Loading [MathJax]/jax/output/SVG/jax.js
Research article

Study of multivalued fixed point problems for generalized contractions in double controlled dislocated quasi metric type spaces

  • Received: 13 June 2021 Accepted: 16 September 2021 Published: 19 October 2021
  • MSC : 46S40, 54H25, 47H10

  • The main purpose of this research is to establish a new generalized ξ-Kannan type double controlled contraction on a sequence and obtain fixed point results for a pair of multivalued mappings in left K-sequentially complete double controlled dislocated quasi metric type spaces. New results in different setting of generalized metric spaces and ordered spaces and also new results for graphic contractions can be obtained as corollaries of our results. An example is presented to show the novelty of results. In this paper, we unify and extend some recent results in the existing literature.

    Citation: Tahair Rasham, Abdullah Shoaib, Shaif Alshoraify, Choonkil Park, Jung Rye Lee. Study of multivalued fixed point problems for generalized contractions in double controlled dislocated quasi metric type spaces[J]. AIMS Mathematics, 2022, 7(1): 1058-1073. doi: 10.3934/math.2022063

    Related Papers:

    [1] Abdullah Shoaib, Poom Kumam, Shaif Saleh Alshoraify, Muhammad Arshad . Fixed point results in double controlled quasi metric type spaces. AIMS Mathematics, 2021, 6(2): 1851-1864. doi: 10.3934/math.2021112
    [2] Arshad Ali Khan, Basit Ali, Reny George . On semi best proximity points for multivalued mappings in quasi metric spaces. AIMS Mathematics, 2023, 8(10): 23835-23849. doi: 10.3934/math.20231215
    [3] A. M. Zidan, Z. Mostefaoui . Double controlled quasi metric-like spaces and some topological properties of this space. AIMS Mathematics, 2021, 6(10): 11584-11594. doi: 10.3934/math.2021672
    [4] Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma . Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial b-metric space. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103
    [5] Fatima M. Azmi . New fixed point results in double controlled metric type spaces with applications. AIMS Mathematics, 2023, 8(1): 1592-1609. doi: 10.3934/math.2023080
    [6] Hieu Doan . A new type of Kannan's fixed point theorem in strong b- metric spaces. AIMS Mathematics, 2021, 6(7): 7895-7908. doi: 10.3934/math.2021458
    [7] Mustafa Mudhesh, Hasanen A. Hammad, Eskandar Ameer, Muhammad Arshad, Fahd Jarad . Novel results on fixed-point methodologies for hybrid contraction mappings in Mb-metric spaces with an application. AIMS Mathematics, 2023, 8(1): 1530-1549. doi: 10.3934/math.2023077
    [8] Xun Ge, Songlin Yang . Some fixed point results on generalized metric spaces. AIMS Mathematics, 2021, 6(2): 1769-1780. doi: 10.3934/math.2021106
    [9] Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817
    [10] Fahim Uddin, Faizan Adeel, Khalil Javed, Choonkil Park, Muhammad Arshad . Double controlled M-metric spaces and some fixed point results. AIMS Mathematics, 2022, 7(8): 15298-15312. doi: 10.3934/math.2022838
  • The main purpose of this research is to establish a new generalized ξ-Kannan type double controlled contraction on a sequence and obtain fixed point results for a pair of multivalued mappings in left K-sequentially complete double controlled dislocated quasi metric type spaces. New results in different setting of generalized metric spaces and ordered spaces and also new results for graphic contractions can be obtained as corollaries of our results. An example is presented to show the novelty of results. In this paper, we unify and extend some recent results in the existing literature.



    Fixed point theory is an important branch of functional analysis and its applications are used in various fields of pure and applied mathematics. Nadler [18] was the first author who showed the contraction principle for multivalued mappings in a complete metric space. This proof basically uses the concept of Hausdorff's distance between sets. Nadler's result proved as a source of inspiration and a large number of researchers have started their research works in this field. Multivalued mappings are generalizitions of single valued mappings. Fixed point results for multivalued mappings have a lot of applications in engineering, economics, Nash equilibria and game theory [7,10,11,16]. Due to its important applications in various subjects, many authors have showed interesting results for multivalued mappings, which can be seen in [8,26,27,31,33].

    By removing one and a half restriction from out of three restriction of a metric space, we get dislocated quasi metric space [33]. Complete dislocated quasi metric space is a generalization of 0-complete and complete quasi-partial metric space [3,12,15]. Dislocated quasi metric also generalizes dislocated metric and partial metric. Fixed point results established by various researchers in dislocated quasi metric space can be seen in [4,6,30,37].

    For the solution of matrix equations, Ran and Reurings [21] showed a significant result with an order. Lateral, Nieto et al. [20] extended the result in [21] governed a solution for ODE with periodic boundary conditions for ordered mappings. In [2] Abdeljawad et al., proved a significant result for best proximity points for cyclical contraction mappings. Altun et al. [5] renovated the approach to common fixed point of mappings, satisfying a generalized contraction with new order condition in a complete ordered metric space. For more results with order see [9,13,19].

    On the other hand Kamran et al. [14] introduced a new concept of generalized b-metric spaces, named as extended b-metric spaces see also [29]. They replaced the parameter b1 in the triangle inequality by the control function θ:X×X[1,). Recently, Mlaiki et al. [17] conceptualized the triangle inequality in b-metric spaces using a different styled controlled function and introduced controlled metric type spaces. After this, Abdeljawad et al. [1] auditioned the concept of controlled metric type spaces by introducing two control functions α(w,g) and μ(w,g) and set up double controlled metric type spaces. Recently Shoaib et al. [36] introduced the notion of double controlled metric type spaces which is a generalization of [1] and proved fixed point results for multivalued mappings. Furthermore, some recent useful results on this setting can be seen in [34,35]. The study recollects rudimentary concepts worth important for it to employ the definition in order to prove upcoming some new generalized results.

