Loading [MathJax]/jax/output/SVG/jax.js
Research article

Double controlled M-metric spaces and some fixed point results

  • Received: 02 April 2022 Revised: 07 June 2022 Accepted: 13 June 2022 Published: 17 June 2022
  • MSC : 47H10, 54H25

  • In this article, we introduce the idea of double controlled M-metric space by employing two control functions a(u,w) and β(w,v) on the right-hand side of the triangle inequality of M-metric space. We provide some examples of double controlled M-metric spaces. We also provide some fixed point results under new type of contractions in the setting of double controlled M-metric spaces. Moreover, we give an example to highlight the importance of one of our main results.

    Citation: Fahim Uddin, Faizan Adeel, Khalil Javed, Choonkil Park, Muhammad Arshad. Double controlled M-metric spaces and some fixed point results[J]. AIMS Mathematics, 2022, 7(8): 15298-15312. doi: 10.3934/math.2022838

    Related Papers:

    [1] Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Isra Manzoor, Thabet Abdeljawad, Dania Santina, Nabil Mlaiki . Complex-valued double controlled metric like spaces with applications to fixed point theorems and Fredholm type integral equations. AIMS Mathematics, 2023, 8(2): 4944-4963. doi: 10.3934/math.2023247
    [2] Zhenhua Ma, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei . Fixed point results for generalized contractions in controlled metric spaces with applications. AIMS Mathematics, 2023, 8(1): 529-549. doi: 10.3934/math.2023025
    [3] Abdullah Shoaib, Poom Kumam, Shaif Saleh Alshoraify, Muhammad Arshad . Fixed point results in double controlled quasi metric type spaces. AIMS Mathematics, 2021, 6(2): 1851-1864. doi: 10.3934/math.2021112
    [4] Haroon Ahmad, Sana Shahab, Wael F. M. Mobarak, Ashit Kumar Dutta, Yasser M. Abolelmagd, Zaffar Ahmed Shaikh, Mohd Anjum . Convergence results for cyclic-orbital contraction in a more generalized setting with application. AIMS Mathematics, 2024, 9(6): 15543-15558. doi: 10.3934/math.2024751
    [5] A. M. Zidan, Z. Mostefaoui . Double controlled quasi metric-like spaces and some topological properties of this space. AIMS Mathematics, 2021, 6(10): 11584-11594. doi: 10.3934/math.2021672
    [6] Fatima M. Azmi . New fixed point results in double controlled metric type spaces with applications. AIMS Mathematics, 2023, 8(1): 1592-1609. doi: 10.3934/math.2023080
    [7] Irshad Ayoob, Ng Zhen Chuan, Nabil Mlaiki . Quasi $ M $-metric spaces. AIMS Mathematics, 2023, 8(5): 10228-10248. doi: 10.3934/math.2023518
    [8] Sahibzada Waseem Ahmad, Muhammad Sarwar, Thabet Abdeljawad, Gul Rahmat . Multi-valued versions of Nadler, Banach, Branciari and Reich fixed point theorems in double controlled metric type spaces with applications. AIMS Mathematics, 2021, 6(1): 477-499. doi: 10.3934/math.2021029
    [9] Anas A. Hijab, Laith K. Shaakir, Sarah Aljohani, Nabil Mlaiki . Double composed metric-like spaces via some fixed point theorems. AIMS Mathematics, 2024, 9(10): 27205-27219. doi: 10.3934/math.20241322
    [10] Tahair Rasham, Abdullah Shoaib, Shaif Alshoraify, Choonkil Park, Jung Rye Lee . Study of multivalued fixed point problems for generalized contractions in double controlled dislocated quasi metric type spaces. AIMS Mathematics, 2022, 7(1): 1058-1073. doi: 10.3934/math.2022063
  • In this article, we introduce the idea of double controlled M-metric space by employing two control functions a(u,w) and β(w,v) on the right-hand side of the triangle inequality of M-metric space. We provide some examples of double controlled M-metric spaces. We also provide some fixed point results under new type of contractions in the setting of double controlled M-metric spaces. Moreover, we give an example to highlight the importance of one of our main results.



    Fixed point results is a well-known and established concept in mathematical analysis and also has a firm utilization in many mathematical fields. Fixed point results are also used to solve differential equations, integral equations [3,4,5,6,12,14,15].

    In 1994, Matthews [7] developed the concept of partial metric space. In 2014, m-metric space was presented by Asadi et al. [2] which is the extended form of a partial metric space. In 2016, Mlaiki et al. [10] developed the notion of an mb-metric space which extends m-metric space and also which is the generalize form of b -metric space (see [13]). In 2018, Mlaiki et al. [9] established the idea of extended mb-metric spaces. In 2018, Mlaiki et al. [8] presented the concept of controlled metric space. In 2018, Abdeljawad et al. [1] developed the idea of double controlled metric space by using two control functions. More details can be found in [16].

    In this article, we establish a new double controlled M-metric space, by employing two control functions α,β:E×E[1,) with the following new double controlled M-metric type triangle inequality:

    (M(ω,ν)Mω,ν)α(ω,μ)(M(ω,μ)Mω,μ)+β(μ,ν)(M(μ,ν)Mμ,ν).

    Further we provide some important examples to validate our work. At last, we present an application related to our main results for Fredholm type integral equation.

    In this part, we discuss some important definitions, which would be useful in understanding this work.

    Definition 2.1. [7] Let Eϕ. A function g:E×E[0,) is said to be a partial metric if the following conditions hold, for all u,v,wE,

    1) u=ν if and only if g(u,u)=g(u,ν)=g(ν,ν);

    2) g(u,ν)=g(ν,u);

    3) g(u,u)g(u,ν);

    4) g(u,ν)g(u,w)+g(w,ν)g(w,w).

    Example 2.2. [7] Let E=[0,) with g(u,v)=max{u,v}. Then (E,g) is a partial metric space.

    We will use the following notations given in [7].

    1) mu,ν=mbu,ν=min{m(u,u),m(ν,ν)};

    2) Mu,ν=Mbu,ν=max{m(u,u),m(ν,ν)}.

    Definition 2.3. [2] Let Eϕ. A function m:E×E[0,) is said to be an m-metric if the following conditions hold, for all u,v,wE,

    1) u=ν m(u,u)=m(u,ν)=m(ν,ν);

    2) mu,νm(u,ν);

    3) m(u,ν)=m(ν,u);

    4) (m(u,ν)mu,ν)(m(u,w)mu,w)+(m(w,ν)mw,ν).

    Example 2.4. [2] Let E=[0,). Then m(u,v)=u+v on E is an m-metric.

    Definition 2.5. [11] Let Eϕ. A function mb:E×E[0,) is said be an mb-metric with coefficient s1 if the following conditions hold, for all u,v,wE,

    1) u=ν if and only if mb(u,u)=mb(u,ν)=mb(ν,ν);

    2) mbu,νmb(u,ν);

    3) mb(u,ν)=mb(ν,u);

    4) (mb(u,ν)mbu,ν)s[(mb(u,w)mbu,w)+(mb(w,ν)mbw,ν)]mb(w,w).

    Definition 2.6. [9] Let Eϕ and α:E2[1,) be a function. A function mb:E2R+ is said be an extended mb-metric if the following conditions hold, for all u,v,wE,

    1) u=ν if and only if mb(u,u)=mb(u,ν)=mb(ν,ν);

    2) mbu,νmb(u,ν);

    3) mb(u,ν)=mb(ν,u);

    4) (mb(u,ν)mbu,ν)α(u,ν)[(mb(u,w)mu,w)+(mb(w,ν)mbw,ν)].

    The pair (E,mb) is said to be an extended mb-metric space.

    Example 2.7. [9] Let E=C([a,b],R) be the set of all continuous real valued functions on [a,b]. We define the functions

    mb:E2[0,+)andα:E2[1,+)

    by

    mb(u(t),v(t))=supt[a,b]|u(t)v(t)|2andα(u(t),v(t))=|u(t)+v(t)|+2.

    Then (E,mb) is an extended mb-metric space with the function α.

    Definition 3.1. Let Eϕ and α, β:E×E[1,) be functions. A mapping M:E×E[0,) is said be a double controlled M-metric if the following conditions hold, for all u,v,wE,

    (1) u=ν if and only if M(u,u)=M(u,ν)=M(ν,ν);

    (2) Mu,νM(u,ν);

    (3) M(u,ν)=M(ν,u);

    (4) (M(u,ν)Mu,ν)α(u,w)(M(u,w)Mu,w)+β(w,ν)(M(w,ν)Mw,ν).

