Research article

New Lyapunov-type inequalities for fractional multi-point boundary value problems involving Hilfer-Katugampola fractional derivative

  • Received: 12 July 2021 Accepted: 12 October 2021 Published: 19 October 2021
  • MSC : 34A08, 34B05, 34B10

  • In this paper, we present new Lyapunov-type inequalities for Hilfer-Katugampola fractional differential equations. We first give some unique properties of the Hilfer-Katugampola fractional derivative, and then by using these new properties we convert the multi-point boundary value problems of Hilfer-Katugampola fractional differential equations into the equivalent integral equations with corresponding Green's functions, respectively. Finally, we make use of the Banach's contraction principle to derive the desired results, and give a series of corollaries to show that the current results extend and enrich the previous results in the literature.

    Citation: Wei Zhang, Jifeng Zhang, Jinbo Ni. New Lyapunov-type inequalities for fractional multi-point boundary value problems involving Hilfer-Katugampola fractional derivative[J]. AIMS Mathematics, 2022, 7(1): 1074-1094. doi: 10.3934/math.2022064

    Related Papers:

  • In this paper, we present new Lyapunov-type inequalities for Hilfer-Katugampola fractional differential equations. We first give some unique properties of the Hilfer-Katugampola fractional derivative, and then by using these new properties we convert the multi-point boundary value problems of Hilfer-Katugampola fractional differential equations into the equivalent integral equations with corresponding Green's functions, respectively. Finally, we make use of the Banach's contraction principle to derive the desired results, and give a series of corollaries to show that the current results extend and enrich the previous results in the literature.



    加载中


    [1] A. M. Lyapunoff, Problème général de la stabilité du mouvement, Annals of Mathematics Studies, Vol. 17, Princeton: Princeton University Press, 1948. doi: 10.1515/9781400882311.
    [2] P. L. de Nápoli, J. P. Pinasco, Lyapunov-type inequalities for partial differential equations, J. Funct. Anal., 270 (2016), 1995–2018. doi: 10.1016/j.jfa.2016.01.006. doi: 10.1016/j.jfa.2016.01.006
    [3] R. P. Agarwal, M. Bohner, A. Özbekler, Lyapunov inequalities and applications, Cham: Springer, 2021. doi: 10.1007/978-3-030-69029-8.
    [4] R. A. C. Ferreira, A Lyapunov-type inequality for a fractional boundary value problem, Fract. Calc. Appl. Anal., 16 (2013), 978–984. doi: 10.2478/s13540-013-0060-5. doi: 10.2478/s13540-013-0060-5
    [5] R. A. C. Ferreira, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, J. Math. Anal. Appl., 412 (2014), 1058–1063. doi: 10.1016/j.jmaa.2013.11.025. doi: 10.1016/j.jmaa.2013.11.025
    [6] B. Łupińska, T. Odzijewicz, A Lyapunov-type inequality with the Katugampola fractional derivative, Math. Method. Appl. Sci., 41 (2018), 8985–8996. doi: 10.1002/mma.4782. doi: 10.1002/mma.4782
    [7] R. A. C. Ferreira, Novel Lyapunov-type inequalities for sequential fractional boundary value problems, RACSAM Rev. R. Acad. A, 113 (2019), 171–179. doi: 10.1007/s13398-017-0462-z. doi: 10.1007/s13398-017-0462-z
    [8] R. Khaldi, A. Guezane-Lakoud, On a generalized Lyapunov inequality for a mixed fractional boundary value problem, AIMS Math., 4 (2019), 506–515. doi: 10.3934/math.2018.3.506. doi: 10.3934/math.2018.3.506
    [9] Z. Laadjal, N. Adjeroud, Q. H. Ma, Lyapunov-type inequality for the Hadamard fractional boundary value problem on a general interval $[a, b]$, J. Math. Inequal., 13 (2019), 789–799. doi: 10.7153/jmi-2019-13-54. doi: 10.7153/jmi-2019-13-54
    [10] F. Jarad, Y. Adjabi, T. Abdeljawad, S. F. Mallak, H. Alrabaiah, Lyapunov type inequality in the frame of generalized Caputo derivatives, Discrete Cont. Dyn.-S, 14 (2021), 2335–2355. doi: 10.3934/dcdss.2020212. doi: 10.3934/dcdss.2020212
    [11] Y. F. Qi, L. S. Li, X. H. Wang, Lyapunov-type inequalities for local fractional differential systems, Fractals, 28 (2020), 2050131. doi: 10.1142/S0218348X20501315. doi: 10.1142/S0218348X20501315
    [12] D. X. Ma, Z. F. Yang, Lyapunov-type inequality and solution for a fractional differential equation, J. Inequal. Appl., 2020 (2020), 1–15. doi: 10.1186/s13660-020-02448-z. doi: 10.1186/s13660-020-02448-z
    [13] J. Jonnalagadda, B. Debananda, Lyapunov-type inequalities for Hadamard type fractional boundary value problems, AIMS Math., 5 (2020), 1127–1146. doi: 10.3934/math.2020078. doi: 10.3934/math.2020078
    [14] A. Kassymov, B. T. Torebek, Lyapunov-type inequalities for a nonlinear fractional boundary value problem, RACSAM Rev. R. Acad. A, 115 (2021), 1–10. doi: 10.1007/s13398-020-00954-9. doi: 10.1007/s13398-020-00954-9
    [15] S. K. Ntouyas, B. Ahmad, Lyapunov-type inequalities for fractional differential equations: A survey, Surv. Math. Appl., 16 (2021), 43–93.
    [16] M. Jleli, J. J. Nieto, B. Samet, Lyapunov-type inequalities for a higher order fractional differential equation with fractional integral boundary conditions, Electron. J. Qual. Theo., 2017 (2017), 1–17. doi: 10.14232/ejqtde.2017.1.16. doi: 10.14232/ejqtde.2017.1.16
    [17] I. Cabrera, K. Sadarangani, B. Samet, Hartman-Wintner-type inequalities for a class of nonlocal fractional boundary value problems, Math. Method. Appl. Sci., 40 (2017), 129–136. doi: 10.1002/mma.3972. doi: 10.1002/mma.3972
    [18] I. J. Cabrera, J. Rocha, K. B. Sadarangani, Lyapunov type inequalities for a fractional thermostat model, RACSAM Rev. R. Acad. A, 112 (2018), 17–24. doi: 10.1007/s13398-016-0362-7. doi: 10.1007/s13398-016-0362-7
    [19] B. López, J. Rocha, K. Sadarangani, Lyapunov-type inequalities for a class of fractional boundary value problems with integral boundary conditions, Math. Method. Appl. Sci., 42 (2019), 49–58. doi: 10.1002/mma.5322. doi: 10.1002/mma.5322
    [20] Y. Y. Wang, Q. C. Wang, Lyapunov-type inequalities for nonlinear fractional differential equation with Hilfer fractional derivative under multi-point boundary conditions, Fract. Calc. Appl. Anal., 21 (2018), 833–843. doi: 10.1515/fca-2018-0044. doi: 10.1515/fca-2018-0044
    [21] R. Aouafi, N. Adjeroud, Lyapunov-type inequalities for $m$-point fractional boundary value problem, Int. J. Dyn. Syst. Diffe., 9 (2019), 380–391.
    [22] Y. Y. Wang, Q. C. Wang, Lyapunov-type inequalities for fractional differential equations under multi-point boundary conditions, J. Math. Inequal., 13 (2019), 611–619. doi: 10.7153/jmi-2019-13-40. doi: 10.7153/jmi-2019-13-40
    [23] W. Zhang, W. B. Liu, Lyapunov-type inequalities for sequential fractional boundary value problems using Hilfer's fractional derivative, J. Inequal. Appl., 2019 (2019), 1–22. doi: 10.1186/s13660-019-2050-6. doi: 10.1186/s13660-019-2050-6
    [24] Y. Y. Wang, Y. H. Wu, Z. Cao, Lyapunov-type inequalities for differential equation with Caputo-Hadamard fractional derivative under multipoint boundary conditions, J. Inequal. Appl., 2021 (2021), 1–12. doi: 10.1186/s13660-021-02610-1. doi: 10.1186/s13660-021-02610-1
    [25] X. J. Yang, F. Gao, Y. Ju, General fractional derivatives with applications in viscoelasticity, New York: Academic Press, 2020.
    [26] D. S. Oliveira, E. C. de Oliveira, Hilfer-Katugampola fractional derivatives, Comput. Appl. Math., 37 (2018), 3672–3690. doi: 10.1007/s40314-017-0536-8. doi: 10.1007/s40314-017-0536-8
    [27] H. D. Gou, Y. X. Li, Study on Hilfer-Katugampola fractional implicit differential equations with nonlocal conditions, B. Sci. Math., 167 (2021), 102944. doi: 10.1016/j.bulsci.2020.102944. doi: 10.1016/j.bulsci.2020.102944
    [28] E. M. Elsayed, S. Harikrishnan, K. Kanagarajan, On the existence and stability of boundary value problem for differential equation with Hilfer-Katugampola fractional derivative, Acta Math. Sci., 39 (2019), 1568–1578. doi: 10.1007/s10473-019-0608-5. doi: 10.1007/s10473-019-0608-5
    [29] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. doi: 10.1016/j.amc.2011.03.062. doi: 10.1016/j.amc.2011.03.062
    [30] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15.
    [31] F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607–2619. doi: 10.22436/jnsa.010.05.27. doi: 10.22436/jnsa.010.05.27
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2255) PDF downloads(171) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog