The beta regression model has become a popular tool for assessing the relationships among chemical characteristics. In the BRM, when the explanatory variables are highly correlated, then the maximum likelihood estimator (MLE) does not provide reliable results. So, in this study, we propose a new modified beta ridge-type (MBRT) estimator for the BRM to reduce the effect of multicollinearity and improve the estimation. Initially, we show analytically that the new estimator outperforms the MLE as well as the other two well-known biased estimators i.e., beta ridge regression estimator (BRRE) and beta Liu estimator (BLE) using the matrix mean squared error (MMSE) and mean squared error (MSE) criteria. The performance of the MBRT estimator is assessed using a simulation study and an empirical application. Findings demonstrate that our proposed MBRT estimator outperforms the MLE, BRRE and BLE in fitting the BRM with correlated explanatory variables.
Citation: Muhammad Nauman Akram, Muhammad Amin, Ahmed Elhassanein, Muhammad Aman Ullah. A new modified ridge-type estimator for the beta regression model: simulation and application[J]. AIMS Mathematics, 2022, 7(1): 1035-1057. doi: 10.3934/math.2022062
The beta regression model has become a popular tool for assessing the relationships among chemical characteristics. In the BRM, when the explanatory variables are highly correlated, then the maximum likelihood estimator (MLE) does not provide reliable results. So, in this study, we propose a new modified beta ridge-type (MBRT) estimator for the BRM to reduce the effect of multicollinearity and improve the estimation. Initially, we show analytically that the new estimator outperforms the MLE as well as the other two well-known biased estimators i.e., beta ridge regression estimator (BRRE) and beta Liu estimator (BLE) using the matrix mean squared error (MMSE) and mean squared error (MSE) criteria. The performance of the MBRT estimator is assessed using a simulation study and an empirical application. Findings demonstrate that our proposed MBRT estimator outperforms the MLE, BRRE and BLE in fitting the BRM with correlated explanatory variables.
[1] | M. N. Akram, M. Amin, M. Amanullah, Two-parameter estimator for the inverse Gaussian regression model, Commun. Stat. Simul. C., 2020. doi: 10.1080/03610918.2020.1797797. doi: 10.1080/03610918.2020.1797797 |
[2] | A. E. Hoerl, R. W. Kennard, Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 12 (1970), 55–67. |
[3] | A. F. Lukman, K. Ayinde, S. Binuomote, O. A. Clement, Modified ridge‐type estimator to combat multicollinearity: Application to chemical data, J. Chemometr., 33 (2019), e3125. doi: 10.1002/cem.3125. doi: 10.1002/cem.3125 |
[4] | A. F. Lukman, A. Emmanuel, O. A. Clement, K. Ayinde, A Modified Ridge-Type Logistic Estimator, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 437–443. doi: 10.1007/s40995-020-00845-z. doi: 10.1007/s40995-020-00845-z |
[5] | A. J. Lemonte, S. L. P. Ferrari, F. Cribari-Neto, Improved likelihood inference in Birnbaum-saunders regressions, Comput. Stat. Data An., 54 (2010), 1307–131. doi: 10.1016/j.csda.2009.11.017. doi: 10.1016/j.csda.2009.11.017 |
[6] | B. F. Swindel. Good ridge estimators based on prior information, Commun. Stat. Theor. M., 5 (1976), 1065–1075. doi: 10.1080/03610927608827423. doi: 10.1080/03610927608827423 |
[7] | B. Singh, Y. P. Chaubey, On some improved ridge estimators, Statistische Hefte, 28 (1987), 53–67. doi: 10.1007/BF02932590. doi: 10.1007/BF02932590 |
[8] | B. Segerstedt, On ordinary ridge regression in generalized linear models, Commun. Stat. Theor. M., 21 (1992), 2227–2246. doi: 10.1080/03610929208830909. doi: 10.1080/03610929208830909 |
[9] | B. M. G. Kibria, Performance of some new ridge regression estimators, Commun. Stat. Simul. C., 32 (2003), 419–435. doi: 10.1081/SAC-120017499. doi: 10.1081/SAC-120017499 |
[10] | B. M. G. Kibria, Some Liu and ridge-type estimators and their properties under the ill-conditioned Gaussian linear regression model, J. Stat. Comput. Sim., 82 (2012), 1–17. doi: 10.1080/00949655.2010.519705. doi: 10.1080/00949655.2010.519705 |
[11] | C. Stein, Inadmissibility of the usual estimator for the mean of a multivariate normal distribution, In: Volume 1 contribution to the theory of statistics, Berkeley: University of California Press, 1956,197–206. doi: 10.1525/9780520313880-018. |
[12] | E. Vigneau, M. F. Devaux, E. M. Qannari, P. Robert, Principal component regression, ridge regression and ridge principal component regression in spectroscopy calibration, J. Chemometr., 11 (1998), 239–249. doi: 10.1002/(SICI)1099-128X(199705)11:3<239::AID-CEM470>3.0.CO;2-A. doi: 10.1002/(SICI)1099-128X(199705)11:3<239::AID-CEM470>3.0.CO;2-A |
[13] | R. W. Farebrother, Further results on the mean square error of ridge regression, J. R. Stat. Soc. B, 38 (1976), 248–250. |
[14] | G. Trenkler, H. Toutenburg, Mean squared error matrix comparisons between biased estimators-An overview of recent results, Stat. Pap., 31 (1990), 165. doi: 10.1007/BF02924687. doi: 10.1007/BF02924687 |
[15] | G. C. McDonald, D. I. Galarneau, A Monte Carlo evaluation of some ridge-type estimators, J. Am. Stat. Assoc., 70 (1975), 407–416. |
[16] | K. Månsson, G. Shukur, On ridge parameters in logistic regression, Commun. Stat. Theor. M., 40 (2011), 3366–3381. doi: 10.1080/03610926.2010.500111. doi: 10.1080/03610926.2010.500111 |
[17] | K. Månsson, G. Shukur, A Poisson ridge regression estimator, Econ. Model., 28 (2011), 1475–1481. doi: 10.1016/j.econmod.2011.02.030. doi: 10.1016/j.econmod.2011.02.030 |
[18] | K. Månsson, B. M. G. Kibria, P. Sjölander, G. Shukur, V. Sweden, New Liu estimators for the poisson regression model: Model and application, HUI Research, 2011. |
[19] | K. Månsson, B. M. G. Kibria, G. Shukur, On Liu estimators for the logit regression model, Econ. Model., 29 (2012), 1483–1488. doi: 10.1016/j.econmod.2011.11.015. doi: 10.1016/j.econmod.2011.11.015 |
[20] | K. Månsson, Developing a Liu estimator for the negative binomial regression model: Method and application, J. Stat. Comput. Sim., 83 (2013), 1773–1780. doi: 10.1080/00949655.2012.673127. doi: 10.1080/00949655.2012.673127 |
[21] | L. Kejian, A new class of biased estimate in linear regression, Commun. Stat. Theor. M., 22 (1993), 393–402. doi:.1080/03610929308831027. |
[22] | L. Kejian, Using Liu-type estimator to combat collinearity, Commun. Stat. Theor. M., 32 (2003), 1009–1020. doi: 10.1081/STA-120019959. doi: 10.1081/STA-120019959 |
[23] | L. S. Mayer, T. A. Willke, On biased estimation in linear models, Technometrics, 15 (1973), 497–508. doi: 10.1080/00401706.1973.10489076. doi: 10.1080/00401706.1973.10489076 |
[24] | A. F. Lukman, K. Ayinde, Review and classifications of the ridge parameter estimation techniques, Hacet. J. Math. Stat., 46 (2017), 953–967. |
[25] | M. I. Alheety, B. M. G. Kibria, Modified Liu-type estimator based on (r-k) class estimator, Commun. Stat. Theor. M., 42 (2013), 304–319. doi: 10.1080/03610926.2011.577552. doi: 10.1080/03610926.2011.577552 |
[26] | M. Amini, M. Roozbeh, Optimal partial ridge estimation in restricted semiparametric regression models, J. Multivariate Anal., 136 (2015), 26–40. doi: 10.1016/j.jmva.2015.01.005. doi: 10.1016/j.jmva.2015.01.005 |
[27] | M. Arashi, S. M. M. Tabatabaey, B. H. Bashtian, Shrinkage ridge estimators in linear regression, Commun. Stat. Simul. C., 43 (2014), 871–904. doi: 10.1080/03610918.2012.718838. doi: 10.1080/03610918.2012.718838 |
[28] | M. Qasim, K. Månsson, M. Amin, B. M. G. Kibria, P. Sjolander, Biased adjusted Poisson ridge estimators-method and application, Iran. J. Sci. Technol. Tran. Sci., 44 (2020), 1775–1789. doi: 10.1007/s40995-020-00974-5. doi: 10.1007/s40995-020-00974-5 |
[29] | M. Amin, M. N. Akram, M. Amanullah, On the James-Stein estimator for the poisson regression model, Commun. Stat. Simul. C., 2020, 1–13. doi: 10.1080/03610918.2020.1775851. doi: 10.1080/03610918.2020.1775851 |
[30] | M. Amin, M. Qasim, M. Amanullah, S. Afzal, Performance of some ridge estimators for the gamma regression model, Stat. Pap., 61 (2020), 997–1026. doi: 10.1007/s00362-017-0971-z. doi: 10.1007/s00362-017-0971-z |
[31] | M. Qasim, K. Månsson, B. M. G. Kibria, On some beta ridge regression estimators: method, simulation and application, J. Stat. Comput. Sim., 91 (2021), 1699–1712. doi: 10.1080/00949655.2020.1867549. doi: 10.1080/00949655.2020.1867549 |
[32] | M. I. Alheety, B. M. G. Kibria, On the Liu and almost unbiased Liu estimators in the presence of multicollinearity with heteroscedastic or correlated errors, Surv. Math. Appl., 4 (2009), 155–167. |
[33] | M. N. Akram, M. Amin, M. Qasim, A new Liu-type estimator for the inverse Gaussian regression model, J. Stat. Comput. Sim., 90 (2020), 1153–1172. doi: 10.1080/00949655.2020.1718150. doi: 10.1080/00949655.2020.1718150 |
[34] | M. Qasim, M. Amin, M. Amanullah, On the performance of some new Liu parameters for the gamma regression model, J. Stat. Comput. Sim., 88 (2018), 3065–3080. doi: 10.1080/00949655.2018.1498502. doi: 10.1080/00949655.2018.1498502 |
[35] | M. Qasim, B. M. G. Kibria, K. Månsson, P. Sjölander, A new Poisson Liu regression estimator: method and application, J. Appl. Stat., 47 (2020), 2258–2271. doi: 10.1080/02664763.2019.1707485. doi: 10.1080/02664763.2019.1707485 |
[36] | M. Amin, M. A. Ullah, G. M. Cordeiro, Influence diagnostics in the gamma regression model with adjusted deviance residuals, Commun. Stat. Simul. C., 46 (2017), 6959–6973. doi: 10.1080/03610918.2016.1222420. doi: 10.1080/03610918.2016.1222420 |
[37] | M. Amin, M. A. Ullah, M. Aslam, Empirical evaluation of the inverse Gaussian regression residuals for the assessment of influential points, J. Chemometr., 30 (2016), 394–404. doi: 10.1002/cem.2805. doi: 10.1002/cem.2805 |
[38] | M. Amin, M. Faisal, M. N. Akram, Influence diagnostics in the inverse gaussian ridge regression model: Applications in chemometrics, J. Chemometr., 35 (2021), e3342. doi: 10.1002/cem.3342. doi: 10.1002/cem.3342 |
[39] | M. Amin, M. Qasim, S. Afzal, K. Naveed, New ridge estimators in the inverse Gaussian regression: Monte Carlo simulation and application to chemical data, Commun. Stat. Simul. C., 2020. doi: 10.1080/03610918.2020.1797794. doi: 10.1080/03610918.2020.1797794 |
[40] | M. Meloun, J. Militký, Detection of single influential points in OLS regression model building, Anal. Chim. Acta, 439 (2001), 169–191. doi: 10.1016/S0003-2670(01)01040-6. doi: 10.1016/S0003-2670(01)01040-6 |
[41] | G. Muniz, B. M. G. Kibria, On some ridge regression estimators: An empirical comparisons, Commun. Stat. Simul. Comput., 38 (2009), 621–630. doi: 10.1080/03610910802592838. doi: 10.1080/03610910802592838 |
[42] | M. Roozbeh, M. Arashi, Feasible ridge estimator in partially linear models, J. Multivariate Anal., 116 (2013), 35–44. doi: 10.1016/j.jmva.2012.11.006. doi: 10.1016/j.jmva.2012.11.006 |
[43] | M. Roozbeh, G. Hesamian, M. G. Akbari, Ridge estimation in semi-parametric regression models under the stochastic restriction and correlated elliptically contoured errors, J. Comput. Appl. Math., 378 (2020), 112940. doi: 10.1016/j.cam.2020.112940. doi: 10.1016/j.cam.2020.112940 |
[44] | M. Roozbeh, Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion, Comput. Stat. Data Anal., 117 (2018), 45–61. doi: 10.1016/j.csda.2017.08.002. doi: 10.1016/j.csda.2017.08.002 |
[45] | M. Roozbeh, M. Arashi, N. A. Hamzah, Generalized cross-validation for simultaneous optimization of tuning parameters in ridge regression, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 473–485. doi: 10.1007/s40995-020-00851-1. doi: 10.1007/s40995-020-00851-1 |
[46] | N. H. Prater, Estimate gasoline yields from crudes, Petrol. Refiner, 35 (1956), 236–238. |
[47] | P. Karlsson, K. Månsson, B. M. G. Kibria, A Liu estimator for the beta regression model and its application to chemical data, J. Chemometr., 34 (2020), e3300. doi: 10.1002/cem.3300. doi: 10.1002/cem.3300 |
[48] | R. Frisch, Statistical confluence analysis by means of complete regression systems, Universitetets Økonomiske Institute, 1934. |
[49] | S. Ferrari, F. Cribari-Neto, Beta regression for modeling rates and proportions, J. Appl. Stat., 31 (2004), 799–815. doi: 10.1080/0266476042000214501. doi: 10.1080/0266476042000214501 |
[50] | A. B. Simas, W. Barreto-Souza, A. V. Rocha, Improved estimators for a general class of beta regression models, Comput. Stat. Data Anal., 54 (2010), 348–366. doi: 10.1016/j.csda.2009.08.017. doi: 10.1016/j.csda.2009.08.017 |
[51] | Y. Li, H. Yang, A new Liu-type estimator in linear regression model, Stat. Pap., 53 (2012), 427–437. doi: 10.1007/s00362-010-0349-y. doi: 10.1007/s00362-010-0349-y |
[52] | Y. Li, H. Yang, A new stochastic mixed ridge estimator in linear regression model, Stat. Pap., 51 (2010), 315–323. doi: 10.1007/S00362-008-0169-5. doi: 10.1007/S00362-008-0169-5 |
[53] | Z. Y. Algamal, M. H. Lee, A. M. Al-Fakih, M. Aziz, High-dimensional QSAR prediction of anticancer potency of imidazo[4, 5-b]pyridine derivatives using adjusted adaptive LASSO, J. Chemometr., 29 (2015), 547–556. doi: 10.1002/cem.2741. doi: 10.1002/cem.2741 |
[54] | Z. Y. Algamal, M. K. Qasim, M. H. Lee, T. H. M. Ali, High-dimensional QSAR/QSPR classification modeling based on improving pigeon optimization algorithm, Chemometr. Intell. Lab., 206 (2020), 104170. doi: 10.1016/j.chemolab.2020.104170. doi: 10.1016/j.chemolab.2020.104170 |
[55] | Z. Y. Algamal, M. K. Qasim, M. H. Lee, T. H. M. Ali, Improving grasshopper optimization algorithm for hyper-parameters estimation and feature selection in support vector regression, Chemometr. Intell. Lab., 208 (2020), 104196. doi: 10.1016/j.chemolab.2020.104196. doi: 10.1016/j.chemolab.2020.104196 |
[56] | D. C. Montgomery, G. C. Runger, Applied statistics and probability for engineers, John Wiley & Sons, 2014. |