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Abstract: The beta regression model has become a popular tool for assessing the relationships among 

chemical characteristics. In the BRM, when the explanatory variables are highly correlated, then the 

maximum likelihood estimator (MLE) does not provide reliable results. So, in this study, we propose 

a new modified beta ridge-type (MBRT) estimator for the BRM to reduce the effect of multicollinearity 

and improve the estimation. Initially, we show analytically that the new estimator outperforms the MLE 

as well as the other two well-known biased estimators i.e., beta ridge regression estimator (BRRE) and 

beta Liu estimator (BLE) using the matrix mean squared error (MMSE) and mean squared error (MSE) 

criteria. The performance of the MBRT estimator is assessed using a simulation study and an empirical 

application. Findings demonstrate that our proposed MBRT estimator outperforms the MLE, BRRE 

and BLE in fitting the BRM with correlated explanatory variables. 
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1. Introduction  

Regression analysis is one of the most important tools which has several applications in 

chemometrics and other fields [39–40,52–54]. There are various types of regression models available 

in the literature i.e., linear model, non-linear model, generalized linear models and nonparametric 
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regression model [36,39]. The choice of the suitable regression model is the most important task for 

obtaining accurate and reliable results [37,39]. The choice of suitable regression depends on the nature 

and distribution of the response variable [37,38]. 

In many research areas, there are situations in which the response variable is restricted to the 

interval [0, 1],  such as rates and proportions. The classical solution is to transform the response 

variable so that it is mapped from the interval [0, 1] on the real line(ℝ). In this situation (which is 

common when analyzing chemical, environmental, or biological data), the logistic regression model 

is considered, where the log-odds are used as the response variable in a linear regression model. 

Another example of a common transformation is the inverse of a suitable cumulative density function, 

which also leads to the response variable 𝑌 ∈  [0, 1] being mapped onto the real line. A well-known 

example of the latter is to use the probit model. But such kinds of solutions have several demerits; for 

example, the model parameters cannot be easily interpreted in terms of the original response variable. 

Another shortcoming is that proportion measures typically show asymmetry, and hence any inference 

based on the normality assumption can be deceptive, especially for a small sample. 

As a remedy to the aforementioned problems, Ferrari and Cribari-Neto [49] proposed a beta 

regression model (BRM) for a continuous response variable (𝑌)  with support in the open 

interval [0, 1] . This model is based on the assumption that the response variable follows the beta 

distribution. Further, the model can also accommodate asymmetries and heteroscedasticity. Later 

developments have expanded the model so that it is also possible to include covariates for modeling 

dispersion [45]. Generally, the maximum likelihood estimator (MLE) is used to estimate the unknown 

regression coefficients of the BRM. 

It is a common assumption in the multiple BRM that the regressors are not linearly correlated 

with one another. Though, in routine, explanatory variables may be inter-correlated, which causes the 

problem of multicollinearity [48]. In the presence of multicollinearity, the variance of the MLE 

becomes overstated, and the inference based on this estimator may not be reliable. Another 

consequence of multicollinearity is the wider confidence interval and probability of type-II error 

increases in hypothesis testing of unknown parameters [18]. However, many biased estimators have 

been introduced to combat multicollinearity in linear regression modeling (LRM), such as Stein 

estimator [11], ridge regression estimator [2] (RRE), improved ridge estimator [7], contraction 

estimator [23], modified RRE [6]. Liu estimator [21] (LE), Liu-type estimator [22], mixed ridge 

estimator [51], and modified Liu-type estimator [25]. Among them, RRE is the most common and 

attractive method initially proposed by Hoerl and Kennard [2]. This method was further developed and 

applied to chemical data by Vigneau et al. [12] There are several methods to estimate the shrinkage 

parameter (see, e.g., [9,28,39,41]). Unlike the LRM, the effect of multicollinearity on the generalized 

linear model (GLM) has been prolonged by Segrestedt [8]. For instance, Månsson and Shukur [16] 

introduced some ridge parameters for the logistic regression model, Månsson and Shukur [17] 

established a Poisson RRE. While Amin et al. [29] proposed a James-Stein estimator for the Poisson 

regression model. Amin et al. [39] examined the performance of the inverse Gaussian ridge regression 

estimator. Later Amin et al. [30] recommended some methods for estimating the shrinkage parameter 

based on the Gamma RRE. Recently Qasim et al. [31] introduced the RRE for the BRM. 

Liu [21] introduced a new estimator, subsequently known as Liu estimator (LE). The primary 

objective of the LE is that the biasing Liu parameter d is the linear function of the estimates instead of 

a non-linear function as in ridge parameter k. This leads to a more stable shrinkage vector of estimated 

coefficients. Therefore, due to the linear function of d, researchers have used the more robust LE 



1037 
 

AIMS Mathematics Volume 7, Issue 1, 1035–1057. 

instead of the conventional RRE. Regarding the vast literature on LE for the LRM, we refer our readers 

primarily to Liu [21]. This method has also been further developed and applied to chemical data by 

Alheety and Kibria [25,32], Kibria [10], Li and Yang [51], and Akram et al. [33]. However, the 

literature on the LE for the GLM is very limited for example, Månsson et al. [18] suggested some 

shrinkage parameters for the Poisson Liu regression estimator. Månsson et al. [19] introduced a LE for 

the logit regression model. Månsson [20] recommended some Liu parameters for the negative binomial 

regression model. Qasim et al. [34] developed and adopted some new shrinkage parameters for LE in 

the gamma regression model. Recently, Karlsson et al. [47] introduced the LE for the BRM. Another 

estimator efficiently tackles the problem of multicollinearity is called the modified ridge-type estimator 

(MRTE). The very limited literature on the MRTE is available. We refer to the following studies: 

Lukman et al. [3] introduced the MRTE for the LRM and Lukman et al. [24] introduced some new 

ridge parameters for the LRM. Further, Lukman et al. [4] proposed a modified ridge-type logistic 

estimator. The available literature shows that no such study is available for the BRM. The extent to 

which these types of methods have been studied is due to the importance of the situation when the 

regressors are non-orthogonal since this is the most common situation when analyzing chemical, 

environmental, or biological data. So, this article aims to adopt the MRTE for the BRM named MBRTE 

and derived its theoretical properties to determine its effectiveness. In addition, we also provide the 

theoretical comparison of the proposed MBRT with other estimation methods i.e., MLE, RRE, and LE 

in a sense of matrix mean squared error (MMSE) and mean squared error (MSE) criteria.  

The paper unfolds as follows: we define the model of interest and estimation procedures of BRM 

in Section 2. The theoretical comparison of the proposed estimator with other estimation methods is also 

outlined in this section. The selection of the appropriate biasing parameters is presented in Section 3, 

whereas the layout of the Monte Carlo simulation and its findings is discussed in Section 4. An 

empirical application is outlined in Section 5. Finally, this paper ends with some concluding remarks. 

2. Methodology 

2.1.  The beta regression model 

Suppose that 𝑦1, 𝑦2, … , 𝑦𝑛  are the observations of the random variable, Y follows a beta 

distribution with parameters 𝑎, 𝑏 > 0 , symbolized as 𝛽𝑒(𝑎, 𝑏)  and the beta probability density 

function is stated as 

𝑓(𝑦; 𝑎, 𝑏) =
Γ(𝑎 + 𝑏)

Γ(𝑎) Γ(𝑏)
𝑦𝑎−1(1 − 𝑦)𝑏−1, 𝑦 ∈ (0,1), (1)  

where Γ(. ) is the gamma function and 𝑎, 𝑏 > 0. The mean and variance of Y are 𝐸(𝑌) =
𝑎

𝑎+𝑏
 and 

𝑉𝑎𝑟(𝑌) =
𝑎𝑏

(𝑎+𝑏)2(𝑎+𝑏+1)
, respectively. Ferrari and Cribari-Neto [49] defined the parameterization for 

developing a regression model of beta distributed responses based on Eq (1). By supposing that 𝜇 =

𝑎

𝑎+𝑏
 and 𝜑 = 𝑎 + 𝑏, and re-parameterize the parameters of Eq (1) by defining 𝑎 = 𝜇𝜑 and 𝑏 = 𝜑 −

𝜑𝜇, the density function of Y can be expressed through new parameterization as 
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𝑓(𝑦; 𝜇, 𝜑) =
Γ(𝜑)

Γ(𝜇𝜑)Γ(𝜑 − 𝜑𝜇)
𝑦𝜇𝜑−1(1 − 𝑦)(𝜑−𝜑𝜇−1), 𝑦 ∈ (0,1),  (2) 

where 𝑌~𝛽𝑒(𝜇, 𝜑)  and limited in the interval (0,1) , 𝜇(0 < 𝜇 < 1)  is denoted the mean of the 

response variable and 𝜑(𝜑 > 0) is the precision parameter. The mean and variance of Y are defined 

on the new parameterization, i.e., 𝐸(𝑌) = 𝜇  and 𝑉𝑎𝑟(𝑌) = 𝜇(1 − 𝜇) (1 + 𝛿)⁄  . However, the 

reciprocal of 𝜑 is called the dispersion parameter (𝛿 = 𝜑−1). The variance of the response decreases 

as 𝜑 is increased for fixed 𝜇. The BRM is obtained by assuming that 𝑦𝑖~𝛽𝑒(𝜇𝑖, 𝜑), 𝑖 = 1, … , 𝑛 and 

the link function is defined as 

𝑔(𝜇𝑖) = 𝜂𝑖 = 𝑥𝑖
𝑡𝛽,  

where 𝑥𝑖  is the ith row of X which is an 𝑛 × 𝑝  data matrix with 𝑝  non-stochastic explanatory 

variables, 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑝)
𝑡
is a 𝑝 × 1 vector of unknown regression coefficients, 𝜂𝑖 is the linear 

predictor and 𝑔(. )  is the link function of the BRM, and it is strictly monotonic and twice 

differentiable such that 𝑔(. ) ∶ (0,1) → ℝ. Since different link functions may be used for fitting the 

BRM, for instance; logit, probit, log-log, complementary log-log, and Cauchy link functions. Among 

these, the commonly used link function is the logit link, i.e., 𝑔(𝜇𝑖) = 𝑙𝑜𝑔 (
𝜇𝑖

1−𝜇𝑖
), which was suggested 

by Ferrari and Cribari-Neto [49]. The mean function of the response variable with logit link function 

is defined as 

𝜇𝑖 =
𝑒𝑥𝑝 (𝑥𝑖

𝑡𝛽)

1 + 𝑒𝑥𝑝 (𝑥𝑖
𝑡𝛽)

, (3) 

where 𝜇𝑖 is the mean function of the response variable. Since 𝜂 depends on 𝛽 and 𝜇 is a function 

of 𝜂, the means 𝜇1, … , 𝜇𝑛 are the functions of 𝛽. The log-likelihood function of Eq (2) is given by 

𝑙(𝛽) = ∑ 𝑙𝑖

𝑛

𝑖=1

(𝜇𝑖, 𝜑)

= ∑[𝑙𝑜𝑔Γ(𝜑) − 𝑙𝑜𝑔Γ(𝜇𝑖𝜑) − 𝑙𝑜𝑔Γ(𝜑 − 𝜇𝑖𝜑)

𝑛

𝑖=1

+ (𝜑𝜇𝑖 − 1) log 𝑦𝑖 + (𝜑 − 𝜇𝑖𝜑 − 1) log (1 − 𝑦𝑖)]. 

(4) 

Let 𝛽̂ be the estimated value of the MLE of 𝛽. We are only interested to estimate the value of 

the parameter vector 𝛽. Generally, the MLE is used to estimate the unknown regression coefficients 

𝛽𝑗 , 𝑗 = 1, … 𝑝. The score function 𝒮(𝛽) can be found as 

𝒮(𝛽) =
𝜕𝑙(𝛽)

𝜕𝛽𝑗
= ∑ (

𝜕𝑙(𝛽)

𝜕𝜃𝑖

𝜕𝜃𝑖

𝜕𝜇𝑖

𝜕𝜇𝑖

𝜕𝜂𝑖

𝜕𝜂𝑖

𝜕𝛽𝑗
) .

𝑛

𝑖=1

  

Then the score function becomes 
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𝒮(𝛽) = ∑ (
𝑦𝑖 − 𝜇𝑖

𝜑 𝑉𝑎𝑟(𝜇𝑖)

𝜕𝜇𝑖

𝜕𝜂𝑖
𝑥𝑖𝑗)

𝑛

𝑖=1

, (5) 

where 𝑉𝑎𝑟(𝜇𝑖) = 𝜇𝑖(1 − 𝜇𝑖) and 𝑥𝑖𝑗 is the ith values for jth covariates 𝑥𝑗 , 𝑗 = 1, … , 𝑝. Since Eq (5) 

is non-linear in 𝛽𝑗, so, the solution of Eq (5) which can be obtained using Fisher’s scoring iterative 

procedure as 

𝛽𝑚+1 = 𝛽𝑚 + {
𝜕2𝑙(𝛽)

𝜕𝛽𝑗𝛽𝑘

(𝛽𝑚)}

−1

𝒮(𝛽𝑚), (6)  

where 𝒮(𝛽𝑚) is the first derivative of Eq (4) and 𝑚 = 0, 1, 2, … are the iterations which are carried 

out until convergence and the second derivative of Eq (4) with respect to 𝛽𝑘  becomes a Hessian 

matrix as 

𝜕2𝑙(𝛽)

𝜕𝛽𝑗𝛽𝑘
= ∑ 𝜑−1 (

𝜕𝑙(𝛽)

𝜕𝛽𝑘
) (

𝑦𝑖 − 𝜇𝑖

 𝑉𝑎𝑟(𝜇𝑖)

𝜕𝜇𝑖

𝜕𝜂𝑖
𝑥𝑖𝑗)

𝑛

𝑖=1

= ∑ 𝜑−1 [{𝑉𝑎𝑟(𝜇𝑖)
−1 (

𝜕𝜇𝑖

𝜕𝜂𝑖
)

2

}

𝑛

𝑖=1

− (𝜇𝑖 − 𝑦𝑖)

× {𝑉𝑎𝑟(𝜇𝑖)
−2 (

𝜕𝜇𝑖

𝜕𝜂𝑖
)

2 𝜕𝑉𝑎𝑟(𝜇𝑖)

𝜕𝜇𝑖
− 𝑉𝑎𝑟(𝜇𝑖)

−1 (
𝜕2𝑉𝑎𝑟(𝜇𝑖)

𝜕𝜂𝑖
2 )}] 𝑥𝑗𝑖𝑥𝑘𝑖 . 

(7) 

Both 𝒮(𝛽𝑚) and 
𝜕2𝑙(𝛽)

𝜕𝛽𝑗𝛽𝑘
(𝛽𝑚) are computed at 𝛽𝑚. On some simplifications, the final form of 

estimation algorithm is then linked to as iterative reweighted least squares as 

𝛽𝑚 = (𝑋𝑡𝒱𝑚𝑋)−1𝑋𝑡𝒱𝑚𝑧𝑚, (8) 

where 𝒱𝑚 = 𝑑𝑖𝑎𝑔[{𝑔(𝜇𝑖)}2𝑉𝑎𝑟(𝜇𝑖)𝜑]−1 , 𝑔(. )  is the logit link function and 𝑧𝑚 = log(𝜇𝑖) +
𝑦𝑖−𝜇𝑖

 𝜇𝑖(1−𝜇𝑖)
. However, we conclude that 𝛽𝑚 converge to 𝛽̂𝑀𝐿𝐸 as 𝑚 → ∞, so final form of the MLE, 

we obtain 

𝛽̂𝑀𝐿𝐸 = (𝑋𝑡𝒱𝑋)−1𝑋𝑡𝒱𝑧, (9) 

where 𝒱 and 𝑧 are estimated at the final iteration. Equations (8) and (9) is a feasible estimator for 

the estimation of unknown regression parameters, for more details please see Roozbeh and Arashi [42]. 

Both 𝒱 and z are evaluated by using Fisher scoring iterative procedure. One can find the MMSE and 

MSE by considering 𝛼 = 𝜉𝑡𝛽̂𝑀𝐿𝐸  and Λ = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑝)  which is further equivalent to 

𝜉(𝑋𝑡𝒱𝑋)𝜉𝑡, where 𝜉 represents the orthogonal matrix whose columns are the eigenvectors of 𝑋𝑡𝒱𝑋; 

i.e., 𝜉 = (𝜉1, … , 𝜉𝑝), where 𝜉𝑗 is the jth eigenvectors of 𝑋𝑡𝒱𝑋 and 𝜆1 ≥ 𝜆2 ≥, … , 𝜆𝑝 ≥ 0 are the 

eigenvalues of the matrix 𝑋𝑡𝒱𝑋whereas 𝛼𝑗  ∀ 𝑗 = 1, … , 𝑝 is the jth element of 𝜉𝑡𝛽̂𝑀𝐿𝐸. Then, the 
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covariance and MMSE of the 𝛽̂𝑀𝐿𝐸 are respectively defined by 

𝐶𝑜𝑣(𝛽̂𝑀𝐿𝐸) = 𝛿(𝑋𝑡𝒱𝑋)−1,  

𝑀𝑀𝑆𝐸(𝛽̂𝑀𝐿𝐸) = 𝜉Λ−1 𝜉𝑡 (10) 

Therefore, the scalar MSE of the 𝛽̂𝑀𝐿𝐸 is given as 

𝑀𝑆𝐸(𝛽̂𝑀𝐿𝐸) = 𝐸(𝛽̂𝑀𝐿𝐸 − 𝛽)
𝑡
(𝛽̂𝑀𝐿𝐸 − 𝛽) = 𝛿[𝑡𝑟(𝜉Λ−1 𝜉𝑡)] = 𝛿 ∑

1

𝜆𝑗

𝑝

𝑗=1

, (11) 

where 𝜆𝑗 is the jth eigenvalue of 𝑋𝑡𝒱𝑋. The matrix 𝑋𝑡𝒱𝑋 is ill-conditioned when the regressors are 

correlated that leads to some eigenvalues being small, and the estimated MSE of MLE is inflated. The 

multicollinearity problem is a severe issue in applied research that leads to high variance, wider 

confidence interval and unstable parameter estimates. Ferrari and Cribari-Neto [49] proposed a BRM 

for modelling rates and proportions. The MLE estimates of the BRM, and it is complicated to draw an 

inference based on the MLE for the BRM in the existence of multicollinearity. To circumvent this issue, 

we introduce a shrinkage estimator in the next section.  

2.2. A beta ridge regression estimator 

Qasim et al. [31] proposed a beta ridge regression estimator (BRRE) which is the generalization 

of Hoerl and Kennard [2] and is defined as 

𝛽̂𝐵𝑅𝑅𝐸 = 𝑅𝑘 𝛽̂𝑀𝐿𝐸 , (12) 

where 𝑅𝑘 = (𝑋𝑡𝒱𝑋 + 𝑘𝐼𝑝)−1(𝑋𝑡𝒱𝑋), 𝑘 (𝑘 > 0)is the shrinkage ridge parameter whereas 𝐼𝑝 is an 

identity matrix of order 𝑝 × 𝑝. If 𝑘 → 0, then 𝛽̂𝐵𝑅𝑅𝐸 = 𝛽̂𝑀𝐿𝐸. The bias vector and covariance matrix 

of Eq (12) can be defined as  

𝐵𝑖𝑎𝑠(𝛽̂𝐵𝑅𝑅𝐸) = −𝑘𝜉Λ𝑘
−1𝛽. (13) 

𝐶𝑜𝑣(𝛽̂𝐵𝑅𝑅𝐸) = 𝛿𝜉Λ𝑘
−1ΛΛ𝑘

−1𝜉𝑡. (14) 

𝑀𝑀𝑆𝐸(𝛽̂𝐵𝑅𝑅𝐸) = 𝑅𝑘(𝑋𝑡𝒱𝑋)−1𝑅𝑘
𝑡 + 𝐵𝑖𝑎𝑠(𝛽̂𝐵𝑅𝑅𝐸)𝐵𝑖𝑎𝑠(𝛽̂𝐵𝑅𝑅𝐸)

𝑡
 

= 𝛿𝜉Λ𝑘
−1ΛΛ𝑘

−1𝜉𝑡 + 𝑘2𝜉Λ𝑘
−1𝛽𝛽𝑡Λ𝑘

−1𝜉𝑡. 

(15) 

where Λ𝑘 = 𝑑𝑖𝑎𝑔(𝜆1 + 𝑘, 𝜆2 + 𝑘, … , 𝜆𝑝 + 𝑘)  andΛ = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑝) = 𝜉(𝑋𝑡𝒱𝑋)𝜉𝑡 , where 𝜉 

is the orthogonal matrix whose columns are the eigenvectors of 𝑋𝑡𝒱𝑋. Hence, the scalar MSE of the 

BRRE is generally obtained by applying the 𝑡𝑟 (. ) operator on Eq (15), which can be defined as 
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𝑀𝑆𝐸(𝛽̂𝐵𝑅𝑅𝐸) = 𝑡𝑟 {𝑀𝑀𝑆𝐸(𝛽̂𝐵𝑅𝑅𝐸)} = 𝛿 ∑
𝜆𝑗

(𝜆𝑗 + 𝑘)
2 + 𝑘2 ∑

𝛼𝑗
2

(𝜆𝑗 + 𝑘)
2 ,

𝑝

𝑗=1

𝑝

𝑗=1

 (16) 

where 𝛼 = 𝜉𝑡𝛽̂𝑀𝐿𝐸 and k (k > 0) is the ridge parameter suggested by Hoerl and Kennard [14] and for 

the BRRE it is computed by taking the derivative of Eq (16) with respect to k and equate to zero, we 

have 

𝑘 =
𝛿

∑ 𝛼̂𝑗
2𝑝

𝑗=1

. (17) 

2.3. A beta Liu regression estimator 

Karlsson et al. [47] introduced another estimation method called beta Liu estimator (BLE) for the 

BRM as 

𝛽̂𝐵𝐿𝐸 = 𝐿𝑑 𝛽̂𝑀𝐿𝐸 , (18) 

where 𝐿𝑑 = (𝑋𝑡𝒱𝑋 + 𝐼)−1(𝑋𝑡𝒱𝑋 + 𝑑𝐼) and d [0,1] is the Liu parameter. If 𝑑 → 1, then 𝛽̂𝐵𝑅𝑅 =

𝛽̂𝑀𝐿𝐸. The bias vector and covariance matrix of Eq (18) can be respectively defined as 

𝐵𝑖𝑎𝑠(𝛽̂𝐵𝐿𝐸) = 𝜉(𝑑 − 1)Λ𝐼
−1𝛽. (19) 

𝐶𝑜𝑣(𝛽̂𝐵𝐿𝐸) = 𝛿𝜉Λ𝐼
−1Λ𝑑Λ−1Λ𝑑Λ𝐼

−1𝜉𝑡. (20) 

Thus, the MMSE and scalar MSE of the BLE are respectively given as 

𝑀𝑀𝑆𝐸(𝛽̂𝐵𝐿𝐸) = 𝐿𝑑(𝑋𝑡𝒱𝑋)−1𝐿𝑑
𝑡 + 𝐵𝑖𝑎𝑠(𝛽̂𝐵𝐿𝐸)𝐵𝑖𝑎𝑠(𝛽̂𝐵𝐿𝐸)

𝑡

= 𝛿𝜉Λ𝐼
−1Λ𝑑Λ−1Λ𝑑Λ𝐼

−1𝜉𝑡 + (𝑑 − 1)2𝜉Λ𝐼
−1𝛽𝛽𝑡Λ𝐼

−1𝜉𝑡, 

(21) 

where Λ𝐼 = 𝑑𝑖𝑎𝑔(𝜆1 + 𝐼, 𝜆2 + 𝐼, … , 𝜆𝑝 + 𝐼) , Λ𝑑 = 𝑑𝑖𝑎𝑔(𝜆1 + 𝑑, 𝜆2 + 𝑑, … , 𝜆𝑝 + 𝑑) . Finally, the 

scalar MSE of the BLE can be defined as 

𝑀𝑆𝐸(𝛽̂𝐵𝐿𝐸) = 𝑡𝑟{𝑀𝑀𝑆𝐸(𝛽̂𝐵𝐿𝐸)} = 𝛿 ∑
(𝜆𝑗 + 𝑑)

2

𝜆𝑗(𝜆𝑗 + 1)
2 + (𝑑 − 1)2 ∑

𝛼𝑗
2

(𝜆𝑗 + 1)
2 ,

𝑝

𝑗=1

𝑝

𝑗=1

 (22) 

The optimum value of the above expression can be obtained by taking the derivative of Eq (22) 

with respect to d and setting the entire expression equal to zero. We obtain 
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𝑑 =

∑
𝛼𝑗

2 − 𝛿

(𝜆𝑗 + 1)
2

𝑝
𝑗=1

∑
𝛿 + 𝜆𝑗𝛼𝑗

2

𝜆𝑗(𝜆𝑗 + 1)
2

𝑝
𝑗=1

. (23) 

2.4. Construction of the proposed estimator 

For the LRM, Lukman et al. [3] proposed the following MRTE by augmenting the RRE which is 

given as 

𝛽̂𝑀𝑅𝑇𝐸(𝑘, 𝑑) = (𝑋𝑡𝑋 + 𝑘(1 + 𝑑)𝐼𝑝)
−1

𝑋𝑡𝑋𝛽̂𝑂𝐿𝑆 = 𝑀𝑘𝑑𝛽̂𝑂𝐿𝑆,  (24) 

where 𝑀𝑘𝑑 = (𝑋𝑡𝑋 + 𝑘(1 + 𝑑)𝐼𝑝)
−1

𝑋𝑡𝑋, while 𝛽̂𝑂𝐿𝑆 = (𝑋𝑡𝑋)−1𝑋𝑡𝑌.  

In this study, we propose a MRTE for the BRM called MBRT estimator (MBRTE) defined as 

𝛽̂MBRTE(𝑘, 𝑑) = (𝑋𝑡𝒱𝑋 + 𝑘(1 + 𝑑)𝐼𝑝)
−1

𝑋𝑡𝒱𝑋𝛽̂𝑀𝐿𝐸 = 𝑀̃𝑘𝑑𝛽̂𝑀𝐿𝐸 , (25) 

where 𝑀̃𝑘𝑑 = (𝑋𝑡𝒱𝑋 + 𝑘(1 + 𝑑)𝐼𝑝)
−1

𝑋𝑡𝒱𝑋 , 𝑘  and 𝑑  are the two biasing parameters of the 

MBRTE whereas 𝐼𝑝 is the identity matrix of order 𝑝 × 𝑝. The bias vector and covariance matrix of 

MBRTE are respectively given as 

𝐵𝑖𝑎𝑠[𝛽̂MBRTE(𝑘, 𝑑)] = 𝜉(𝑀̃𝑘𝑑 − 𝐼)𝛽. (26) 

𝐶𝑜𝑣[𝛽̂MBRTE(𝑘, 𝑑)] = 𝛿𝜉𝑀̃𝑘𝑑Λ𝑀̃𝑘𝑑
𝑡 𝜉𝑡. (27) 

Thus, the MMSE and scalar MSE of the MBRTE are respectively given as 

𝑀𝑀𝑆𝐸[𝛽̂MBRTE(𝑘, 𝑑)] = 𝛿𝜉𝑀̃𝑘𝑑Λ𝑀̃𝑘𝑑
𝑡 𝜉𝑡 + (𝑀̃𝑘𝑑 − 𝐼)𝛽𝛽𝑡(𝑀̃𝑘𝑑 − 𝐼)

𝑡
. (28) 

The scalar MSE of MBRTE can be written as 

𝑀𝑆𝐸[𝛽̂MBRTE(𝑘, 𝑑)] = 𝛿 ∑
𝜆𝑗

[𝜆𝑗 + 𝑘(1 + 𝑑)]
2

𝑝

𝑗=1

+ ∑ [
𝜆𝑗

{𝜆𝑗 + 𝑘(1 + 𝑑) }
− 1]

2

.

𝑝

𝑗=1

 (29) 

Or Eq (29) can be further reduced as 

𝑀𝑆𝐸[𝛽̂MBRTE(𝑘, 𝑑)] = 𝛿 ∑
𝜆𝑗

[𝜆𝑗 + 𝑘(1 + 𝑑)]
2

𝑝

𝑗=1

+ 𝑘2(1 + 𝑑)2 ∑
𝛼𝑗

2

[𝜆𝑗 + 𝑘(1 + 𝑑)]
2

𝑝

𝑗=1

. (30) 
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2.5. Theoretical comparisons based on MMSE and scalar MSE’s 

Lemma 2.1. Let M be a positive definite (pd) matrix, 𝛼 be a vector of nonzero constants and c be a 

positive constant. Then 𝑐𝑀 − 𝛼𝛼𝑡 > 0 if and only if 𝛼𝑡𝑀𝛼 < 𝑐 [13]. 

Lemma 2.2. Given two estimators of 𝜐 , 𝜐̂1 = 𝐵1𝑦  and 𝜐2 = 𝐵2𝑦 . Suppose that 𝐸 = 𝐶𝑜𝑣 ( 𝜐̂1) −
𝐶𝑜𝑣(𝜐̂2) > 0 , where 𝐶𝑜𝑣 (𝜐̂𝑗)  represents the covariance matrices of 𝜐𝑗  (𝑗 = 1, 2) . Therefore, ∇(𝜐̂1 −

𝜐2) = 𝑀𝑀𝑆𝐸(𝜐̂1) − 𝑀𝑀𝑆𝐸(𝜐̂2) ≥ 0  if and only if 𝑏1
𝑡(𝜗𝐸 + 𝑏1𝑏1

𝑡)−1𝑏1 < 1,  where 𝑀𝑀𝑆𝐸( 𝜐̂𝑗) =

𝐶𝑜𝑣(𝜐̂1) + 𝑏1𝑏1
𝑡 represents the covariance matrix and the bias vector of 𝜐̂𝑗, respectively [14]. 

Theorem 2.1. Under the BRM, consider 𝑘 > 0, 0 < 𝑑 < 1  then 𝑀𝑀𝑆𝐸(𝛽̂𝑀𝐿𝐸) −

𝑀𝑀𝑆𝐸[𝛽̂𝑀𝐵𝑅𝑇𝐸(𝑘, 𝑑)] > 0  if and only if 𝛽𝑡(𝑀̃𝑘𝑑 − 𝐼)
𝑡
[𝛿 {(𝑋𝑡𝒱𝑋)−1 −

𝑀̃𝑘𝑑(𝑋𝑡𝒱𝑋)−1𝑀̃𝑘𝑑
𝑡 }]

−1
(𝑀̃𝑘𝑑 − 𝐼)𝛽 < 1. 

Proof. The proof of Theorem 2.1 can be seen in Appendix A. 

Theorem 2.2. Under the BRM, consider 𝑘 > 0, 0 < 𝑑 < 1  then 𝑀𝑀𝑆𝐸(𝛽̂𝐵𝑅𝑅𝐸) −

𝑀𝑀𝑆𝐸[𝛽̂𝑀𝐵𝑅𝑇𝐸(𝑘, 𝑑)] > 0  if and only if 𝛽𝑡(𝑀̃𝑘𝑑 − 𝐼)
𝑡
[𝛿{𝐹𝑘(𝑋𝑡𝒱𝑋)−1𝐹𝑘

𝑡 −

𝑀̃𝑘𝑑(𝑋𝑡𝒱𝑋)−1𝑀̃𝑘𝑑
𝑡 }]

−1
(𝑀̃𝑘𝑑 − 𝐼)𝛽 ≤ 1. 

Proof. The proof of Theorem 2.2 can be seen in Appendix B. 

Theorem 2.3. Under the BRM, consider 𝑘 > 0, 0 < 𝑑 < 1  then 𝑀𝑀𝑆𝐸(𝛽̂𝐵𝐿𝐸) −

𝑀𝑀𝑆𝐸[𝛽̂𝑀𝐵𝑅𝑇𝐸(𝑘, 𝑑)] > 0  if and only if 𝛽𝑡(𝑀̃𝑘𝑑 − 𝐼)
𝑡
[𝛿{𝐿𝑑(𝑋𝑡𝒱𝑋)−1𝐿𝑑

𝑡 −

𝑀̃𝑘𝑑(𝑋𝑡𝒱𝑋)−1𝑀̃𝑘𝑑
𝑡 }]

−1
(𝑀̃𝑘𝑑 − 𝐼)𝛽 ≤ 1. 

Proof. The proof of Theorem 2.3 can be seen in Appendix C. 

2.6. Selection of the biasing parameters 

Following the suggestion of the RRE and many other estimators proposed by different authors 

such as Hoerl and Kennard [2], and Qasim et al. [34]. There is a need to find an appropriate parameter 

for a practical purpose. The optimal values of k and d are determined for the proposed estimator. In 

determining the optimal value of k, d is fixed. The optimal value of k can be selected by differentiating 

Eq (30) and equate to zero, we have 
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𝜕𝑀𝑆𝐸[𝛽̂𝑀𝐵𝑅𝑇𝐸(𝑘, 𝑑)]

𝜕𝑘

= −2𝛿(1 + 𝑑) ∑
𝜆𝑗

(𝜆𝑗 + 𝑘(1 + 𝑑))
3 −

𝑝

𝑗=1

2𝑘2(1 + 𝑑)3 ∑
𝛼𝑗

2

(𝜆𝑗 + 𝑘(1 + 𝑑))
3

𝑝

𝑗=1

+ 2𝑘(1 + 𝑑)2 ∑
𝛼𝑗

2

(𝜆𝑗 + 𝑘(1 + 𝑑))
2 .

𝑝

𝑗=1

 

(31) 

Let 
𝜕𝑀𝑆𝐸[𝛽̂𝑀𝐵𝑅𝑇𝐸(𝑘,𝑑)]

𝜕𝑘
= 0. On simplifying, it becomes 

𝑘𝑜𝑝𝑡 =
𝛿

(1 + 𝑑∗)𝛼𝑗
2. (32) 

For practical purpose, 𝜗  and 𝛼𝑗
2  are replaced with their unbiased estimates i.e., 𝛿  and 𝛼̂𝑗

2 , 

respectively. Consequently, Eq (32) becomes 

𝑘̂𝑜𝑝𝑡 =
𝛿

(1 + 𝑑∗)𝛼̂𝑗
2. (33) 

Furthermore, the optimal value for d can be derived by differentiating Eq (29) with respect to 𝑑 

for fixed 𝑘, we get 

𝜕𝑀𝑆𝐸[𝛽̂𝑀𝐵𝑅𝑇𝐸(𝑘, 𝑑)]

𝜕𝑑

= −2𝛿𝑘 ∑
𝜆𝑗

(𝜆𝑗 + 𝑘(1 + 𝑑))
3 −

𝑝

𝑗=1

2𝑘2(1

+ 𝑑) ∑
𝛼𝑗

2

(𝜆𝑗 + 𝑘(1 + 𝑑))
2 + 2𝑘3(1 + 𝑑)2

𝑝

𝑗=1

∑
𝛼𝑗

2

(𝜆𝑗 + 𝑘(1 + 𝑑))
3 .

𝑝

𝑗=1

 

(34) 

Let 
𝜕𝑀𝑆𝐸[𝛽̂𝑀𝐵𝑅𝑇𝐸(𝑘,𝑑)]

𝜕𝑑
= 0. On simplifying, it becomes 

𝑑𝑜𝑝𝑡 =
𝛿

𝑘∗𝛼𝑗
2 − 1. (35) 

For practical purpose, 𝛿  and 𝛼𝑗
2  are replaced with their unbiased estimates i.e., 𝛿  and 𝛼̂𝑗

2 , 

respectively. Consequently, Eq (35) becomes 
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𝑑̂𝑜𝑝𝑡 =
𝛿

𝑘∗𝛼̂𝑗
2 − 1. (36) 

The selection of the estimators of the parameters d and k is obtained iteratively as follows: 

Step 1: Obtain an initial estimate of d using 𝑑̂ =

∑
𝛼̂𝑗

2−𝛿̂

(𝜆𝑗+1)
2

𝑝
𝑗=1

∑
𝛿̂+𝜆𝑗𝛼̂𝑗

2

𝜆𝑗(𝜆𝑗+1)
2

𝑝
𝑗=1

. 

Step 2: Obtain 𝑘̂𝑜𝑝𝑡 using Eq (33) by based on 𝑑̂ as computed in step 1.  

Step 3: Estimate 𝑑̂𝑜𝑝𝑡 using Eq (36) by utilizing the value of 𝑘̂𝑜𝑝𝑡 obtained from step 2.  

Step 4: If the value obtained from Step 1 is not between 0 and 1, use 𝑑̂𝑜𝑝𝑡 = 𝑑̂. 

3. Results Monte Carlo simulation 

In this section, a brief discussion is presented about the generation of data associated with 

different factors that play a pivotal role in the design of the simulation experiment. In addition, the 

assessment criterion is also presented to investigate the performance of the proposed estimator and 

compared with other competitive estimators.  

3.1. Simulation layout 

The numerical results were obtained using the following BRM which is defined as 

𝑙𝑜𝑔 (
𝜇𝑖

1 − 𝜇𝑖
) = (𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝)

−1
, 𝑖 = 1, … , 𝑛; 𝑗 = 1, … , 𝑝, (37) 

where 𝑥𝑖𝑗 is the covariates and 𝛽𝑗 represents the regression coefficients. The restriction on slope 

parameter values is ∑ 𝛽𝑗
2𝑝

𝑗=1 = 1 , (see, e.g., Kibria [9] for more details). The intercept value is 

considered to be zero. The BRM is defined by using the logit link function in Eq (36). The n 

observations for the response variable are generated as 𝑦𝑖~𝛽𝑒(𝜇𝑖, 𝜑), 𝑖 = 1, … , 𝑛 in each Monte Carlo 

replication. The correlated regressors are generated by following McDonald and Galarneau [15] as 

follows 

𝑥𝑖𝑗 = (1 − 𝜌2)1/2𝑧𝑖𝑗 + 𝜌𝑧𝑖(𝑗+1), 𝑖 = 1, … , 𝑛; 𝑗 = 1, … , 𝑝. (38) 

where 𝑧𝑖𝑗  is the independent standard normal pseudo-random numbers and 𝜌  is the degree of 

correlation among two regressors. The performance of the proposed estimators is assessed under 

different conditions such as the degree of correlation which is taken to be 𝜌 = 0.80, 0.90, 0.95, 0.99, 

sample size (𝑛 = 25, 50, 100, 200), number of explanatory variables (𝑝 = 4, 8, 16), and dispersion 

parameter (𝜑 = 0.01, 0.10, 10, 20) . For a combination of the various values of 𝑛, 𝑝, 𝜌, 𝜑 , the 
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generated data are repeated 2000 times and the average MSE are respectively defined as 

𝑀𝑆𝐸(𝛽̂) =
∑ (𝛽̂𝑖 − 𝛽)𝑡(𝛽̂𝑖 − 𝛽)𝑅

𝑖=1

𝑅
, (39) 

where (𝛽̂𝑖 − 𝛽)  is the difference between the estimated and true parameter vectors and R is the 

number replications. All the computations are performed using the R Programming Language with the 

support of betareg() R package. 

3.2. Results and discussion 

The estimated MSEs of the BRM with different estimation methods are reported in Tables 1–3. 

For the evaluation purposes, we consider different factors to notice the performance of the proposed 

MBRTE. The general comments on the findings of the simulation study are discussed below. 

From the results reported in Tables 1–3, one can be noticed that the performance of the proposed 

MBRTE is quite satisfactory in a sense of minimum MSE as compared to other estimation methods 

under study. 

Results also demonstrate that multicollinearity has a severe impact on the estimated MSE’s of the 

estimators under study. While this impact is somehow lower in our proposed estimator which signifies 

that MBRT shows a robust behaviour in the presence of high but imperfect multicollinearity. It should 

be noted that the MLE is the most negatively affected estimator when the regressors are correlated 

with one another. In addition, our proposed estimator outperforms the traditional MLE, BRRE, BLE 

in the BRM to reduce the effect of collinearity among regressors. 

Increasing the value of sample size (𝑛) makes a decrease in the MSE values of the BRM for all 

the estimators under study. Meanwhile, the sample size has an indirect impact on the estimated MSE’s. 

Increasing the number of explanatory variables makes an increase in the simulated MSE values 

of the BRM estimators. Again, the MLE is the severely negatively affected estimator in this situation. 

If we examine the performance of the estimators concerning the regressors, then we conclude from the 

results that the proposed MBRTE still shows a reliable estimation method as compared to other 

estimation methods. 

Hence, the findings of the simulation is compatible with the theoretical results. In summary, we 

suggest using MBRTE in the presence of moderate to strong multicollinearity due to its significantly 

decreasing the simulated MSE’s. 

Table 1. Estimated MSE values when 𝑝 = 4. 

𝜌 n 
MLE BRRE BLE MBRTE  MLE BRRE BLE MBRTE 

When 𝝋 = 𝟎. 𝟎𝟏  When 𝝋 = 𝟎. 𝟏𝟎 

0.8 25 1461.865 954.685 634.852 0.294  1510.681 956.411 653.440 0.454 

 50 144.960 93.578 62.518 0.243  158.128 96.121 65.545 0.379 

 100 29.752 19.903 13.375 0.207  29.763 19.578 13.202 0.363 

 200 15.530 10.685 7.241 0.195  15.483 10.592 7.080 0.292 

0.9 25 1538.564 958.662 680.459 0.320  1597.525 978.733 657.294 0.316 

        Continued on next page 
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𝜌 n 
MLE BRRE BLE MBRTE  MLE BRRE BLE MBRTE 

When 𝝋 = 𝟎. 𝟎𝟏  When 𝝋 = 𝟎. 𝟏𝟎 

 50 151.126 96.773 65.062 0.256  159.851 105.768 71.996 0.298 

 100 32.122 20.981 13.979 0.214  30.887 20.033 13.430 0.285 

 200 15.903 10.774 7.364 0.199  15.506 10.751 7.123 0.284 

0.95 25 1548.607 1002.796 675.240 0.350  1506.279 1002.934 706.873 0.258 

 50 156.657 102.254 70.254 0.276  151.471 109.378 72.372 0.244 

 100 32.444 21.292 14.297 0.225  30.028 21.152 13.858 0.222 

 200 16.456 11.171 7.485 0.206  16.846 11.175 7.445 0.206 

0.99 25 1601.282 1035.429 688.990 0.470  1661.684 1083.714 713.653 0.202 

 50 167.473 106.368 70.490 0.370  177.806 111.048 77.710 0.202 

 100 32.975 22.498 14.840 0.304  34.010 21.314 14.517 0.201 

 200 17.264 11.591 7.733 0.266  17.254 11.584 7.952 0.201 

  When 𝝋 = 𝟏𝟎  When 𝝋 = 𝟐𝟎 

0.8 25 1520.454 974.694 665.840 0.295  1525.708 955.363 665.220 0.298 

 50 150.927 96.626 64.800 0.238  147.848 95.274 65.179 0.244 

 100 30.169 20.328 13.809 0.200  31.129 20.866 13.810 0.203 

 200 15.285 10.390 6.989 0.194  15.476 10.594 7.111 0.199 

0.9 25 1544.126 1003.403 676.376 0.330  1534.105 982.868 674.019 0.319 

 50 155.875 102.261 69.402 0.259  156.330 98.842 68.386 0.252 

 100 30.985 20.808 13.914 0.209  31.314 21.217 14.159 0.213 

 200 16.451 11.177 7.527 0.197  16.013 10.998 7.294 0.201 

0.95 25 1553.573 1008.130 682.785 0.352  1595.336 997.089 676.624 0.356 

 50 157.302 103.901 70.245 0.286  160.072 102.678 69.935 0.283 

 100 31.053 21.161 14.154 0.217  31.402 21.370 14.418 0.227 

 200 16.689 11.288 7.620 0.212  16.136 11.052 7.473 0.208 

0.99 25 1637.592 1026.718 692.474 0.493  1613.593 1083.808 713.157 0.458 

 50 166.097 106.411 70.685 0.378  162.618 109.395 72.122 0.386 

 100 34.318 21.937 14.985 0.289  35.886 22.973 15.594 0.301 

 200 17.431 11.777 7.978 0.273  17.829 11.508 7.637 0.268 
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Table 2. Estimated MSE values when 𝑝 = 8. 

