)ak+le)c ct
2(k +2) k+1

Therefore, from (5.13)—(5.15), we deduce that for x < ct

k(k+2) o,
Gl
20k+1) . 2(k+1) _
_ Qe* ct + Q (k+1)(x—ct)
kk+2) ¢ kk+2) ¢ .

_ L k(k+2) k+1
where QQ = 31 @

Due to u = ae ¥,

sign(x — ct)(cu — u**)

B _ace—x+ct + ak+le—(k+1)(x—ct)’ fOI’ x> ct,
ace™" — gttle®+Di=eh - for  x < ct.
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To ensure that u = ae™™!! is a global weak solution of (2.1) in the sense of Definition 2.1, we let

Solving (5.17), we get

From (5.18), we derive that

which along with (5.11), (5.16) and (5.17) gives rise to

k(k +2) e

asign(x — ct)(cu — u"™N(t, x) = G * ( T 1

(t,x)=0.
Therefore, we conclude that
’ L el 2k=1 4y,
f(;fRugo,+k+lu+(,0x+G*(u++Tu_ux)gox

-1
+G * (kTuk_zui)tpdxdt + fuo(x)‘P(O, x)dx =0,

R

for every test function ¢(z, x) € C°([0, +00) X R), which completes the proof of Theorem 5.1.
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