    Definition 1.1. [33] Let ϑ is a nonempty set. Then, ξq:ϑ×ϑ[0,) is called a dislocated quasi metric (or simply ξq-metric) if the following conditions hold for any l,g,zϑ:

    (i) If ξq(l,g)=ξq(g,l)=0, then l=g;

    (ii) ξq(l,g)ξq(l,z)+ξq(z,g).

    The pair (ϑ,ξq) is called a dislocated quasi metric space.

    It is clear that if ξq(l,g)=ξq(g,l)=0, then from (i), l=g. But if l=g, then ξq(l,g) may not be 0. It is observed that if ξq(l,g)=ξq(g,l) for all l,gϑ, then (ϑ,ξq) becomes a dislocated metric space (metric-like space).

    Example 1.2. [33] Let ϑ= R+{0} and ξq(l,g)=l+max{l,g} for any l,gϑ. Then, (ϑ,ξq) is a dislocated quasi metric space.

    Definition 1.3. [1] Given non-comparable functions α,μ:ϑ×ϑ[1,). If q:ϑ×ϑ[0,) satisfies:

    (q1) q(l,g)=0 if and only if l=g,

    (q2) q(l,g)=q(g,l),

    (q3) q(l,g)α(l,z)q(l,z)+μ(z,g)q(z,g), for all l,z,gϑ. Then, q is called double controlled metric type with the functions α, μ and the pair (ϑ,q) is called double controlled metric type space with the functions α,μ.

    Theorem 1.4. [1] Let (ϑ,q) be a complete double controlled metric type space with the functions α,μ :ϑ×ϑ [1,) and let T:ϑϑ be a given mapping. Suppose that the following conditions are satisfied:

    There exists t(0,1) such that

    q(T(l),T(g)t(q(l,g)), for all l,gϑ.

    For υ0ϑ, choose υˊn=Tˊnυ0. Assume that

    supm1limiα(υi+1,υi+2)α(υi,υi+1)μ(υi+1,υm)<1t.

    In addition, for every υϑ, we have

    limˊnα(υ,υˊn) and limˊnμ(υˊn,υ) exist and are finite.

    Then T has a unique fixed point υϑ.

    Definition 1.5. [36] Given non-comparable functions α,μ:ϑ×ϑ[1,). If ξq:ϑ×ϑ[0,) satisfies:

    (ξq1) ξq(l,g)=ξq(g,l)=0, then l=g,

    (ξq2) ξq(l,g)α(l,z)q(l,z)+μ(z,g)q(z,g),

    for all l,z,gϑ. Then, ξq is called a double controlled dislocated quasi metric type space with the functions α and μ and (ϑ,ξq) is called a double controlled dislocated quasi metric type space. If μ(z,g)=α(z,g) then (ϑ,ξq) is called a controlled quasi metric type space.

    Remark 1.6. Any dislocated quasi metric space or double controlled metric type space is double controlled dislocated quasi metric type space but, the converse is not true in general. Also, a controlled dislocated quasi metric type space is double controlled quasi metric type space. The converse is not true in general (see Examples (1.7 and 2.4)).

    Example 1.7. Let ϑ={0,1,2,3}. Define ξq:ϑ×ϑ[0, ) by ξq(0,1)=0, ξq(0,2)=1, ξq(0,3)=14, ξq(1,0)=12, ξq(1,2)=2, ξq(1,3)=13, ξq(2,0)=12, ξq(2,1)=1, ξq(2,3)=13, ξq(3,0)=32, ξq(3,1)=2, ξq(3,2)=14, ξq(0,0)=12, ξq(1,1)=0, ξq(2,2)=2, ξq(3,3)=0. Define α,μ:ϑ×ϑ[1, ) as α(0,1)=α(1,2)=α(2,1)=α(0,2)=1, α(2,0)=α(3,2)=2, α(3,1)=α(1,0)=α(3,0)=α(0,3)=43, α(1,3)=α(2,3)=3, α(0,0)=α(1,1)=α(2,2)=α(3,3)=1,

    μ(1,2)=μ(2,1)=32, μ(2,0)=2, μ(3,0)=μ(0,3)=μ(1,0)=μ(0,1)=μ(1,3)=μ(3,1)=μ(0,0)=μ(1,1)=μ(2,2)=μ(3,3)=1,  μ(3,2)=4, μ(2,3)=1, μ(0,2)=2. It is obvious that ξq is double controlled dislocated quasi metric type for all l,g,zX. It is clear that ξq is not double controlled metric type space. Also, it is not controlled dislocated quasi metric type. Indeed,

    ξq(1,2)=2>32=α(1,3)ξq(1,3)+α(3,2)ξq(3,2).

    Definition 1.8. [36] Let (ϑ,ξq) be a double controlled dislocated quasi metric type space.

    (i) A sequence {ln} in (ϑ,ξq) is called left K -Cauchy if for all ε>0, there exists n0 N such that ξq(lm,ln)<ε, n>mn0.

    (ii) A sequence {ln} is double controlled dislocated quasi-converges to l if limnξq(ln,l)=limnξq(l,ln)=0 or for any ε>0, there exists n0 N, such that for all n>n0, ξq(l,ln)<ε and ξq(ln,l)<ε. In this case l is called a ξq-limit of {ln}.

    (iii) (ϑ,ξq) is called left K-sequentially complete if every left K-Cauchy sequence in (ϑ,ξq) convergent to a point lϑ such that ξq(l,l)=0.

    Definition 1.9. [34] Let (ϑ,ξq) be a double controlled dislocated quasi metric type space. Let K be a nonempty subset of ϑ and let lϑ. An element g0K is called a best approximation in K if

    ξq(l,K)=ξq(l,g0), where ξq(l,K)=infgKξq(l,g)and ξq(K,l)=ξq(g0,l), where ξq(K,l)=infgKξq(g,l).