    Example 3.2. Let E=[0,1] and for distinct u,v and wE we take

    M(u,v)=18=M(v,u),M(1,1)=1,M(u,w)=6=M(w,u),M(2,2)=8,M(w,v)=7=M(v,w),M(3,3)=3.

    Define α,β:E×E[1,) by

    α(u,v)={2u+3,ifu>v3v2+1,otherwise

    and

    β(u,v)={8u+4,ifu>v2v2+1,otherwise.

    Clearly, (1)–(3) are satisfied. Now for (4)

    M(u,v)Mu,vα(u,w)(M(u,w)Mu,w)+β(w,v)(M(w,v)Mw,v),1887(3)+8(3),104+2=6.

    Clearly M is not an m-metric space, but if we take

    α(u,w)=4,β(w,v)=6,

    then

    10(4)(4)+(6)(2)=28.

    Hence the space is not an m-metric space, but it is a double controlled M -metric space

    Example 3.3. Let E={1,2,3} and for distinct u,v and wE we take

    M(u,v)=16=M(v,u),M(1,1)=1,M(u,w)=4=M(w,u),M(2,2)=9,M(w,v)=5=M(v,w),M(3,3)=2.

    Define α,β:E×E[1,) by

    α(u,v)={u+1,ifu>vv2,otherwise

    and

    β(u,v)={3u,ifu>v2v,otherwise.

    Clearly, (1)–(3) aresatisfied.Nowfor \left( 4\right) $

    M(u,v)Mu,vα(u,w)(M(u,w)Mu,w)+β(w,v)(M(w,v)Mw,v),157(3)+8(3)

    if we take

    α(u,w)=7,β(w,v)=8.

    Also clearly M is not an m-metric space, since

    153+3=6.

    Hence the space is not an m-metric space, but it is a double controlled M -metric space.

    Remark 3.4. Observe that if α(u,v)=β(u,v), then M is an extended mb-metric but if α(u,v)=β(u,v)=1, then M becomes an m-metric.

    Example 3.5. Let E=[0,) and define

    M(1,1)=7,M(2,2)=13,M(3,3)=9,M(1,2)=M(2,1)=12

    and for distinct u, v and wE

    M(u,v)=19=M(v,u),M(u,w)=8=M(w,u),M(w,v)=4=M(v,w).

    Also, define α, β:E2[1,) by

    α(u,v)={3u,ifu,v>1min{u,v},otherwise

    and

    β(u,v)={10,ifu,v<1min{u,v},otherwise.

    Then clearly E is not an m-metric and extended mb-metric space but it is a double controlled M-metric space.

    Definition 3.6. Let (E,M) be a double controlled M-metric space.

    (1) A sequence {un} in E converges at a point u if

    limn(M(un,u)Mun,u)=0.

    (2) A sequence {un} in E is said to be an M-Cauchy sequence if

    limn,m(M(un,um)Mun,um)andlimn(Mun,ummun,um)<.

    (3) A double controlled M-metric space is said to be M -complete if every M-Cauchy sequence {un} converges to a point u, i.e.,

    limn(M(un,u)Mun,u)=0andlimn(Mun,umun,u)=0.

    Theorem 3.7. Let (E,M) be a complete double controlled M-metric space byfunctions α,μ:E×E[1,). Supposethat a continuous mapping R:EE satisfies

    M(Ru,Rv)K(M(u,v)+Mu,v) (3.1)

    for all u, vE where K(0,1). For u0E, let un=Rnu0. Assume that

    supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui+1,um)<1k. (3.2)

    In addition, for each uE, suppose that

    limnα(u,un)andlimnμ(un,u)<. (3.3)

    Then the mapping R has a unique fixed point.

    Proof. Let {un=Rnu0} be a sequence in E satisfying the hypothesis of the theorem. By (3.1), we get

    M(un,un+1)Kn(M(uo,u1)+Muo,u1)

    for all n0. For n,mZ with nm, we get

    M(un,um)Mun,umα(un,un+1)(M(un,un+1)Mun,un+1)+μ(un+1,um)(M(un+1,um)Mun+1,um)α(un,un+1)(M(un,un+1)Mun,un+1)+μ(un+1,um)[α(un+1,un+2)(M(un+1,un+2)Mun+1,un+2)+μ(un+2,um)(M(un+2,um)Mun+2,um)]α(un,un+1)(M(un,un+1)Mun,un+1)+μ(un+1,um)α(un+1,un+2)[(M(un+1,un+2)Mun+1,un+2)]+μ(un+1,um)μ(un+2,um)[M(un+2,um)Mun+2,um],
    M(un+2,um)Mun+2,umα(un+2,un+3)(M(un+2,un+3)Mun+2,un+3)+μ(un+3,um)(M(un+3,um)Mun+3,um)

    and so we have

    M(un,um)Mun,umα(un,un+1)(M(un,un+1)Mun,un+1)+μ(un+1,um)α(un+1,un+2)[(M(un+1,un+2)Mun+1,un+2)]+μ(un+1,um)μ(un+2,um)[α(un+2,un+3)(M(un+2,un+3)Mun+2,un+3)+μ(un+3,um)(M(un+3,um)Mun+3,um)]α(un,un+1)[M(un,un+1)Mun,un+1]+μ(un+1,um)α(un+1,un+2)[(M(un+1,un+2)Mun+1,un+2)]+μ(un+1,um)μ(un+2,um)α(un+2,un+3)[(M(un+2,un+3)Mun+2,un+3)]+μ(un+1,um)μ(un+2,um)μ(un+3,um)[(M(un+3,um)Mun+3,um)]α(un,un+1)(M(un,un+1)Mun,un+1)+m2i=n+1(ij=n+1μ(uj,um))α(ui,ui+1)[(M(ui,ui+1)Mui,ui+1)]+m1k=n+1μ(uk,um)[(M(um1,um)Mum1,um)]α(un,un+1)kn(M(uo,u1)+Muo,u1)+m2i=n+1(ij=n+1μ(uj,um))α(ui,ui+1)ki[(M(u0,u1)Mu0,u1)]+(m1i=n+1μ(ui,um))km1(M(uo,u1)+Muo,u1)α(un,un+1)kn(M(uo,u1)+Muo,u1)+m2i=n+1(ij=n+1μ(uj,um))α(ui,ui+1)ki[(M(u0,u1)Mu0,u1)]+(m1j=n+1μ(ui,um))km1α(um1,um)(M(uo,u1)+Muo,u1)=α(un,un+1)kn(M(uo,u1)+Muo,u1)+m1i=n+1(ij=n+1μ(uj,um))α(ui,ui+1)ki[(M(u0,u1)Mu0,u1)]α(un,un+1)kn(M(uo,u1)+Muo,u1)+m1i=n+1(ij=0μ(uj,um))α(ui,ui+1)ki[(M(u0,u1)Mu0,u1)].

    Letting

    sp=pi=0(ij=0μ(uj,um))α(ui,ui+1)ki,

    we have

    (M(un,um)Mun,um)(M(uo,u1)+Muo,u1)+[knα(un,un+1)+sm1sn]. (3.4)

    By (3.2), the limit of the real sequences exists and so {sn} is Cauchy. Indeed, the ratio test is applied to the term

    ai=(ij=0μ(uj,um))α(ui,ui+1).

    Letting n,m tend to in (3.4), we get

    limn,m(M(un,um)Mun,um)=0,

    which implies that {un} is a Cauchy sequence and by using the completeness of M there exists uE such that

    Mu,RuM(u,Ru)

    and

    M(u,Ru)Mu,Ruα(u,ψn)[(M(u,ψn)Mu,ψn)]+μ(ψn,Ru)[(M(ψn,Ru)Mψn,Ru)].

    By the continuity of R and taking the limit, we obtain

    M(u,Ru)Mu,Ru0,M(u,Ru)=Mu,Ru.

    Now let

    Ku,Ru=M(u,Ru)whereku,Ru=max(M(u,u),M(Ru,Ru)),Kψn,Rψn=M(ψn,ψn)Kn(M(ψo,ψ1)+Mψo,ψ1)).

    Since K(0,1), by applying limit, we get

    Kψn,Rψn=0.

    Finally, since

    M(u,Ru)=Mu,RuKu,Ru

    and

    M(Ru,Ru)=Mu,Ru,

    Ru=u.

    Now suppose R has two fixed points, i.e., Ra=a and Rb=b. Then

    M(a,b)=M(Ra,Rb)K[(M(a,b)+Ma,b)].

    Since M(a,b)=Ma,b, we obtain

    M(a,b)K2M(a,b),M(a,b)(12M)0,M(a,b)=0,

    which implies that a=b.

    Example 3.8. Let E=[0,). Consider the double controlled M-metric type defined by M(u,v)=u+v for all u,vE and the functions α,μ given by

    α(u,v)={8ifu,v18(u+2)otherwise

    and

    μ(u,v)={7ifu,v17(v+2)otherwise.

    Letting Ru=1 for all uE and u0=1 and k=14, we have

    supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui+1,um)=1<4=1k,

    that is, (3.2) holds. In addition to that for every u[0,) we have

    limnα(u,un)=max(1,u)<andlimnμ(un,u)=max(u,1)<,

    that is, (3.3) holds. All the conditions of the above theorem hold and u=1 is the unique fixed point.

    Theorem 3.9. Let (E,M) be a complete double controlled M-metric type and R:EE be a continues mapping. Suppose that there exist ˘o,ˇc[0,) with

    limn˘oα(un,un1)1ˇcμ(un,un+1)<1, (3.5)

    where un=Rnu0 and for any uE

    ˘oα(u,Ru)+ˇcμ(u,Ru)<1.

    If

    M(Ru,Rv)˘oα(u,Ru)M(u,Ru)+ˇcμ(v,Rv)M(v,Rv)

    then R has a unique fixed point.

    Proof. Let uoE and define {un} as follow: u1=Ru0, u2=Ru1=R2u0 un=Rnu0. We first prove that

    M(un,un+1)˘onni=o[α(ui,ui1)1ˇcμ(ui,ui+1)]M(u0,u1).

    To prove this, let nN. Then

    M(un,un+1)=M(Run1,un)˘oα(un1,Run1)M(un1,Run1)+ˇcμ(un,Run)M(un,Run)˘oα(un1,un)M(un1,un)+ˇcμ(un,un+1)M(un,un+1)

    and so

    M(un,un+1)ˇcμ(un,un+1)M(un,un+1)˘oα(un1,un)M(un1,un),M(un,un+1)(1ˇcμ(un,un+1))˘oα(un1,un)M(un1,un).

    Hence

    M(un,un+1)˘oα(un1,un)M(un1,un)(1ˇcμ(un,un+1))=˘oα(un1,un)(1ˇcμ(un,un+1))M(Run1,Run2)˘o2α(un,un1)α(un1,un2)[(1ˇcμ(un,un+1))(1ˇcμ(un1,un))]M(un1,un)˘onni=1[α(ui,ui1)1ˇcμ(ui,ui+1)]M(u0,u1).

    Since

    limn˘oα(un,un1)1ˇcμ(un,un+1)<1,

    by the ratio test,

    n=1˘onni=1[α(ui,ui1)1ˇcμ(ui,xi+1)]

    converges. This implies that M(un,un+1) converges to 0. Further for n,mN

    M(un,um)=M(Run1,Rum1)˘oα(un1,Run1)M(un1,Run1)+ˇcμ(um1,Rum1)M(um1,Rum1)˘oα(un1,un)M(un1,un)+ˇcμ(um1,um)M(um1,um).

    Using the observation of the above inequality, we obtain that M(un,um) converges to 0. Since

    Mun,um=min(M(un,un),M(um,um))M(um,um),

    we conclude that

    limn,m(M(un,um)Mun,um)=0.

    Also suppose that

    kun,um=max(M(un,un),M(um,um))=M(un,un).

    Then

    kun,umMun,umkun,um=M(un,un)=M(Run1,Run1)˘oα(un1,un)M(un1,un)+ˇcμ(un1,un)M(un1,un).

    Taking the limit n, we obtain

    limn,m(kun,umMun,um)=0.

    Thus {un} is an M-Cauchy sequence and by using the completeness of M we obtain that {un} converges to some uE and so {Run=un+1} converges to uE. Furthermore by the hypothesis of the theorem, i.e, R:(E,M)(E,M) is continues, it is not difficult to show that {Run} converges to Rˉe. By [9,Lemma 3.3], we have

    (M(ˉe,Rˉe)Mˉe,Rˉe)=0

    and so

    M(ˉe,Rˉe)=M(Rˉe,Rˉe)˘oα(ˉe,Rˉe)M(ˉe,Rˉe)+ˇcμ(ˉe,Rˉe)M(ˉe,Rˉe)(˘oα(ˉe,Rˉe)+ˇcμ(ˉe,Rˉe))M(ˉe,Rˉe)M(ˉe,Rˉe).

    Hence

    M(ˉe,Rˉe)=M(Rˉe,Rˉe)=0.

    By using the same observation given in the above equality, we get

    M(Rˉe,Rˉe)=M(R2ˉe,R2ˉe)=0. (3.6)

    Since (E,M) is complete, it follows that

    RRˉe=Rˉe.

    Thus we obtain that

    ˉe=Rˉe

    is a fixed point of R.

    Next we will show the uniqueness. Suppose there exists vE such that

    M(v,ˉe)=M(Rv,Rˉe)˘oα(v,Rv)M(v,Rv)+ˇcμ(ˉe,Rˉe)M(ˉe,Rˉe).

    By (1.6), we obtain

    M(v,ˉe)˘oα(v,Rv)M(v,Rv)+0=˘oα(v,Rv)M(v,Rv).

    Hence

    M(v,ˉe)˘oα(v,Rv)M(Rv,Rv)˘oα(v,Rv)[˘oα(v,Rv)+ˇcμ(v,Rv)]M(v,Rv)˘oα(v,Rv)[˘oα(v,Rv)+ˇcμ(v,Rv)]nM(v,Rv).

    Since

    ˘oα(v,Rv)+ˇcμ(v,Rv)=˘oα(Rv,R2v)+ˇcμ(Rv,R2v)<1,
    [˘oα(v,Rv)+ˇcμ(v,Rv)]n0

    and so

    M(v,ˉe)=M(v,v)=0.

    Using (3.6), we obtain

    M(v,ˉe)=M(v,v)=M(ˉe,ˉe).

    So the mapping R has a unique fixed point.

    Example 3.10. Let E={1,2,3} and α,μ be defined in Example 3.3. Let

    M(u,v)=u+v

    and R:EE be defined by

    R(u)=u2.

    Then clearly

    M(Ru,Rv)˘oα(u,Ru)M(u,Ru)+ˇcμ(v,Rv)M(v,Rv).

    Letting Ru=1 for uo=1, we have

    limn˘oα(un,un1)1ˇcμ(un,un+1)<1.

    That is, (3.5) holds. Since

    limnα(u,un)=limnμ(un,u)<,

    all the conditions of Theorem 3.9 are satisfied and hence u=1 is a fixed point.

    Theorem 3.11. Let (E,M) be a complete double controlled M-metrc space by functions α,μ:E×E[1,). Suppose that acontinuous mapping R satisfies Bianchini type condition

    M(Ru,Rv)ˆhmax{M(u,Ru),M(v,Rv)} (3.7)

    for all u,vE where 0<ˆh<1. For u0E, choose un=Rnu0. Suppose that

    supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui+1,um)<1ˆh. (3.8)

    In addition, for each uE suppose that

    limnα(u,un)andlimnμ(un,u)<.

    Then R has a unique fixed point.

    Proof. Let uo and u1  be points as in Theorem 3.7. If for some m, um=um+1=Rum , then clearly um is a fixed point of R.

    Now suppose un un+1  for all n. By (3.7), we have

    M(un,un+1)=M(Run1,Run)ˆhmax{M(un,un+1),M(un1,un)}.

    If max{M(un,un+1),M(un1,un)}=M(un,un+1), then

    M(un,un+1)ˆhM(un,un+1),1=M(un,un+1)M(un,un+1)ˆh

    which is a contradiction since 0<ˆh<1.

    If max{M(un,un+1),M(un1,un)}=M(un1,un), then

    M(un,un+1)ˆhM(un1,un).

    If we proceed it continually, then we come to the conclusion that for each n0 we obtain

    M(un,un+1)ˆhnM(uo,u1).

    Taking the limit on both sides, we get

    limnM(un,un+1)=0,

    which implies that {un} is a Cauchy sequence. By the same procedure used in Theorem 3.7, for all mn, we may get

    M(un,un+1)α(un,un+1)hn(M(uo,u1)+Muo,u1)+m1i=n+1(ij=0μ(uj,um))α(ui,ui+1)hi[(M(uo,u1)Mu0,u1)].

    By using the assumption used in (3.8) and the ratio test to the series derived in the above inequality as in Theorem 3.7, the sequence {un} is Cauchy. By the completeness of double controlled M-metric space, there exists uE such that

    limn,m(M(un,um)Mun,um)=0.

    Thus u is a fixed point of R, which follows from the same procedure as we done in Theorem 3.7.

    Example 3.12. Let E=[0,) and R:EE be defined by R(u)=u2+2u and M(u,v)=(u+v)22. Then M(u,Rv)=M(Ru,v)=(u+v)2. If either one of the elements in the form of Ru or Rv, we get

    M(Ru,Rv)=(Ru+Rv)22,M(Ru,Rv)=(λ2+2λ+λ2+2λ)24,M(Ru,Rv)12×(u+v)2212×(u+v)2,M(Ru,Rv)hmax{M(u,Rv),M(Ru,v)}, where h = 12.

    Define α(u,v)=μ(u,v)=1+u+v. Now by induction it is not difficult to deduce that

    λn=fn(λ)=λ2n+(ni=12k)λ

    for all nN. Thus

    limnα(λ,λn)=limnα(λn,λ)=1+λ.

    On the other hand,

    supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui+1,um)=1+λ2+2λ2=1h.

    Hence all the hypothesis of Theorem 3.11 hold. Therefore, f has a unique fixed point in E.

    Let E=C([0,1],R) and

    u(p)=10G(p,q,u(p)), for p,q[0,1], (4.1)

    be a Fredholm type integral equation, where G(p,q,u(p)) is a continuous function from [0,1]×[0,1] R. Now define

    M:E×ER(u,v)supp[0,1]|u(p)+v(q)|2.

    Note that (E,M) is a double controlled M-metric type space as already shown in Example 3.2.

    Theorem 4.1. Suppose that for all u,vE

    (1)

    |G(p,q,u(p))|+|G(p,q,v(p))|supp[0,1]({|u(p)|(v(p)|})(|u(p)+v(p)|)k(supp[0,1]({|u(p)|(v(p)|})(|u(p)+v(p)|)+R|u(p)v(p)|),

    where k[0,1(1+supp,q|G(p,q,u(p))||G(p,q,v(p))|))2] and for some p[0,1]

    (2)

    G(p,q,10G(p,q,u(p))dq)G(p,q,u(p))

    for all p,q. Then the above integral integral has a unique solution.

    Proof. Let R:EE be defined by Ru(p)=10G(p,q,u(p)). Then

    M(R(u),R(v))=supp[0,1](|Ru(p)+Rv(p)|2).

    So we get

    |Ru(p)+Rv(p)|2=|10G(p,q,u(p))dq|+|10G(p,q,v(p))dq|210|G(p,q,u(p))|dq+10|G(p,q,v(p))|dq2=10(|G(p,q,u(p))|+|G(p,q,v(p))|)dq210supp[0,1]({|u(p)|(v(p)|})(|u(p)+v(p)|)dq210k(supp[0,1]({|u(p)|(v(p)|}|u(p)+v(p)|))dq2+k(R|u(p)v(p)|)using(1),|Ru(p)+Rv(p)|2k(M(u,v)+Mu,v),M(Ru,Rv)k(M(u,v)+Mu,v).

    Furthermore, let nN and uE. Then

    Rnu(p)=R(Rn1u(p)=10G(p,q,Rn1u(p))=10G(p,q,R(Rn2(u(p))10G(p,q,10G(p,q,Rn2(u(p))ds10G(p,q,Rn2(u(p)))ds=Rn1u(p).

    Thus for all p[0,1] we find that the sequences {Rnu(p)} is bounded below and strictly decreasing and so it converges to some l. Since {Rn}n is monotonic, by using Denis theorem, the sup value converges to some point l. Observe that M(R(u),R(v))=supp[0,1](|Ru(p)+Rv(p)|2) converges to l. So all the hypothesis of Theorem 3.7 are satisfied and the Eq (4.1) has a unique solution.

    This paper dealt with the achievement of introducing the notion of double controlled m-metric spaces as a generalization of extended m-b-metric space and studiedg some of its properties and results. Moreover, some fixed points have been investigated for mapping satisfying different conditions in this new frame work. This idea can be applied for further investigations in studying fixed points for other structures in metric spaces.

    The authors declare that they have no competing interests.



    [1] T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. https://doi.org/10.3390/math6120320 doi: 10.3390/math6120320
    [2] M. Asadi, E. Karapinar, P. Salimi, New extension of p-metric spaces with some fixed point results on M-metric spaces, J. Inequal. Appl., 2014 (2014), 18. https://doi.org/10.1186/1029-242X-2014-18 doi: 10.1186/1029-242X-2014-18
    [3] D. S. Bridges, Dini's theorem: A constructive case study, In: Combinatorics, computability and logic, London: Springer, 2001, 69–80. https://doi.org/10.1007/978-1-4471-0717-0_7
    [4] H. A. Hammad, H. Aydi, C. Park, Fixed point approach for solving a system of Volterra integral equations and Lebesgue integral concept in FCM-spaces, AIMS Mathematics, 7 (2022), 9003–9022. https://doi.org/10.3934/math.2022501 doi: 10.3934/math.2022501
    [5] H. A. Hammad, W. Chaolamjiak, Solving singular coupled fractional differential equations with integral equations with integral boundary constraints by coupled fixed point methodology, AIMS Mathematics, 6 (2021), 13370–13391. https://doi.org/10.3934/math.2021774 doi: 10.3934/math.2021774
    [6] H. Kamo, Effective Dini's theorem on effectively compact metric spaces, Electron. Notes Theor. Comput. Sci., 120 (2005), 73–82. https://doi.org/10.1016/j.entcs.2004.06.035 doi: 10.1016/j.entcs.2004.06.035
    [7] S. G. Matthews, Partial metric topology, Ann. NY Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x
    [8] N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. https://doi.org/10.3390/math6100194 doi: 10.3390/math6100194
    [9] N. Mlaiki, M. Hajji, T. Abdeljawad, Fredholm type integral equation in extended Mb-metric spaces, Adv. Differ. Equ., 2020 (2020), 289. https://doi.org/10.1186/s13662-020-02752-4 doi: 10.1186/s13662-020-02752-4
    [10] N. Mlaiki, N. Y. Ozgür, A. Mukheimer, N. Tas, A new extension of the Mb-metric spaces, J. Math. Anal., 9 (2018), 118–133.
    [11] N. Mlaiki, A. Zarad, N. Souayh, A. Mukheimer, T. Abdeljawed, Fixed point theorems in Mb-metric spaces, J. Math. Anal., 7 (2016), 1–9.
    [12] A. Mukheimer, N. Mlaiki, K. Abodayeh, W. Shatanawi, New theorems on extended b-metric spaces under new contractions, Nonlinear Anal.-Model., 24 (2019), 870–883. https://doi.org/10.115388/NA.2019.6.2 doi: 10.115388/NA.2019.6.2
    [13] H. Qawaqneh, M. S. Md Noorani, W. Shatanawi, H. Aydi, H. Alsamir, Fixed point results for multi-valued contractions in b-metric spaces and an application, Mathematics, 7 (2019), 132. https://doi.org/10.3390/math7020132 doi: 10.3390/math7020132
    [14] Rahul, N. K. Mahato, Existence solution of a system of differential equations using generalized Darbo's fixed point theorem, AIMS Mathematics, 6 (2021), 13358–13369. https://doi.org/10.3934/math.2021773 doi: 10.3934/math.2021773
    [15] S. Rathee, M. Swami, Algorithm for split variational inequality, split equilibrium problem and split common fixed point problem, AIMS Mathematics, 7 (2022), 9325–9338. https://doi.org/10.3934/math.2022517 doi: 10.3934/math.2022517
    [16] F. Uddin, C. Park, K. Javed, M. Arshad, J. R. Lee, Orthogonal m-metric spaces and an application to solve integral equations, Adv. Differ. Equ., 2021 (2021), 159. https://doi.org/10.1186/s13662-021-03323-x doi: 10.1186/s13662-021-03323-x
  • This article has been cited by:

    1. Khaled Suwais, Nihal Taş, Nihal Özgür, Nabil Mlaiki, Fixed Point Theorems in Symmetric Controlled M-Metric Type Spaces, 2023, 15, 2073-8994, 1665, 10.3390/sym15091665
    2. Mehdi Asadi, 2024, Chapter 16, 978-981-99-9545-5, 355, 10.1007/978-981-99-9546-2_16
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1794) PDF downloads(85) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog