The main purpose of this research is to establish a new generalized $ \xi^{\ast } $-Kannan type double controlled contraction on a sequence and obtain fixed point results for a pair of multivalued mappings in left $ K $-sequentially complete double controlled dislocated quasi metric type spaces. New results in different setting of generalized metric spaces and ordered spaces and also new results for graphic contractions can be obtained as corollaries of our results. An example is presented to show the novelty of results. In this paper, we unify and extend some recent results in the existing literature.
Citation: Tahair Rasham, Abdullah Shoaib, Shaif Alshoraify, Choonkil Park, Jung Rye Lee. Study of multivalued fixed point problems for generalized contractions in double controlled dislocated quasi metric type spaces[J]. AIMS Mathematics, 2022, 7(1): 1058-1073. doi: 10.3934/math.2022063
The main purpose of this research is to establish a new generalized $ \xi^{\ast } $-Kannan type double controlled contraction on a sequence and obtain fixed point results for a pair of multivalued mappings in left $ K $-sequentially complete double controlled dislocated quasi metric type spaces. New results in different setting of generalized metric spaces and ordered spaces and also new results for graphic contractions can be obtained as corollaries of our results. An example is presented to show the novelty of results. In this paper, we unify and extend some recent results in the existing literature.
[1] | T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. doi: 10.3390/math6120320. doi: 10.3390/math6120320 |
[2] | T. Abdeljawad, J. O. Alzabut, A. Mukheimer, Y. Zaidan, Best proximity points for cyclical contraction mappings with 0-boundedly compact decompositions, J. Comput. Anal. Appl., 15 (2013), 678–685. |
[3] | T. Abdeljawad, J. Alzabut, A. Mukheimer, Y. Zaidan, Banach contraction principle for cyclical mappings on partial metric spaces, Fixed Point Theory Appl., 2012 (2012), 154. doi: 10.1186/1687-1812-2012-154. doi: 10.1186/1687-1812-2012-154 |
[4] | S. S. Alshoraify, A. Shoaib, M. Arshad, New types of F-contraction for multivalued mappings and related fixed point results in abstract spaces, J. Funct. Spaces, 2019 (2019), 1812461. doi: 10.1155/2019/1812461. doi: 10.1155/2019/1812461 |
[5] | I. Altun, N. A. Arifi, M. Jleli, A. Lashin, B. Samet, A new approach for the approximations of solutions to a common fixed point problem in metric fixed point theory, J. Funct. Spaces, 2016 (2016), 6759320. doi: 10.1155/2016/6759320. doi: 10.1155/2016/6759320 |
[6] | M. Arshad, Z. Kadelburg, S. Radenović, A. Shoaib, S. Shukla, Fixed points of $\alpha $-dominated mappings on dislocated quasi metric spaces, Filomat, 31 (2017), 3041–3056. doi: 10.2298/FIL1711041A. doi: 10.2298/FIL1711041A |
[7] | J. P. Aubin, Mathematical methods of games and economic theory, North-Holland, Amsterdam, 1979. Available from: https://doi.org/10.1002/zamm.19810611016. |
[8] | H. Aydi, M. F. Bota, E. Karapinar, S. Mitrović, Fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., 2012 (2012), 88. doi: 10.1186/1687-1812-2012-88. doi: 10.1186/1687-1812-2012-88 |
[9] | T. G. Bhaskar, V. Laskhmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379–1393. doi: 10.1016/j.na.2005.10.017. doi: 10.1016/j.na.2005.10.017 |
[10] | S. Bohnenblust, S. Karlin, Contributions to the theory of games, Princeton University Press, Princeton, 1950. |
[11] | S. Carl, S. Heikkila, Fixed point theory in ordered sets and applications; from differential and integral equations to game theory, New York: Springer, 2010. doi: 10.1007/978-1-4419-7585-0. |
[12] | F. Gu, L. Wang, Some coupled fixed-point theorems in two quasi-partial metric spaces, Fixed Point Theory Appl., 2014 (2014), 19. doi: 10.1186/1687-1812-2014-19. doi: 10.1186/1687-1812-2014-19 |
[13] | J. Harjani, K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal., 72 (2010), 1188–1197. doi: 10.1016/j.na.2009.08.003. doi: 10.1016/j.na.2009.08.003 |
[14] | T. Kamran, M. Samreen, O. U. A. Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. doi: 10.3390/math5020019. doi: 10.3390/math5020019 |
[15] | E. Karapınar, İ. M. Erhan, A. Öztürk, Fixed point theorems on quasi-partial metric spaces, Math. Comput. Model., 57 (2013), 2442–2448. doi: 10.1016/j.mcm.2012.06.036. doi: 10.1016/j.mcm.2012.06.036 |
[16] | J. L. Li, Several extensions of the Abian-Brown fixed point theorem and their applications to extended and generalized Nash equalibria on chain-complete posets, J. Math. Anal. Appl., 409 (2014), 1084–1094. doi: 10.1016/j.jmaa.2013.07.070. doi: 10.1016/j.jmaa.2013.07.070 |
[17] | N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. doi: 10.3390/math6100194. doi: 10.3390/math6100194 |
[18] | S. B. Nadler Jr., Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475–488. doi: 10.2140/pjm.1969.30.475. doi: 10.2140/pjm.1969.30.475 |
[19] | M. Nazam, A. Arif, C. Park, H. Mahmood, Some results in cone metric spaces with applications in homotopy theory, Open Math., 18 (2020), 295–306. doi: 10.1515/math-2020-0025. doi: 10.1515/math-2020-0025 |
[20] | J. J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223–239. doi: 10.1007/s11083-005-9018-5. doi: 10.1007/s11083-005-9018-5 |
[21] | A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to metrix equations, Proc. Am. Math. Soc., 132 (2004), 1435–1443. doi: 10.1090/S0002-9939-03-07220-4. doi: 10.1090/S0002-9939-03-07220-4 |
[22] | T. Rasham, A. Shoaib, C. Park, M. Arshad, Fixed point results for a pair of multi dominated mappings on a smallest subset in $K$ -sequentially dislocated quasi metric space with application, J. Comput. Anal. Appl., 25 (2018), 975–986. |
[23] | T. Rasham, A. Shoaib, N. Hussain, M. Arshad, Fixed point results for a pair of $\alpha_{\ast }$-dominated multivalued mappings with applications, UPB Sci. Bull., Ser. A, Appl. Math. Phys., 81 (2019), 3–12. |
[24] | A. Shazad, T. Rasham, G. Marino, A. Shoaib, On fixed point results for $\alpha^{*}$-$\psi$-dominated fuzzy contractive mappings with graph, J. Intell. Fuzzy Syst., 38 (2020), 3093–3103. doi: 10.3233/JIFS-191020. doi: 10.3233/JIFS-191020 |
[25] | T. Rasham, Q. Mahmood, A. Shahzad, A. Shoaib, A. Azam, Some fixed point results for two families of fuzzy A-dominated contractive mappings on closed ball, J. Intell. Fuzzy Syst., 36 (2019) 3413–3422. doi: 10.3233/JIFS-181153. doi: 10.3233/JIFS-181153 |
[26] | T. Rasham, A. Shoaib, B. A. S. Alamri, M. Arshad, Multivalued fixed point results for new generalized F-dominated contractive mappings on dislocated metric space with application, J. Funct. Spaces, 2018 (2018), 4808764. doi: 10.1155/2018/4808764. doi: 10.1155/2018/4808764 |
[27] | T. Rasham, A. Shoaib, N. Hussain, B. A. S. Alamri, M. Arshad, Multivalued fixed point results in dislocated b-metric spaces with application to the system of nonlinear integral equations, Symmetry, 11 (2019), 40. doi: 10.3390/sym11010040. doi: 10.3390/sym11010040 |
[28] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $(\alpha, \psi)$-contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. doi: 10.1016/j.na.2011.10.014. doi: 10.1016/j.na.2011.10.014 |
[29] | M. Samreen, T. Kamran, M. Postolache, Extended b-metric space, extended b-comparison function and nonlinear contractions, UPB Sci. Bull., Ser. A, Appl. Math. Phys., 80 (2018), 21–28. |
[30] | M. Sarwar, M. Rahman, G. Ali, Some fixed point results in dislocated quasi metric (dq-metric) spaces, J. Inequal. Appl., 2014 (2014), 278. doi: 10.1186/1029-242X-2014-278. doi: 10.1186/1029-242X-2014-278 |
[31] | M. Sgroi, C. Vetro, Multi-valued $F$-contractions and the solution of certain functional and integral equations, Filomat, 27 (2013), 1259–1268. doi: 10.2298/FIL1307259S. doi: 10.2298/FIL1307259S |
[32] | M. Nazam, C. Park, A. Hussain, M. Arshad, J. R. Lee, Fixed point theorems for F-contractions on closed ball in partial metric spaces, J. Comput. Anal. Appl., 27 (2019), 759–769. |
[33] | A. Shoaib, Fixed point results for $\alpha _{\ast }$-$\psi $ -multivalued mappings, Bull. Math. Anal. Appl., 8 (2016), 43–55. |
[34] | A. Shoaib, S. S. Alshoraify, M. Arshad, Double controlled dislocated quasi-metric type spaces and some results, J. Math., 2020 (2020), 3734126. doi: 10.1155/2020/3734126. doi: 10.1155/2020/3734126 |
[35] | A. Shoaib, S. Kazi, A. Tassaddiq, S. S. Alshoraify, T. Rasham, Double controlled quasi-metric type spaces and some results, Complexity, 2020 (2020), 3460938. doi: 10.1155/2020/3460938. doi: 10.1155/2020/3460938 |
[36] | A. Shoaib, P. Kumam, S. S. Alshoraify, M. Arshad, Fixed point results in double controlled dislocated quasi metric type spaces, AIMS Math., 6 (2021), 1851–1864. doi: 10.3934/math.2021112. doi: 10.3934/math.2021112 |
[37] | L. Zhu, C. Zhu, C. Chen, Z. Stojanović, Multidimensional fixed points for generalized $\Psi $-quasi-contractions in quasi-metric-like spaces, J. Inequal. Appl., 2014 (2014), 27. doi: 10.1186/1029-242X-2014-27. doi: 10.1186/1029-242X-2014-27 |