𝜌 n MLE BRRE BLE 

MBRT

E  MLE BRRE BLE 

MBRT

E 

When 𝝋 = 𝟎. 𝟎𝟏  When 𝝋 = 𝟎. 𝟏𝟎 

0.8 25 3493.471 1655.005 2475.141 0.170  3410.860 1602.835 2419.461 0.173 

 50 336.830 155.522 237.711 0.155  340.091 158.464 241.797 0.155 

 100 69.429 32.637 50.238 0.135  70.570 33.249 51.332 0.139 

 200 36.001 17.116 26.659 0.132  35.350 16.662 26.028 0.138 

0.9 25 3787.412 1716.299 2453.250 0.178  3684.274 1682.698 2513.316 0.179 

 50 381.654 178.889 256.158 0.157  378.671 177.312 262.299 0.156 

 100 75.838 35.292 53.452 0.140  78.268 37.173 56.124 0.141 

 200 38.895 18.335 28.095 0.137  38.254 17.819 27.304 0.133 

0.95 25 3940.006 1744.503 2575.470 0.228  4156.820 1857.568 2625.028 0.237 

 50 399.610 180.186 265.770 0.191  407.611 184.123 263.323 0.195 

 100 82.505 37.450 55.708 0.156  83.855 38.087 56.724 0.154 

 200 43.203 19.902 30.391 0.155  42.470 19.486 29.652 0.151 

0.99 25 6353.596 2516.975 3323.980 0.588  6134.180 2409.218 3183.864 0.712 

 50 627.016 244.927 334.904 0.552  632.958 254.474 342.081 0.523 

 100 126.134 49.502 72.028 0.464  127.439 49.602 72.580 0.456 

 200 63.745 25.255 38.347 0.449  66.473 27.221 40.485 0.405 

  When 𝝋 = 𝟏𝟎  When 𝝋 = 𝟐𝟎 

0.8 25 3584.167 1719.952 2580.859 0.172  3518.382 1675.885 2513.824 0.177 

 50 339.155 156.971 240.639 0.150  344.651 162.652 245.150 0.151 

 100 68.101 31.617 49.133 0.135  71.344 34.410 52.359 0.135 

 200 36.056 17.139 26.568 0.134  35.487 16.876 26.128 0.132 

0.9 25 3775.467 1760.573 2585.961 0.181  3723.077 1712.880 2537.605 0.177 

 50 368.266 169.179 251.905 0.160  385.446 182.013 259.664 0.155 

 100 75.468 35.394 53.593 0.142  75.382 34.689 53.250 0.142 

 200 39.241 18.606 28.485 0.129  39.040 18.436 28.159 0.139 

0.95 25 4072.415 1849.218 2587.453 0.223  4114.300 1856.151 2622.516 0.233 

 50 412.676 189.978 267.416 0.204  405.125 179.866 267.277 0.187 

 100 84.916 39.503 57.971 0.157  82.663 37.725 55.966 0.154 

 200 41.293 18.640 28.558 0.154  42.185 19.505 29.484 0.143 

0.99 25 6223.062 2357.773 3200.499 0.636  6332.104 2503.887 3315.646 0.634 

 50 627.069 244.600 334.676 0.607  626.370 244.832 333.947 0.517 

 100 126.896 49.587 72.767 0.421  125.758 49.557 72.559 0.445 

 200 64.634 25.171 38.447 0.384  65.828 25.831 39.293 0.426 
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Table 3. Estimated MSE values when 𝑝 = 16. 

𝜌 n 
MLE BRRE BLE MBRTE  MLE BRRE BLE MBRTE 

When 𝝋 = 𝟎. 𝟎𝟏  When 𝝋 = 𝟎. 𝟏𝟎 

0.8 25 7709.10 5772.19 3826.34 0.116  7608.27 5657.97 3705.16 0.116 

 50 756.45 561.99 365.46 0.104  758.58 566.37 367.00 0.110 

 100 154.40 117.41 74.85 0.096  157.24 120.65 77.56 0.095 

 200 78.58 60.52 37.83 0.099  77.89 60.07 37.45 0.093 

0.9 25 8798.98 5955.73 4080.84 0.120  9155.90 6188.07 4266.57 0.118 

 50 906.99 624.09 425.79 0.114  928.01 642.18 442.26 0.112 

 100 183.29 130.32 85.38 0.105  188.26 134.94 88.76 0.108 

 200 97.99 72.53 46.59 0.103  95.50 70.18 44.86 0.106 

0.95 25 11053.46 6186.55 4677.31 0.318  11239.23 6421.11 4834.07 0.344 

 50 1110.72 651.09 465.55 0.297  1140.54 671.61 485.58 0.288 

 100 234.59 148.34 100.19 0.238  227.69 143.23 96.69 0.253 

 200 115.19 75.06 48.13 0.241  117.76 77.61 50.45 0.253 

0.99 25 77507.03 12216.19 14917.40 12.075  78376.06 11677.04 14778.76 10.081 

 50 7725.77 1391.07 1607.66 10.040  7986.19 1400.34 1598.89 9.494 

 100 1691.96 373.89 360.84 7.462  1560.49 317.31 333.73 7.677 

 200 825.70 188.55 161.77 7.367  805.44 191.74 166.76 7.460 

  When 𝝋 = 𝟏𝟎  When 𝝋 = 𝟐𝟎 

0.8 25 7414.81 5490.12 3594.12 0.117  7551.93 3671.15 5588.18 0.115 

 50 762.57 569.52 370.52 0.106  758.88 368.35 568.66 0.105 

 100 152.59 115.52 73.31 0.094  158.55 78.16 121.62 0.092 

 200 78.56 60.52 37.98 0.091  79.84 39.13 61.99 0.094 

0.9 25 9095.27 6207.31 4304.71 0.120  9219.84 4391.77 6308.37 0.117 

 50 907.03 622.82 421.97 0.113  913.80 430.76 628.25 0.109 

 100 186.21 133.97 87.64 0.107  185.75 88.17 133.14 0.108 

 200 96.11 70.92 45.28 0.106  96.56 45.25 70.95 0.103 

0.95 25 11205.91 6328.50 4709.50 0.343  11204.95 4706.73 6293.87 0.352 

 50 1089.65 627.50 455.02 0.297  1082.86 454.36 631.05 0.268 

 100 227.05 142.40 96.40 0.235  226.47 95.13 142.05 0.248 

 200 117.53 76.64 49.31 0.233  117.90 50.20 77.52 0.244 

0.99 25 77080.04 12297.92 14439.78 8.513  74840.34 14994.86 12475.33 8.137 

 50 7937.47 1569.76 1629.59 7.969  7850.99 1608.74 1414.84 7.723 

 100 1595.81 347.58 341.86 7.823  1665.56 338.02 348.46 7.639 

 200 814.78 190.18 172.79 7.759  817.89 167.14 186.33 6.533 
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4. Application: Heat treating test data 

To evaluate the performance of the proposed method, we consider the heat treating test data. This 

dataset is taken from Montgomery and Runger [56]. This dataset consists of one response and five 

explanatory variables, where the response variable (y) represents the PITCH that denotes the product 

introduction to customer heart whose meaning is the quality of a sound governed by the rate of 

vibrations producing it or the level of something. Whereas the description of regressors include: 𝑥1= 

furnace temperature (Temp), 𝑥2 =carbon concentration 𝑥3 =carburizing cycle (soakpct, soaktime), 

𝑥4 =carbon concentration and 𝑥5 =duration of the defuse time (Difftime, Diffpct). As the response 

variable is in the form of ratio, so we use the BRM to model the response variable. Initially, it is 

necessary to examine the multicollinearity issue among the regressors. For this, condition index is 

generally used i.e., 𝐶𝐼 = √
max (𝜆𝑗)

min (𝜆𝑗)
  which is to be 68621.13 indicating the existence of severe 

multicollinearity among the regressors [1,43]. 

Table 4. Estimated Coefficients and MSE’s of the considered example. 

 MLE  BRRE  BLE  MBRTE 

 Estimates SE  Estimates SE  Estimates SE  Estimates SE 

𝛽1 0.00197 0.00162  0.00198 0.00023  0.00209 0.00023  0.00306 0.00022 

𝛽2 0.01967 0.00167  0.01963 0.00040  0.01912 0.00040  0.01493 0.00035 

𝛽3 0.00148 0.00163  0.00145 0.00066  0.00118 0.00064  -0.00112 0.00047 

𝛽4 0.00833 0.00144  0.00836 0.00092  0.00840 0.00087  0.00896 0.00051 

𝛽5 -0.00335 0.00862  -0.00318 0.00333  -0.00310 0.00320  -0.00094 0.00027 

MSE 0.000085 -----  0.000076 -----  0.000070 -----  0.000041 ----- 

CV 0.97642 -----  0.95188 -----  0.94874 -----  0.94873 ----- 

*Note: SE = Standard error; CV = Cross validation. 

The estimated coefficients and their respective MSE’s of the BRM’s estimators are reported in 

Table 4. Moreover, the estimated coefficients of the MLE, BRRE, BLE, and MBRTE are computed 

respectively using Eqs (9), (12), (18) and (25). While the MSE’s of the considered estimators are computed 

respectively using Eqs (11), (16), (22) and (30). On the contrary, the value of ridge parameter used in scalar 

MSE of the BRRE is computed using Eq (17) which is to found be 𝑘̂ = 0.0044, Liu parameter of the 

BLE is calculated using Eq (23) which is found to be 𝑑̂ = 0.8948 , and the values of the biasing 

parameters for the MBRTE are computed respectively using Eqs (33) and (36) and are found to be 

𝑘̂ = 0.0033 and 𝑑̂ = 0.5135. The results of Table 4 signifies that the MSE of the proposed MBRTE 

is substantially smaller than the MLE as well as other biased estimators. Results also validate that the 

MLE is the most negatively affected estimator when the regressors are highly correlated with one 
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another due to its inflated behaviour of the MSE. However, BRRE and BLE show a smaller MSE when 

compared with MLE but these two biased estimators are not reliable when compared with our proposed 

MBRTE. Further, we also consider the standard error (SE) of the estimators considered in the study. 

Table 4 clearly demonstrates that the proposed MBRTE attains the smaller SEs while MLE attains the 

larger SEs of the regression estimates. Further, it is also clear that due to large SE and MSE, the MLE 

is not a better estimation method. 

We use another criteria i.e., cross validation (CV) applied to the real life data set for the assessment 

of the proposed method. The findings of average validation error with reference to CV method are also 

given in Table 4. In CV criteria, we divide the train set into K = 5 equal size subsets or folds. Now for 

the individual value of k i.e., 𝑘 = 1, … ,5, we fit our prediction function on all points but those I the 

kth fold, and evaluate the validation error on the points in the kth fold. For more details on the CV, we 

refer the readers, please see [26, 43–45]. Further, the CV is considered to examine the predictive 

performance of the estimators comprehensively. Table 4 represents the CV values of all the estimators 

considered in the study. Results signifies that the performance of the proposed MBRTE is better as 

compared to the MLE, BRRE, and BLE. So both criteria i.e., MSE and CV shows that the proposed 

estimator performs consistently better as compared to the competitors.  

Hence, both the simulation results and empirical application findings consistently support our 

proposed estimator and we recommend the practitioners to use our MBRTE instead of BRRE and BLE 

for estimating the unknown parameters of the BRM whenever the regressors are highly multicollinear. 

5. Conclusions 

In this paper, we proposed a new modified beta ridge-type (MBRT) estimator. We show 

analytically that the new estimator is superior to the standard MLE as well as other well-known biased 

estimators, i.e., BRRE, and BLE. A simulation study has been conducted to compare the performance 

of our proposed estimator with the available estimators. In the simulation experiment, we consider 

several factors to monitor the behaviour of the proposed estimator in every perspective. Based on the 

findings of the simulation, we found that our proposed estimator performed better than some existing 

estimators in a sense of smaller MSE and can be recommended. Finally, the benefit of the proposed 

estimator is shown by an empirical application where the proposed MBRTE for the BRM performed 

considerably better in terms of smaller MSE and CV as compared to the MLE as well as the other 

biased estimators. So, we suggest the researchers to use MBRTE whenever they want to fit the BRM 

and face the issue of multicollinearity. 
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Appendix A: Proof of Theorem 1 

The difference among the MMSE functions of MLE and MBRTE is obtained by 

∇= 𝑀𝑀𝑆𝐸(𝛽̂𝑀𝐿𝐸) − 𝑀𝑀𝑆𝐸[𝛽̂𝑀𝐵𝑅𝑇𝐸(𝑘, 𝑑)]

= 𝛿((𝑋𝑡𝒱𝑋)−1 − 𝑀̃𝑘𝑑(𝑋𝑡𝒱𝑋)−1𝑀̃𝑘𝑑
𝑡 ) − (𝑀̃𝑘𝑑 − 𝐼)𝛽𝛽𝑡(𝑀̃𝑘𝑑 − 𝐼)

𝑡
. 

(A1) 

However, Eq (A1) can be written in terms of scalar MSE as 

𝑀𝑆𝐸(𝛽̂𝑀𝐿𝐸) − 𝑀𝑆𝐸[𝛽̂𝑀𝐵𝑅𝑇𝐸(𝑘, 𝑑)]

= 𝜉𝛿𝑑𝑖𝑎𝑔 {
1

𝜆𝑗
−

𝜆𝑗

[𝜆𝑗 + 𝑘(1 + 𝑑)]
2}

𝑗=1

𝑝

𝜉𝑡 − 𝑏𝑀𝐵𝑅𝑇𝐸
𝑡 𝑏𝑀𝐵𝑅𝑇𝐸 . 

(A2) 

= 𝜉𝛿𝑑𝑖𝑎𝑔 {
[𝜆𝑗 + 𝑘(1 + 𝑑)]

2
− 𝜆𝑗

𝜆𝑗[𝜆𝑗 + 𝑘(1 + 𝑑)]
2 }

𝑗=1

𝑝

𝜉𝑡 − 𝑏𝑀𝐵𝑅𝑇𝐸
𝑡 𝑏𝑀𝐵𝑅𝑇𝐸 . (A3) 

Eq (A3) can be further simplified as 

𝑀𝑆𝐸(𝛽̂𝑀𝐿𝐸) − 𝑀𝑆𝐸[𝛽̂𝑀𝐵𝑅𝑇𝐸(𝑘, 𝑑)]

= 𝜉𝛿𝑑𝑖𝑎𝑔 {
[𝜆𝑗 + 𝑘(1 + 𝑑)]

2
− 𝜆𝑗

𝜆𝑗[𝜆𝑗 + 𝑘(1 + 𝑑)]
2 }

𝑗=1

𝑝

𝜉𝑡 − 𝑏𝑀𝐵𝑅𝑇𝐸
𝑡 𝑏𝑀𝐵𝑅𝑇𝐸

= 𝜉𝛿𝑑𝑖𝑎𝑔 {
2𝜆𝑗𝑘(1 + 𝑑) + 𝑘2(1 + 𝑑 + 𝑑2)

𝜆𝑗[𝜆𝑗 + 𝑘(1 + 𝑑)]
2 }

𝑗=1

𝑝

𝜉𝑡 − 𝑏𝑀𝐵𝑅𝑇𝐸
𝑡 𝑏𝑀𝐵𝑅𝑇𝐸 . 

(A4) 

We observed that (𝑋𝑡𝒱𝑋)−1 − 𝑀̃𝑘𝑑(𝑋𝑡𝒱𝑋)−1𝑀̃𝑘𝑑
𝑡   is pd since (𝑋𝑡𝒱𝑋 + 𝑘(1 + 𝑑))

2
>

(𝑋𝑡𝒱𝑋)2∀ 𝑘 > 0  and 0 < 𝑑 < 1 . Further, 𝛿(𝑋𝑡𝒱𝑋)−1(𝐼𝑝 − 𝑀̃𝑘𝑑𝑀̃𝑘𝑑
𝑡 )  is pd iff 2𝜆𝑗𝑘(1 + 𝑑) >

𝑘2(1 + 𝑑 + 𝑑2)∀ 𝑗 = 1,2, … , 𝑝 . Thus, using Lemma 1 and 2, we conclude that ∇ > 0  iff 

(𝑀̃𝑘𝑑 − 𝐼)𝛽𝛽𝑡(𝑀̃𝑘𝑑 − 𝐼)
𝑡

< 1, then the proof is completed.  

Appendix B: Proof of Theorem 2 

The difference among the MMSE functions of BRRE and MBRTE is obtained by 
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∇= 𝑀𝑀𝑆𝐸(𝛽̂𝐵𝑅𝑅𝐸) − 𝑀𝑀𝑆𝐸[𝛽̂𝑀𝐵𝑅𝑇𝐸(𝑘, 𝑑)]

= 𝛿(𝐸) + 𝑘2𝐹𝑘𝛽𝛽𝑡𝐹𝑘 − (𝑀̃𝑘𝑑 − 𝐼)𝛽𝛽𝑡(𝑀̃𝑘𝑑 − 𝐼)
𝑡
. 

(B1) 

However, Eq (B1) can be written in terms of scalar MSE as 

𝑀𝑆𝐸(𝛽̂𝐵𝑅𝑅) − 𝑀𝑆𝐸[𝛽̂𝑀𝐵𝑅𝑇𝐸(𝑘, 𝑑)]

= 𝜉𝛿𝑑𝑖𝑎𝑔 {
 𝜆𝑗

(𝜆𝑗 + 𝑘)
2 −

𝜆𝑗

[𝜆𝑗 + 𝑘(1 + 𝑑)]
2}

𝑗=1

𝑝

𝜉𝑡+𝑏𝐵𝑅𝑅𝐸
𝑡 𝑏𝐵𝑅𝑅𝐸

− 𝑏𝑀𝐵𝑅𝑇𝐸
𝑡 𝑏𝑀𝐵𝑅𝑇𝐸

= 𝜉𝛿𝑑𝑖𝑎𝑔 {
 𝜆𝑗[𝜆𝑗 + 𝑘(1 + 𝑑)]

2
− 𝜆𝑗(𝜆𝑗 + 𝑘)

2

(𝜆𝑗 + 𝑘)
2

[𝜆𝑗 + 𝑘(1 + 𝑑)]
2 }

𝑗=1

𝑝

𝜉𝑡+𝑏𝐵𝑅𝑅𝐸
𝑡 𝑏𝐵𝑅𝑅𝐸

− 𝑏𝑀𝐵𝑅𝑇𝐸
𝑡 𝑏𝑀𝐵𝑅𝑇𝐸 . 

(B2) 

where 𝐹𝑘 = (𝑋𝑡𝒱𝑋 + 𝑘𝐼)−1  and 𝐸 = 𝐹𝑘(𝑋𝑡𝒱𝑋)𝐹𝑘
𝑡 − 𝑀̃𝑘𝑑(𝑋𝑡𝒱𝑋)−1𝑀̃𝑘𝑑

𝑡  . Hence, 𝛿(𝐸) +

𝑘2𝐹𝑘𝛽𝛽𝑡𝐹𝑘  is non-negative, it is enough to prove that 𝐹𝑘(𝑋𝑡𝒱𝑋)𝐹𝑘
𝑡 − 𝑀̃𝑘𝑑(𝑋𝑡𝒱𝑋)−1𝑀̃𝑘𝑑

𝑡 −

(𝑀̃𝑘𝑑 − 𝐼)𝛽𝛽𝑡(𝑀̃𝑘𝑑 − 𝐼)
𝑡
  is pd. Further, 𝐹𝑘(𝑋𝑡𝒱𝑋)𝐹𝑘

𝑡 − 𝑀̃𝑘𝑑(𝑋𝑡𝒱𝑋)−1𝑀̃𝑘𝑑
𝑡   is pd iff 𝜆𝑗[𝜆𝑗 +

𝑘(1 + 𝑑)]
2

> 𝜆𝑗(𝜆𝑗 + 𝑘)
2

∀ 𝑗 = 1,2, … , 𝑝. Thus, using Lemma 1 and 2, we conclude that ∇> 0 iff 

𝛽𝑡(𝑀̃𝑘𝑑 − 𝐼)
𝑡
[𝛿{𝐹𝑘(𝑋𝑡𝒱𝑋)−1𝐹𝑘

𝑡 − 𝑀̃𝑘𝑑(𝑋𝑡𝒱𝑋)−1𝑀̃𝑘𝑑
𝑡 }]

−1
(𝑀̃𝑘𝑑 − 𝐼)𝛽 ≤ 1. 

Appendix C: Proof of Theorem 3 

The difference among the MMSE functions of BLE and MBRTE is obtained by 

∇= 𝑀𝑀𝑆𝐸(𝛽̂𝐵𝐿𝐸) − 𝑀𝑀𝑆𝐸[𝛽̂𝑀𝐵𝑅𝑇𝐸(𝑘, 𝑑)]

= 𝛿[𝐿𝑑(𝑋𝑡𝒱𝑋)−1𝐿𝑑
𝑡 − 𝑀̃𝑘𝑑(𝑋𝑡𝒱𝑋)−1𝑀̃𝑘𝑑

𝑡 ] + (𝑑 − 1)2𝐴𝑑𝛽𝛽𝑡𝐴𝑑
𝑡

− (𝑀̃𝑘𝑑 − 𝐼)𝛽𝛽𝑡(𝑀̃𝑘𝑑 − 𝐼)
𝑡
. 

(C1) 

where 𝐴𝑑 = (𝑋𝑡𝒱𝑋 + 𝐼)−1. Eq (C1) can be further expanded as 



1057 
 

AIMS Mathematics Volume 7, Issue 1, 1035–1057. 

∇= 𝑀𝑀𝑆𝐸(𝛽̂𝐵𝐿𝐸) − 𝑀𝑀𝑆𝐸[𝛽̂𝑀𝐵𝑅𝑇𝐸(𝑘, 𝑑)]

= 𝛿[𝐿𝑑(𝑋𝑡𝒱𝑋)−1𝐿𝑑
𝑡 − 𝑀̃𝑘𝑑(𝑋𝑡𝒱𝑋)−1𝑀̃𝑘𝑑

𝑡 ] + (𝑑 − 1)2𝐴𝑑𝛽𝛽𝑡𝐴𝑑
𝑡

− (𝑀̃𝑘𝑑 − 𝐼)𝛽𝛽𝑡(𝑀̃𝑘𝑑 − 𝐼)
𝑡
. ∇= 𝑀𝑀𝑆𝐸(𝛽̂𝐵𝐿𝐸) − 𝑀𝑀𝑆𝐸[𝛽̂𝑀𝐵𝑅𝑇𝐸(𝑘, 𝑑)]

= 𝛿[𝐿𝑑(𝑋𝑡𝒱𝑋)−1𝐿𝑑
𝑡 − 𝑀̃𝑘𝑑(𝑋𝑡𝒱𝑋)−1𝑀̃𝑘𝑑

𝑡 ] + (𝑑 − 1)2𝐴𝑑𝛽𝛽𝑡𝐴𝑑
𝑡

− (𝑀̃𝑘𝑑 − 𝐼)𝛽𝛽𝑡(𝑀̃𝑘𝑑 − 𝐼)
𝑡
. 

(C2) 

However, Eq (C2) can be written in terms of scalar MSE as 

𝑀𝑆𝐸(𝛽̂𝐵𝐿𝐸) − 𝑀𝑆𝐸[𝛽̂𝑀𝐵𝑅𝑇𝐸(𝑘, 𝑑)]

= 𝜉𝛿𝑑𝑖𝑎𝑔 {
(𝜆𝑗 + 𝑑)

2

𝜆𝑗(𝜆𝑗 + 1)
2 −

𝜆𝑗

[𝜆𝑗 + 𝑘(1 + 𝑑)]
2}

𝑗=1

𝑝

𝜉𝑡+𝑏𝐵𝐿𝐸
𝑡 𝑏𝐵𝐿𝐸

− 𝑏𝑀𝐵𝑅𝑇𝐸
𝑡 𝑏𝑀𝐵𝑅𝑇𝐸

= 𝜉𝛿𝑑𝑖𝑎𝑔 {
(𝜆𝑗 + 𝑑)

2
[𝜆𝑗 + 𝑘(1 + 𝑑)]

2
− 𝜆𝑗

2(𝜆𝑗 + 1)
2

𝜆𝑗(𝜆𝑗 + 1)
2

[𝜆𝑗 + 𝑘(1 + 𝑑)]
2 }

𝑗=1

𝑝

𝜉𝑡+𝑏𝐵𝐿𝐸
𝑡 𝑏𝐵𝐿𝐸

− 𝑏𝑀𝐵𝑅𝑇𝐸
𝑡 𝑏𝑀𝐵𝑅𝑇𝐸 . 

(C3) 

Since (𝑑 − 1)2𝐴𝑑𝛽𝛽𝑡𝐴𝑑
𝑡   in Eq (C2) is nonnegative definite, it is enough to prove that 

𝐿𝑑(𝑋𝑡𝒱𝑋)−1𝐿𝑑
𝑡 − 𝑀̃𝑘𝑑(𝑋𝑡𝒱𝑋)−1𝑀̃𝑘𝑑

𝑡 − (𝑀̃𝑘𝑑 − 𝐼)𝛽𝛽𝑡(𝑀̃𝑘𝑑 − 𝐼)
𝑡
 is pd. 𝛿 (𝑋𝑡𝒱𝑋)−1  [𝐿𝑑𝐿𝑑

𝑡 −

𝑀̃𝑘𝑑𝑀̃𝑘𝑑
𝑡 ]is pd iff (𝜆𝑗 + 𝑑)

2
[𝜆𝑗 + 𝑘(1 + 𝑑)]

2
> 𝜆𝑗

2(𝜆𝑗 + 1)
2

∀ 𝑗 = 1,2, … , 𝑝. Thus if 𝑘 > 0, 0 < 𝑑 <

1, then the theorem is ended by Lemma 1. 
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