    If each lϑ has at least one best approximation in K, then K is called a proximinal set. We denote the set of all proximinal subsets of ϑ by P(ϑ).

    Definition 1.10. [34] The function Hξq:P(ϑ)×P(ϑ)[0,), defined by

    Hξq(A,B)=max{supaAξq(a,B), supbBξq(A,b)}

    is called double controlled dislocated quasi Hausdorff metric type on P(ϑ). Also (P(ϑ),Hξq) is known as double controlled dislocated quasi Hausdorff metric type space.

    Lemma 1.11. [35] Let (ϑ,ξq) be a double controlled dislocated quasi metric type space. Let (P(ϑ),Hξq) be a double controlled dislocated quasi Hausdorff metric type space on P(ϑ). Then, for all A,BP(ϑ) and for each aA, there exists baB, such that Hξq(A,B)ξq(a,ba) and Hξq(B,A)ξq(ba,a).

    Lemma 1.12. [35] Let (ϑ,ξq) be a double controlled dislocated quasi metric type space. For A,BP(ϑ) and a,b,zϑ, then

    ρq(a,B)α(a,z)q(a,z)+μ(z,B)q(z,B),ρq(A,b)α(A,z)q(A,z)+μ(z,b)q(z,b),

    where

    μ(z,B)=inf{μ(z,a), aB},α(A,z)=inf{α(b,z), bA}.

    Let (ϑ,ξq) be a double controlled dislocated quasi metric type space, g0ϑ and T:ϑP(ϑ) be a multifunction on ϑ. Let g1Tg0 be an element such that ξq(g0,Tg0)=ξq(g0,g1), ξq(Tg0,g0)=ξq(g1,g0). Let g2Tg1 be such that ξq(g1,Tg1)=ξq(g1,g2), ξq(Tg1,g1)=ξq(g2,g1). Let g3Tg2 be such that ξq(g2,Tg2)=ξq(g2,g3) and so on. Thus, we construct a sequence gn of points in ϑ such that g2n+1Tg2n and g2n+2Tg2n+1, with ξq(g2n,Tg2n)=ξq(g2n,g2n+1), ξq(Tg2n,g2n)=ξq(g2n+1,g2n), and ξq(g2n+1,Tg2n+1)=ξq(g2n+1,g2n+2), ξq(Tg2n+1,g2n+1)=ξq(g2n+2,g2n+1), where n=0,1,2,. We denote this iterative sequence by {ϑT(gn)}. We say that {ϑT(gn)} is a sequence in ϑ generated by g0 under double controlled dislocated quasi metric ξq. If ξq is dislocated quasi b-metric, then we say that {ϑT(gn)} is a sequence in ϑ generated by g0 under dislocated quasi b-metric ξq. We can define {ϑT(gn)} in other metrics in a similar way. Let M ϑ, define ξ(w,M)=inf{ξ(w,a), aM} and ξ(M,g) =inf{ξ(b,g), bM}. Let us introduce the following definition:

    Definition 2.1. Let ϑ be a nonempty set and ξ:ϑ×ϑ[0,+) be a mapping such that ξ(w,g)1 and ξ(g,w)1 imply w=g. Let Ω,T:ϑP(ϑ) be a multivalued mappings and {ϑT(gn)} is a sequence in ϑ generated by g0 under double controlled dislocated quasi metric ξq, then Ω,T are said to be ξ-ξq multivalued mappings, if for each w{ϑT(gn)}, then we have

    (a) ξ(w,Ωw)1 implies ξ(Ωg,g)1,
    (b) ξ(Ωw,w)1 implies ξ(g,Ωg)1,

    where ξq(w,Tw)=ξq(w,g) and ξq(Tw,w)=ξq(g,w).

    Definition 2.2. Let (ϑ,ξq) be a complete double controlled dislocated quasi metric type space and Ω,T be ξ-ξq multivalued mappings. Then the pair (Ω,T) is called ξ Kannan type double controlled contraction, if for every two consecutive points w,g belonging to the range of an iterative sequence {ϑT(gn)} with ξ(Ωg,g)1, ξ(w,Ωw)1 or ξ(Ωw,w)1, ξ(g,Ωg)1 and ξq(w,g)>0, we have

    Hξq(Tw,Tg)t(ξq(w,Tw)+ξq(g,Tg)), (2.1)

    whenever, t[0,12) and for g0{ϑT(gn)},

    supm1limiα(gi+1,gi+2)α(gi,gi+1)μ(gi+1,gm)<1tt. (2.2)

    Theorem 2.3. Let (ϑ,ξq) be a left K -sequentially complete double controlled dislocated quasi metric type space. Let a pair (Ω,T) be a ξ Kannan type double controlled contraction. Assume that:

    (i) The set G(Ω)={w:ξ(w,Ωw)1} is closed and contained g0.

    (ii) For every g{ϑT(gn)}, we have

    limnα(g,gn)<1tandlimnμ(gn,g)<1t. (2.3)

    Then {ϑT(gn)}uϑ. Also, if (2.1) holds for each w,g {u}, then Ω and T have a common fixed point u in ϑ and ξq(u,u)=0.

    Proof. Since g0 is an arbitrary element of G(Ω), from condition (i) ξ(g0,Ωg0)1. Let {ϑT(gn)} be the iterative sequence in ϑ generated by a point g0ϑ.

    Since ξ(g0,Ωg0)1, ξq(g0,Tg0)=ξq(g0,g1) and ξq(Tg0,g0)=ξq(g1,g0). As (Ω,T) is ξ multivalued mapping, so ξ(Ωg1,g1)1. Now, ξ(Ωg1,g1)1, ξq(g1,Tg1)=ξq(g1,g2) and ξq(Tg1,g1)=ξq(g2,g1) imply that ξ(g2,Ωg2)1. By induction we deduce that ξ(g2p,Ωg2p)1 and ξ(Ωg2p+1,g2p+1)1, for all p=0,1,2,. Now, by Lemma 1.11, we have

    ξq(g2p,g2p+1)Hξq(Tg2p1,Tg2p). (2.4)

    Since g2p,g2p1{ϑT(gn)}, ξ(g2p,Ωg2p)1 and ξ(Ωg2p1,g2p1)1, by the condition (2.1), we get

    ξq(g2p,g2p+1)t(ξq(g2p1,Tg2p1)+ξq(g2p,Tg2p)
    t(ξq(g2p1,g2p)+ξq(g2p,g2p+1))t1t(ξq(g2p1,g2p))=μ(ξq(g2p1,g2p)), where μ=t1t. (2.5)

    Now, by Lemma 1.11, we have

    ξq(g2p1,g2p)Hξq(Tg2p2,Tg2p1).

    Since g2p2,g2p1{ϑT(gn)}, ξ(g2p2,Ωg2p2)1 and ξ(Ωg2p1,g2p1)1, by the condition (2.1), we have

    ξq(g2p1,g2p)t(ξq(g2p2,Tg2p2)+ξq(g2p1,Tg2p1))
    t(ξq(g2p2,g2p1)+ξq(g2p1,g2p))t1t(ξq(g2p2,g2p1))μ(ξq(g2p2,g2p1)). (2.6)

    Using (2.6) in (2.5), we have

    ξq(g2p,g2p+1)μ2(ξq(g2p2,g2p1)). (2.7)

    Now, by (2.4) we have

    ξq(g2p2,g2p1)Hξq(Tg2p3,Tg2p2).

    Since g2p2,g2p1{ϑT(gn)}, ξ(Ωg2p1,g2p1)1 and ξ(g2p2,Ωg2p2)1, by the condition (2.1), we get

    ξq(g2p2,g2p1)t(ξq(g2p3,g2p2)+ξq(g2p2,g2p1))μ3(ξq(g2p3,g2p2)). (2.8)

    From (2.7) and (2.8), we have

    μ2(ξq(g2p2,g2p1))μ3(ξq(g2p3,g2p2)). (2.9)

    Using (2.9) in (2.5), we have

    ξq(g2p,g2p+1)}μ3(ξq(g2p3,g2p2)) for all pN.

    Similarly, we can obtain

    ξq(g2p1,g2p)}μ2p1(ξq(g0,g1)) for all pN.

    Continuing in this way, we get

    ξq(g2p,g2p+1)}μ2p(ξq(g0,g1)). (2.10)

    Now, we can write (2.10) as

    ξq(gn,gn+1)μn(ξq(g0,g1)). (2.11)

    Now, to prove that {gn} is a Cauchy sequence, for all natural numbers n<m, we have

    ξq(gn,gm)α(gn,gn+1)q(gn,gn+1)+μ(gn+1,gm)q(gn+1,gm)α(gn,gn+1)q(gn,gn+1)+μ(gn+1,gm)α(gn+1,gn+2)q(gn+1,gn+2)+μ(gn+1,gm)μ(gn+2,gm)q(gn+2,gm)α(gn,gn+1)q(gn,gn+1)+μ(gn+1,gm)α(gn+1,gn+2)q(gn+1,gn+2)+μ(gn+1,gm)μ(gn+2,gm)α(gn+2,gn+3)q(gn+2,gn+3)+μ(gn+1,gm)μ(gn+2,gm)μ(gn+3,gm)q(gn+3,gm)...α(gn,gn+1)q(gn,gn+1)+m2i=n+1(ij=n+1μ(gj,gm))α(gi,gi+1)q(gi,gi+1)+m1k=n+1μ(gk,gm)q(gm1,gm)α(gn,gn+1)q(gn,gn+1)+m2i=n+1(ij=n+1μ(gj,gm))α(gi,gi+1)(t1t)iq(g0,g1)+m1i=n+1μ(gi,gm)α(gm1,gm)(t1t)m1q(g0,g1)
    =α(gn,gn+1)(t1t)nq(g0,g1)+m1i=n+1(ij=n+1μ(gj,gm))α(gi,gi+1)(t1t)iq(g0,g1)α(gn,gn+1)(t1t)nq(g0,g1)+m1i=n+1(ij=0μ(gj,gm))α(gi,gi+1)(t1t)m1q(g0,g1).

    We used α(w,g)1. Let

    Ωp=pi=0(ij=0μ(gj,gm))α(gi,gi+1)(t1t)i.

    Hence, we have

    ξq(gn,gm)q(g0,g1)[(t1t)nα(gn,gn+1)+Ωm1Ωn]. (2.12)

    The ratio test together with (2.2) implies that the limit of the real number sequence {Ωn} exists, and so {Ωn} is left Cauchy. Indeed, the ratio test is applied to the term ai=(ij=0μ(gj,gm))α(gi,gi+1). Letting n,m in (2.12), we get

    limn,mξq(gn,gm)=0. (2.13)

    So the sequence {ϑT(gn)} is a left Cauchy. Since (ϑ,ξq) is left K-sequentially double controlled complete dislocated quasi metric type space, {ϑT(gn)}u, that is,

    limnξq(gn,u)=limnξq(u,gn)=0. (2.14)

    Since G(Ω) is a closed set, G(Ω) is left K-sequentially complete. Since {g2p} is a subsequence of {ϑT(gn)} contained in G(Ω), {g2p}u. Completeness of G(Ω) implies uG(Ω), that is,

    ξ(u,Ωu)1. (2.15)

    Now,

    ξq(u,u)α(u,un)ξq(u,gn)+μ(un,u)ξq(gn,u).

    This implies ξq(u,u)=0 as n. Now, we show that u is a common fixed point. We claim that qb(u,Tu)=0. On contrary suppose ξq(u,Tu)>0. Now by Lemma 1.11, we have

    ξq(g2n+2,Tu)Hξq(Tg2n+1,Tu).

    Since, ξ(Ωg2n,g2n)1 and ξ(u,Ωu)1, by (2.1), we get

    ξq(g2n+1,Tu)t[ξq(g2n,g2n+1)+ξq(u,Tu)]. (2.16)

    Taking the lim as n on both sides of (2.16), we get

    limnξq(g2n+1,Tu)limnt[ξq(g2n,g2n+1)+ξq(u,Tu))],
    limnξq(g2n+1,Tu)t(ξq(u,Tu)). (2.17)

    Now by Lemma 1.12, we have

    ξq(u,Tu)α(u,g2n+1)ξq(u,g2n+1)+μ(g2n+1,Tu)ξq(g2n+1,Tu).

    Taking the lim as n and using (2.3) and (2.14), we get

    ξq(u,Tu)μ(g2n+1,Tu)ξq(g2n+1,Tu).

    By (2.3) and (2.17), we get

    ξq(u,Tu)<ξq(u,Tu).

    It is a contradiction. Therefore

    ξq(u,Tu)=0. (2.18)

    Thus uTu. Now, suppose ξq(Tu,u)>0. By Lemma 1.11, we have

    ξq(Tu,g2n1)Hξq(Tu,Tg2n2).

    Since, ξ(Ωg2n,g2n)1 and ξ(u,Ωu)1, by (2.1), we get

    ξq(Tu,g2n1)t[ξq(u,Tu))+ξq(g2n1,g2n)].

    Taking the lim as n on both sides of the above inequality, we get

    limnξq(Tu,g2n1)t(ξq(u,Tu)).

    Now by Lemma 1.12, we have

    ξq(Tu,g2n)α(Tu,g2n1)ξq(Tu,g2n1)+μ(g2n1,g2n)ξq(g2n1,g2n)).

    Taking the lim as n and inequality (2.3) and (2.14), we get

    ξq(Tu,u)<ξq(u,Tu)=0, by (2.18).

    It is a contradiction. Hence uTu. As ξ(u,Ωu)1 and ξq(u,Tu)=ξq(Tu,u)=0, Definition 2.1 implies

    ξ(Ωu,u)1. (2.19)

    From (2.15) and (2.19) ξ(u,Ωu)1, ξ(Ωu,u)1. This implies ξ(u,g)1, ξ(g,u)1, for all gΩu. Thus u=g. Hence, u is a common fixed point for Ω and T.

    Example 2.4. Let ϑ=[0,4]Q+. Define the function ξq:ϑ×ϑ[0,+) by ξq(w,g)=(w+2g)2 if wg and ξq(w,g)=0, if w=g. Then (ϑ,ξq) is a complete double controlled dislocated quasi metric type space with

    α(w,g)={2, if w,g1w+22, otherwise,μ(w,g)={1 if w,g1g+22, otherwise

    Define the mappings Ω,T:ϑP(ϑ) as follows:

    T(g)={[g8,g4]Q+, for all g{0,1,18,164,1512,14096,}[g+2, 2(g+1)],                         otherwise.    
    Ω(g)={{18g}Q+, for all g{0,1,18,164,1512,14096,}[g+1,g+3],                              otherwise   .

    Let

    A={r:β(w,Ωw)1}={0,1,164,14096,...},B={g:β(Ωg,g)1}={0,18,1512,...},
    ξq(w,g)={1, if wA, gB14, otherwise.

    Then ξq is not a controlled dislocated quasi metric type space for the function α. Indeed,

    ξq(1,3)=49>37.5=α(1,0)ξq(1,0)+α(0,3)ξq(0,3).

    Now, ξq(w0,Ωw0) =ξq(1,Ω1)=ξq(1,18)=(1+28)2=(54)2. We define the sequence {ϑT(gn)}={1,18,164,1512,14096,} in ϑ generated by g0=1. Let w0=1. Then we have

    G(Ω)={w:ξ(w,Ωw)1 and w{ϑT(gn)}}={0,1,164,14096,...}.

    So (i) is satisfied.

    Take 164{ϑT(gn)}. Then we have

    ξq(164,T164)=ξq(164,1512).

    Also,

    ξq(T164,164)=ξq(1512,164).

    Note that ξ(w,Ωw)1, for all wA implies ξ(Ωg,g)1, for all gB. Also, ξ(Ωw,w)1, for all wB implies ξ(g,Ωg)1, for all gA. So the pair (Ω,T) is ξ-ξq multivalued mapping on {ϑT(gn)}.

    Now, for all w,gϑ{ϑTwn} with ξ(Ωg,g)1, ξ(w,Ωw)1 and t=25, we have the following cases:

    In the case: w<g. Let w=164, g=18. Then we have

    Hξq(Tw,Tg)=Hξq([1512,1256],[164,132])=max{ξq(1256,1512),ξq(1512,132)}=max{(1256+2512)2,(1512+232)2}
    Hξq(Tw,Tg)=(1512+232)2=0.00415.

    Now, we have

    t(ξq(w,Tw)+ξq(g,Tg))=25[ξq(164,[1512,1256])+ξq(18,[164,132])]=25[(164+2512)2+(18+264)2]=25[(10512)2+(1064)2]=0.00998.

    In the case w>g. Take w=1, g=18. Then we have

    Hξq(Tw,Tg)=Hξq([18,14],[164,132])=max{ξq(18,164),ξq(18,132)}=max{(18+264)2,(18+232)2}
    Hξq(Tw,Tg)=(18+232)2.

    Now,

    t(ξq(w,Tw)+ξq(g,Tg))=25[(1+28)2+(18+264)2]=25[(54)2+(532)2]=0.6347.

    In the case: w=0, g>0. Let w=0, g=18. Then we have

    Hξq(Tw,Tg)=Hξq([0,0],[164,132]),=max{ξq(0,164),ξq(0,132)},=max{(264)2,(232)2}=(232)2.

    Now,

    t(ξq(w,Tw)+ξq(g,Tg))=25[ξq(0,0)+ξq(18,[164,132])],=(18+264)2=(1064)2=.0097.

    In the case vi: Take w=18, and g=0. Then we have

    Hξq(Tw,Tg)=Hξq([164,132],[0,0])=max{ξq(132,0),ξq(164,0)}=max{(132)2,(164)2}=(132)2.

    Now,

    t(ξq(w,Tw)+ξq(g,Tg))=25[ξq(18,[164,132])+ξq(0,0)]=25×(532)2=0.009.

    And the case w=0 and g=0 is trivially true. So all cases are satisfied. Let g0=1. Then we have g1=Tg0=18, g2=Tg1=164, g3=Tg2=1512,...

    supm1limiα(gi+1,gi+2)α(gi,gi+1)μ(gi+1,gm)=0.71<1tt=32.

    That is, the pair (Ω,T) is ξ Kannan type double controlled contraction. Finally, for every g{ϑT(gn)}, we have

    limnα(g,0)<52 and limnμ(0,g)<52.

    Hence all the hypothesis of Theorem 2.3 are satisfied and 0 is a common fixed point of Ω and T.

    The next Theorem 2.6 is a special case of our main Theorem 2.3 if we use in Theorem 2.6 α(w,g)=μ((w,g)=b for all w,gϑ then we get the result on dislocated quasi-b metric type space instead double controlled dislocated quasi type metric spaces.

    Definition 2.5. Let (ϑ,ξq) be a left K -sequentially complete dislocated quasi b-metric type space and (Ω,T) be a ξ-ξq multivalued mapping under dislocated quasi b-metric ξq, with b>1 then the pair (Ω,T) is called ξ Kannan type b-contraction, if for every two consecutive points w,g belonging to the range of an iterative sequence {ϑT(gn)} with ξ(Ωg,g)1, ξ(w,Ωw)1 or ξ(Ωw,w)1, ξ(g,Ωg)1 and ξq(w,g)>0, we have

    Hξq(Tw,Tg)t(ξq(w,Tw)+ξq(g,Tg)), (2.20)

    whenever, t[0,12) and b<1tt.

    Theorem 2.6. Let (ϑ,ξq) be a left K -sequentially complete dislocated quasi b-metric space and a pair (Ω,T) be a ξ Kannan type b-contraction. Assume that:

    The set G(Ω)={w:ξ(w,Ωw)1} is closed and contained in g0. Then {ϑT(gn)}uϑ. Also, if (2.20) holds for each w,g {u}, then Ω and T have a common fixed point u in ϑ and ξq(u,u)=0.

    Remark 2.7. In Example 2.4, ξq(w,g)=(w+2g)2 is dislocated quasi b-metric with b2, but we can not apply Theorem 2.6 because the pair (Ω,T) is not ξ Kannan type b-contraction, indeed b32=1tt.

    Definition 2.8. Let (ϑ,d) be a complete metric space and (Ω,T) be a ξ- d multivalued mapping under metric d, then the pair (Ω,T) is called ξ Kannan type contraction, if for every two consecutive points w,g belonging to the range of an iterative sequence {ϑT(gn)} with ξ(Ωg,g)1, ξ(w,Ωw)1 and d(w,g)>0, we have

    H(Tw,Tg)t(d(w,Tw)+d(g,Tg)), (2.21)

    whenever, t[0,12).

    Theorem 2.9. Let (ϑ,d) be a complete metric space. Let a pair (Ω,T) be a ξ Kannan type contraction . Assume that the set G(Ω)={w:ξ(w,Ωw)1} is closed and contained g0. Then {ϑT(gn)}uϑ. Also, if (2.21) holds for each w,g {u}, then Ω and T have a common fixed point u in ϑ.

    Motivated by the result Samet et al. [28] we have obtained the upcoming results for order. Further results which generalized partial order can be seen in ([22,23,24,25]). Recall that if X is a nonempty set, is a partial order on X, then (X,) is called non empty partially ordered set. Let aX and BX. We say that aB whenever for all bB, we have ab.

    Definition 2.10. Let (ϑ,) is a non empty partially ordered set. Let Ω,T:ϑP(ϑ) be the multivalued mappings and {ϑT(gn)} is a sequence in ϑ generated by g0 under metric d, then (Ω,T) is said to be -d multivalued mapping, if w{ϑT(gn)}, we have

    (a) wΩw implies Ωgg,
    (b) Ωww implies gΩg,

    where d(w,Tw)=d(w,g).

    Definition 2.11. Let (ϑ,,d) is an ordered complete metric space and (Ω,T) be a -d multivalued mapping. Let α:ϑ×ϑ[0,) be a function, then the pair (Ω,T) is called Kannan type contraction, if for every two consecutive points w,g belonging to the range of an iterative sequence {ϑT(gn)} with Ωgg, wΩw or Ωww, gΩg and d(w,g)>0, we have

    H(Tw,Tg)t(d(w,Tw)+d(g,Tg)), (2.22)

    whenever, t[0,12).

    Theorem 2.12. Let (ϑ,d) is a complete metric space. Let a pair (Ω,T) be a Kannan type contraction . Let α:ϑ×ϑ[0,) be a function, and assume that the set G(Ω)={w:wΩw} is closed and contained g0. Then {ϑT(gn)}uϑ. Also, if (2.22) holds for each w,g {u}, then Ω and T have a common fixed point u in ϑ.

    Proof. Let α:ϑ×ϑ[0,+) be a mapping such that

    α(,ȷ)={1 if ȷ or ȷ0       otherwise.

    As (Ω T) is -d multivalued mapping so d(w,Tw)=d(w,g) then wΩw implies Ωgg or wb for all bΩw implies eg for all eΩg or α(w,b)=1 bΩw implies α(e,g)=1 eΩg or inf{α(w,b):bΩw}=1 implies inf{α(e,g):eΩg}=1 or

    α(w,Ωw)1 implies α(g,Ωg)1}             (a)

    Similarly case (b) Ωww implies gΩg gives α(Ωw,w)1 implies α(g,Ωg)1. So (Ω T) is a α-d multivalued mapping. As (Ω T) is Kannan type contraction. By using definition of α we can easily prove that (Ω T) is α Kannan type contraction. The G(Ω)={w:wΩw} is closed and contained g0 implies G(Ω)={w:α(w,Ωw)1} is closed and contained g0. Then, by Theorem 2.9, we have {ϑT(gn)} is a sequence in ϑ and {ϑT(gn)}uϑ. Also, (2.22) holds for w,g{u} implies (2.21) holds for w,g{u}. Hence, by Theorem 2.9 Ω and T have a common fixed point u in ϑ.

    In this research, we have achieved sufficient conditions to prove the existence of common fixed point for a pair of multivalued mappings satisfying a new generalized Kannan type double controlled contraction with a sequence in left K-sequentially complete double controlled dislocated quasi type metric spaces. An example is given to show the variety of our results. Moreover, we investigated our results in a better framework of double controlled dislocated quasi-metric spaces. New results in dislocated quasi b-metric spaces, controlled quasi metric spaces, dislocated quasi metric spaces and metric spaces can be obtained as corollaries of our results.

    The authors declare that they have no competing interests.



    [1] T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. doi: 10.3390/math6120320. doi: 10.3390/math6120320
    [2] T. Abdeljawad, J. O. Alzabut, A. Mukheimer, Y. Zaidan, Best proximity points for cyclical contraction mappings with 0-boundedly compact decompositions, J. Comput. Anal. Appl., 15 (2013), 678–685.
    [3] T. Abdeljawad, J. Alzabut, A. Mukheimer, Y. Zaidan, Banach contraction principle for cyclical mappings on partial metric spaces, Fixed Point Theory Appl., 2012 (2012), 154. doi: 10.1186/1687-1812-2012-154. doi: 10.1186/1687-1812-2012-154
    [4] S. S. Alshoraify, A. Shoaib, M. Arshad, New types of F-contraction for multivalued mappings and related fixed point results in abstract spaces, J. Funct. Spaces, 2019 (2019), 1812461. doi: 10.1155/2019/1812461. doi: 10.1155/2019/1812461
    [5] I. Altun, N. A. Arifi, M. Jleli, A. Lashin, B. Samet, A new approach for the approximations of solutions to a common fixed point problem in metric fixed point theory, J. Funct. Spaces, 2016 (2016), 6759320. doi: 10.1155/2016/6759320. doi: 10.1155/2016/6759320
    [6] M. Arshad, Z. Kadelburg, S. Radenović, A. Shoaib, S. Shukla, Fixed points of α-dominated mappings on dislocated quasi metric spaces, Filomat, 31 (2017), 3041–3056. doi: 10.2298/FIL1711041A. doi: 10.2298/FIL1711041A
    [7] J. P. Aubin, Mathematical methods of games and economic theory, North-Holland, Amsterdam, 1979. Available from: https://doi.org/10.1002/zamm.19810611016.
    [8] H. Aydi, M. F. Bota, E. Karapinar, S. Mitrović, Fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., 2012 (2012), 88. doi: 10.1186/1687-1812-2012-88. doi: 10.1186/1687-1812-2012-88
    [9] T. G. Bhaskar, V. Laskhmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379–1393. doi: 10.1016/j.na.2005.10.017. doi: 10.1016/j.na.2005.10.017
    [10] S. Bohnenblust, S. Karlin, Contributions to the theory of games, Princeton University Press, Princeton, 1950.
    [11] S. Carl, S. Heikkila, Fixed point theory in ordered sets and applications; from differential and integral equations to game theory, New York: Springer, 2010. doi: 10.1007/978-1-4419-7585-0.
    [12] F. Gu, L. Wang, Some coupled fixed-point theorems in two quasi-partial metric spaces, Fixed Point Theory Appl., 2014 (2014), 19. doi: 10.1186/1687-1812-2014-19. doi: 10.1186/1687-1812-2014-19
    [13] J. Harjani, K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal., 72 (2010), 1188–1197. doi: 10.1016/j.na.2009.08.003. doi: 10.1016/j.na.2009.08.003
    [14] T. Kamran, M. Samreen, O. U. A. Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. doi: 10.3390/math5020019. doi: 10.3390/math5020019
    [15] E. Karapınar, İ. M. Erhan, A. Öztürk, Fixed point theorems on quasi-partial metric spaces, Math. Comput. Model., 57 (2013), 2442–2448. doi: 10.1016/j.mcm.2012.06.036. doi: 10.1016/j.mcm.2012.06.036
    [16] J. L. Li, Several extensions of the Abian-Brown fixed point theorem and their applications to extended and generalized Nash equalibria on chain-complete posets, J. Math. Anal. Appl., 409 (2014), 1084–1094. doi: 10.1016/j.jmaa.2013.07.070. doi: 10.1016/j.jmaa.2013.07.070
    [17] N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. doi: 10.3390/math6100194. doi: 10.3390/math6100194
    [18] S. B. Nadler Jr., Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475–488. doi: 10.2140/pjm.1969.30.475. doi: 10.2140/pjm.1969.30.475
    [19] M. Nazam, A. Arif, C. Park, H. Mahmood, Some results in cone metric spaces with applications in homotopy theory, Open Math., 18 (2020), 295–306. doi: 10.1515/math-2020-0025. doi: 10.1515/math-2020-0025
    [20] J. J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223–239. doi: 10.1007/s11083-005-9018-5. doi: 10.1007/s11083-005-9018-5
    [21] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to metrix equations, Proc. Am. Math. Soc., 132 (2004), 1435–1443. doi: 10.1090/S0002-9939-03-07220-4. doi: 10.1090/S0002-9939-03-07220-4
    [22] T. Rasham, A. Shoaib, C. Park, M. Arshad, Fixed point results for a pair of multi dominated mappings on a smallest subset in K -sequentially dislocated quasi metric space with application, J. Comput. Anal. Appl., 25 (2018), 975–986.
    [23] T. Rasham, A. Shoaib, N. Hussain, M. Arshad, Fixed point results for a pair of α-dominated multivalued mappings with applications, UPB Sci. Bull., Ser. A, Appl. Math. Phys., 81 (2019), 3–12.
    [24] A. Shazad, T. Rasham, G. Marino, A. Shoaib, On fixed point results for α-ψ-dominated fuzzy contractive mappings with graph, J. Intell. Fuzzy Syst., 38 (2020), 3093–3103. doi: 10.3233/JIFS-191020. doi: 10.3233/JIFS-191020
    [25] T. Rasham, Q. Mahmood, A. Shahzad, A. Shoaib, A. Azam, Some fixed point results for two families of fuzzy A-dominated contractive mappings on closed ball, J. Intell. Fuzzy Syst., 36 (2019) 3413–3422. doi: 10.3233/JIFS-181153. doi: 10.3233/JIFS-181153
    [26] T. Rasham, A. Shoaib, B. A. S. Alamri, M. Arshad, Multivalued fixed point results for new generalized F-dominated contractive mappings on dislocated metric space with application, J. Funct. Spaces, 2018 (2018), 4808764. doi: 10.1155/2018/4808764. doi: 10.1155/2018/4808764
    [27] T. Rasham, A. Shoaib, N. Hussain, B. A. S. Alamri, M. Arshad, Multivalued fixed point results in dislocated b-metric spaces with application to the system of nonlinear integral equations, Symmetry, 11 (2019), 40. doi: 10.3390/sym11010040. doi: 10.3390/sym11010040
    [28] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for (α,ψ)-contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. doi: 10.1016/j.na.2011.10.014. doi: 10.1016/j.na.2011.10.014
    [29] M. Samreen, T. Kamran, M. Postolache, Extended b-metric space, extended b-comparison function and nonlinear contractions, UPB Sci. Bull., Ser. A, Appl. Math. Phys., 80 (2018), 21–28.
    [30] M. Sarwar, M. Rahman, G. Ali, Some fixed point results in dislocated quasi metric (dq-metric) spaces, J. Inequal. Appl., 2014 (2014), 278. doi: 10.1186/1029-242X-2014-278. doi: 10.1186/1029-242X-2014-278
    [31] M. Sgroi, C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat, 27 (2013), 1259–1268. doi: 10.2298/FIL1307259S. doi: 10.2298/FIL1307259S
    [32] M. Nazam, C. Park, A. Hussain, M. Arshad, J. R. Lee, Fixed point theorems for F-contractions on closed ball in partial metric spaces, J. Comput. Anal. Appl., 27 (2019), 759–769.
    [33] A. Shoaib, Fixed point results for α-ψ -multivalued mappings, Bull. Math. Anal. Appl., 8 (2016), 43–55.
    [34] A. Shoaib, S. S. Alshoraify, M. Arshad, Double controlled dislocated quasi-metric type spaces and some results, J. Math., 2020 (2020), 3734126. doi: 10.1155/2020/3734126. doi: 10.1155/2020/3734126
    [35] A. Shoaib, S. Kazi, A. Tassaddiq, S. S. Alshoraify, T. Rasham, Double controlled quasi-metric type spaces and some results, Complexity, 2020 (2020), 3460938. doi: 10.1155/2020/3460938. doi: 10.1155/2020/3460938
    [36] A. Shoaib, P. Kumam, S. S. Alshoraify, M. Arshad, Fixed point results in double controlled dislocated quasi metric type spaces, AIMS Math., 6 (2021), 1851–1864. doi: 10.3934/math.2021112. doi: 10.3934/math.2021112
    [37] L. Zhu, C. Zhu, C. Chen, Z. Stojanović, Multidimensional fixed points for generalized Ψ-quasi-contractions in quasi-metric-like spaces, J. Inequal. Appl., 2014 (2014), 27. doi: 10.1186/1029-242X-2014-27. doi: 10.1186/1029-242X-2014-27
  • This article has been cited by:

    1. Wasfi Shatanawi, Taqi A. M. Shatnawi, New fixed point results in controlled metric type spaces based on new contractive conditions, 2023, 8, 2473-6988, 9314, 10.3934/math.2023468
    2. Gunaseelan Mani, Arul Joseph Gnanaprakasam, Hüseyin Işık, Fahd Jarad, Fixed point results in C-algebra-valued bipolar metric spaces with an application, 2023, 8, 2473-6988, 7695, 10.3934/math.2023386
    3. Fatima M. Azmi, Generalized contraction mappings in double controlled metric type space and related fixed point theorems, 2023, 2023, 1029-242X, 10.1186/s13660-023-02999-x
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2357) PDF downloads(67) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog