In this paper, we establish some inequalities for convex functions by applying the generalized proportional fractional integral. Some new results by using the linkage between the proportional fractional integral and the Riemann-Liouville fractional integral are obtained. Moreover, we give special cases of our reported results. Obtained results provide generalizations for some of the current results in the literature by applying some special values to the parameters.
Citation: Majid K. Neamah, Alawiah Ibrahim. Generalized proportional fractional integral inequalities for convex functions[J]. AIMS Mathematics, 2021, 6(10): 10765-10777. doi: 10.3934/math.2021625
[1] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
[2] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[3] | Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096 |
[4] | Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379 |
[5] | Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially (α,h−m)-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521 |
[6] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[7] | Peiyu Yan, Qi Li, Yu Ming Chu, Sana Mukhtar, Shumaila Waheed . On some fractional integral inequalities for generalized strongly modified h-convex functions. AIMS Mathematics, 2020, 5(6): 6620-6638. doi: 10.3934/math.2020426 |
[8] | Serap Özcan, Saad Ihsan Butt, Sanja Tipurić-Spužević, Bandar Bin Mohsin . Construction of new fractional inequalities via generalized n-fractional polynomial s-type convexity. AIMS Mathematics, 2024, 9(9): 23924-23944. doi: 10.3934/math.20241163 |
[9] | Fangfang Ma . Fractional version of the Jensen-Mercer and Hermite-Jensen-Mercer type inequalities for strongly h-convex function. AIMS Mathematics, 2022, 7(1): 784-803. doi: 10.3934/math.2022047 |
[10] | Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273 |
In this paper, we establish some inequalities for convex functions by applying the generalized proportional fractional integral. Some new results by using the linkage between the proportional fractional integral and the Riemann-Liouville fractional integral are obtained. Moreover, we give special cases of our reported results. Obtained results provide generalizations for some of the current results in the literature by applying some special values to the parameters.
The Chebyshev inequality, which has a notable spot in inequality theory, creates limit values and esteems for synchronous functions and assists in the reproduction of new variation inequalities of many various sorts. The foundation for this inequality lies in the following Chebyshev functional (see [1]):
T(f,g)=1b−a∫baf(ϰ)g(ϰ)dϰ−(1b−a∫baf(ϰ)dϰ)(1b−a∫bag(ϰ)dϰ), |
where T(f,g)≥0 and f,g are integrable and synchronous functions on [a,b], i.e.
(f(ϰ1)−f(ϰ2))(g(ϰ1)−g(ϰ2))≥0,forϰ1,ϰ2∈[a,b]. |
Many researchers have been done on the Chebyshev inequality and its generalizations, expansions, iterations, and adjustments for different classes of functions. They have established wide utilization in functional analysis, numerical analysis, and statistics; for these outcomes, we allude the reader to [1,2,3]. Another attractive and helpful inequality so-called the Pólya-Szegö inequality, which comprises the primary inspiration point in our investigation, which we can express as (see [4]):
∫baf2(ϰ)dϰ∫bag2(ϰ)dϰ(∫baf(ϰ)g(ϰ)dϰ)2≤14(√MNmn+√mnMN)2, |
where m≤f(ϰ)≤M and n≤g(ϰ)≤N, for some m,M,n,N∈R and for each ϰ∈[a,b].
The authors in [5] employed the Pólya-Szegö inequality to prove the following inequality
|T(f,g)|≤(M−m)(N−n)4(b−a)2√MmNn∫baf(ϰ)dϰ∫bag(ϰ)dϰ, |
where 0<m≤f(ϰ)≤M<∞ and 0<n≤g(ϰ)≤N<∞, for ϰ∈[a,b].
Ngo et al. [6] presented the following integral inequalities
∫10ωμ−1(ϰ)dϰ≥∫10ϰμω(ϰ)dϰ, | (1.1) |
and
∫10ωμ−1(ϰ)dϰ≥∫10ϰωμ(ϰ)dϰ, | (1.2) |
where μ>0 and ω is a positive continuous function on [0,1] with
∫1hω(ϰ)dϰ≥∫1hϰdϰ, h∈[0,1]. |
Liu et al. [7] introduced the following inequality
∫baωμ+ν(ϰ)dϰ≥∫ba(ϰ−a)μων(ϰ)dϰ | (1.3) |
where μ,ν>0 and ω is a positive continuous function on J:=[a,b], with
∫baως(ϰ)dϰ≥∫ba(ϰ−a)ςdϰ |
and ς=min(1,ν), ϰ∈J. Now, we state the following results, which were established by Liu et al. [8].
Theorem 1.1. [8] Let ϖ,ω>0 be continuous functions on J with ϖ(ϰ)≤ω(ϰ) for all ϰ∈J and such that ϖω is a decreasing function and ϖ is an increasing function. Suppose that Φ is a convex function with Φ(0)=0. Then
∫baϖ(ϰ)dϰ∫baω(ϰ)dϰ≥∫ba Φ(ϖ(ϰ))dϰ∫ba Φ(ω(ϰ))dϰ. |
Theorem 1.2. [8] Let ϖ,z,ω>0 be continuous functions on J with ϖ(ϰ)≤ω(ϰ) for all ϰ∈J and such that ϖω is a decreasing function and ϖ,z are increasing functions. Assume that Φ is a convex function with Φ(0)=0. Then
∫baϖ(ϰ)dϰ∫baω(ϰ)dϰ≥∫ba Φ(ϖ(ϰ))z(ϰ)dϰ∫ba Φ(ω(ϰ))z(ϰ)dϰ. |
On the other hand, the area of fractional calculus (FC) is concerned with integrals and derivatives of non-integer order. This field has a long-term history. The premise of it tends to be followed back to the message among Leibniz and L'Hôpital in 1695 [9]. Over the nears, many authors have dedicated themselves to the improvement of the theories of FC [10,11,12,13,14,15,16]. Moreover, the applications of FC are found in different fields [9,10,17]. In virtually, different types of fractional operators, e.g, Riemann-Liouville (R-L), Caputo [15,16], and Hilfer [17] were presented. Recently, many authors have considered certain novel fractional operators and their potential applications in different fields of sciences and engineering [18,19]. Abdeljawad and Baleanu [20] have studied the monotonicity results for difference fractional operators with discrete exponential kernels. They also have set up fractional operators with exponential kernel and their discrete versions [21]. Caputo and Fabrizio [23] distinguished by proposing a new fractional operator without a singular kernel. Atangana and Baleanu [22] introduced a novel fractional operator with the non-singular and non-local kernel. Some properties of these operators can be found in [24]. The generalized fractional operator generated by a class of local proportional derivatives are introduced by Jarad et al. [25].
In this regard, the fractional operator inequalities and their applications have likewise a basic job in applied mathematics, especially in the theory of differential equations. Countless a few of many interesting integral inequalities are set up by the analysts and researchers, e.g., inequalities involving R-L and generalized R-L integrals [26,27], Grüss-type and weighted Grüss type inequalities involving the generalized R-L integrals and fractional integration [28,29], some inequalities involving the extended gamma function and confluent hypergeometric k-function [30], and generalizations of the generalized Gronwall type inequalities associated with k-fractional derivatives [31]. Some recent works on Chebyshev's inequalities involving various types of fractional operators can be found in [32,33,34,35,36].
For more survey of some recent and earlier expansions related to the Minkowski (Gronwall, Hermite-Hadamard, Grüss) inequalities, we point the readers to see also [37,38,39,40,41,42,43,44,45,46,47].
Motivated by the above works, in this paper, we establish some new inequalities for convex functions by applying the generalized proportional fractional (GPF) integral. These results are recent and provide the generalizations of some reported results [8,48,49] by applying some special values to the parameters.
In this section, we provide some basic definitions and some properties of proportional fractional integrals.
Definition 2.1. ([15]). The R-L fractional integrals aIα and Iαb are respectively given by
(aIαϖ)(ϰ)=1Γ(α)∫ϰa(ϰ−υ)α−1ϖ(υ)dυ, a<ϰ, | (2.1) |
and
(Iαbϖ)(ϰ)=1Γ(α)∫bϰ(υ−ϰ)α−1ϖ(υ)dυ, ϰ<b, | (2.2) |
where α∈C, Re(α)>0 and
Γ(α):=∫∞0e−uuα−1du. |
Definition 2.2 ([50,51]). Let J⊂R and α,β∈C with Re(α)>0 and Re(β)≥0. Then the tempered fractional integrals aIα,β and Iα,βb are respectively given by
(aIα,βϖ)(ϰ)=e−βϰaIα(eβϰϖ(ϰ))=1Γ(α)∫ϰaexp[−β(ϰ−υ)](ϰ−υ)α−1ϖ(υ)dυ, a<ϰ, | (2.3) |
and
(Iα,βbϖ)(ϰ)=e−βϰ Iαb(eβϰϖ(ϰ))=1Γ(α)∫bϰexp[−β(υ−ϰ)](υ−ϰ)α−1ϖ(υ)dυ, ϰ<b. | (2.4) |
Definition 2.3 ([25]). For 0<ρ≤1 and α∈C, Re(α)>0, the left and right GPF integrals of a function ϖ∈L1(J) are respectively given by
GPFI(α,ρ)a+ϖ(ϰ)=1ραΓ(α)∫ϰa(ϰ−υ)α−1exp[ρ−1ρ(ϰ−υ)]ϖ(υ)dυ, ϰ∈J, | (2.5) |
and
GPFI(α,ρ)b−ϖ(ϰ)=1ραΓ(α)∫bϰ(υ−ϰ)α−1exp[ρ−1ρ(υ−ϰ)]ϖ(υ)dυ, ϰ∈J. | (2.6) |
Remark 2.4.
1) If we put ρ=1 in Eq (2.5) and Eq (2.6), then Eq (2.1) and Eq (2.2) are obtained, respectively, i.e., the generalized proportional operators reduce to the R-L operators.
2) If we replace ρ−1ρ with −β in Eq (2.5) and Eq (2.6), then we obtain the tempered fractional integral operators (2.3) and (2.4) respectively.
Here are some important characteristics of GPF integrals.
Proposition 2.5. ([25]). For any ρ∈(0,1], we have
(GPFI(α,ρ)a+eρ−1ρs(s−a)δ−1)(ϰ)=Γ(δ)ραΓ(δ+α)eρ−1ρϰ(ϰ−a)δ+α−1,(GPFI(α,ρ)b−eρ−1ρ(b−s)(b−s)δ−1)(ϰ)=Γ(δ)ραΓ(δ+α)eρ−1ρ(b−ϰ)(b−ϰ)δ+α−1, |
where α,ρ∈C, Re(α)≥0 and Re(ρ)≥0.
Proposition 2.6. ([25]). For any continuous function ϖ, we have
GPFI(α,ρ)a+ GPFI(β,ρ)a+ϖ(ϰ)= GPFI(α+β,ρ)a+ϖ(ϰ), |
where 0<ρ≤1, Re(α)≥0 and Re(β)≥0.
In this section, we provide some inequalities for convex functions by using the GPF integral.
Theorem 3.1. Let ϖ,ω>0 be continuous functions on J with ϖ(ϰ)≤ω(ϰ) for all ϰ∈J and such that ϖω is a decreasing function and ϖ is an increasing function on J. Then for any convex function Φ with Φ(0)=0, the inequality
GPFI(α,ρ)a+[ϖ(ϰ)]GPFI(α,ρ)a+[ω(ϰ)]≥GPFI(α,ρ)a+[Φ(ϖ(ϰ))]GPFI(α,ρ)a+[Φ(ω(ϰ))] | (3.1) |
holds for the GPF integral (2.5).
Proof. By the hypotheses of theorem, Φ(ϰ) is convex function with Φ(0)=0. Then Φ(ϰ)ϰ is an increasing function. Since ϖ is an increasing function, thus Φ(ϖ)ϖ is an increasing function, too.
Since, ϖω is a decreasing function, therefore for each σ∈J, we have
(Φ(ϖ(σ))ϖ(σ)−Φ(ϖ(ϰ))ϖ(ϰ))(ϖ(ϰ)ω(ϰ)−ϖ(σ)ω(σ))≥0. | (3.2) |
It follows that
Φ(ϖ(σ))ϖ(σ)ϖ(ϰ)ω(ϰ)+Φ(ϖ(ϰ))ϖ(ϰ)ϖ(σ)ω(σ)−Φ(ϖ(ϰ))ϖ(ϰ)ϖ(ϰ)ω(ϰ)−Φ(ϖ(σ))ϖ(σ)ϖ(σ)ω(σ)≥0. | (3.3) |
Multiplying (3.3) by ω(σ)ω(ϰ), we obtain
Φ(ϖ(σ))ϖ(σ)ϖ(ϰ)ω(σ)+Φ(ϖ(ϰ))ϖ(ϰ)ϖ(σ)ω(ϰ)−Φ(ϖ(ϰ))ϖ(ϰ)ϖ(ϰ)ω(σ)−Φ(ϖ(σ))ϖ(σ)ϖ(σ)ω(ϰ)≥0. | (3.4) |
Multiplying (3.4) by 1ραΓ(α)(ϰ−σ)α−1exp[ρ−1ρ(ϰ−σ)] and integrating (3.4) with respect to σ over [a,ϰ], a<ϰ≤b, we get
1ραΓ(α)∫ϰa(ϰ−σ)α−1exp[ρ−1ρ(ϰ−σ)]Φ(ϖ(σ))ϖ(σ)ϖ(ϰ)ω(σ)dσ+1ραΓ(α)∫ϰa(ϰ−σ)α−1exp[ρ−1ρ(ϰ−σ)]Φ(ϖ(ϰ))ϖ(ϰ)ϖ(σ)ω(ϰ)dσ−1ραΓ(α)∫ϰa(ϰ−σ)α−1exp[ρ−1ρ(ϰ−σ)]Φ(ϖ(ϰ))ϖ(ϰ)ϖ(ϰ)ω(σ)dσ−1ραΓ(α)∫ϰa(ϰ−σ)α−1exp[ρ−1ρ(ϰ−σ)]Φ(ϖ(σ))ϖ(σ)ϖ(σ)ω(ϰ)dσ≥0. |
Hence
ϖ(ϰ)GPFI(α,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ))+ (Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ)) GPFI(α,ρ)a+(ϖ(ϰ))−(Φ(ϖ(ϰ))ϖ(ϰ)ϖ(ϰ)) GPFI(α,ρ)a+(ω(ϰ))−ω(ϰ) GPFI(α,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ϖ(ϰ))≥0. | (3.5) |
Again, multiplying (3.5) by 1ραΓ(α)(ϰ−σ)α−1exp[ρ−1ρ(ϰ−σ)] and integrating (3.5) with respect to σ over [a,ϰ], a<ϰ≤b, we obtain
GPFI(α,ρ)a+ϖ(ϰ)GPFI(α,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ))+ GPFI(α,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ)) GPFI(α,ρ)a+(ϖ(ϰ))≥GPFI(α,ρ)a+(Φ(ϖ(ϰ))) GPFI(α,ρ)a+ω(ϰ)+ GPFI(α,ρ)a+ω(ϰ) GPFI(α,ρ)a+(Φ(ϖ(ϰ)). |
Consequently, we have
GPFI(α,ρ)a+ϖ(ϰ)GPFI(α,ρ)a+ω(ϰ)≥GPFI(α,ρ)a+(Φ(ϖ(ϰ))GPFI(α,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ)). | (3.6) |
Since ϖ(ϰ)≤ω(ϰ) for all ϰ∈J and the function defined by ϰ→ Φ(ϰ)ϰ is an increasing, thus for σ∈[a,ϰ], a<ϰ≤b, we have
Φ(ϖ(σ))ϖ(σ)≤Φ(ω(σ))ω(σ). | (3.7) |
Multiplying both sides of (3.7) by 1ραΓ(α)(ϰ−σ)α−1exp[ρ−1ρ(ϰ−σ)]ω(σ), then integrating with respect to σ over [a,ϰ], a<ϰ≤b, we get
1ραΓ(α)∫ϰa(ϰ−σ)α−1exp[ρ−1ρ(ϰ−σ)]Φ(ϖ(σ))ϖ(σ)ω(σ)dσ≤1ραΓ(α)∫ϰa(ϰ−σ)α−1exp[ρ−1ρ(ϰ−σ)]Φ(ω(σ))dσ, | (3.8) |
In view of (2.5) we can write (3.8) as follows
GPFI(α,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ))≤ GPFI(α,ρ)a+Φ(ω(ϰ)). | (3.9) |
Hence from (3.6) and (3.9), we obtain (3.1).
Remark 3.2.
ⅰ) When ρ =1 in Theorem 3.1 we obtain [49, Theorem 3].
ⅱ) When α=ρ=1 and ϰ=b in Theorem 3.1 we get Theorem 1.1.
Theorem 3.3. Let ϖ,ω>0 be continuous functions on J with ϖ(ϰ)≤ω(ϰ) for all ϰ∈J and such that ϖω is a decreasing function and ϖ is an increasing function on J. Then for any convex function Φ with Φ(0)=0, the inequality
GPFI(α,ρ)a+[ϖ(ϰ)]GPFI(β,ρ)a+[Φ(ω(ϰ))]+GPFI(β,ρ)a+[ϖ(ϰ)]GPFI(α,ρ)a+[Φ(ω(ϰ))]GPFI(α,ρ)a+[ω(ϰ)]GPFI(β,ρ)a+[Φ(ϖ(ϰ))]+GPFI(β,ρ)a+[ω(ϰ)]GPFI(α,ρ)a+[Φ(ϖ(ϰ))]≥1 | (3.10) |
holds for the GPF integral (2.5).
Proof. By virtue of assumptions of the theorem, Φ(ϰ) is convex function with Φ(0)=0. Thus, the function Φ(ϰ)ϰ is an increasing. Moreover, from the increasingly of function ϖ, the function Φ(ϖ)ϖ is an increasing. Since the function ϖω is a decreasing, therefore, multiplying (3.5) by 1ρβΓ(β)(ϰ−σ)β−1exp[ρ−1ρ(ϰ−σ)] and integrating the resultant identity with respect to σ over [a,ϰ], a<ϰ≤b, we get
GPFI(β,ρ)a+ϖ(ϰ)GPFI(α,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ))+GPFI(β,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ)) GPFI(α,ρ)a+(ϖ(ϰ))≥GPFI(β,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ϖ(ϰ)) GPFI(α,ρ)a+(ω(ϰ))+ GPFI(β,ρ)a+ω(ϰ) GPFI(α,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ϖ(ϰ)). | (3.11) |
Hence, from (3.9) and (3.11), we obtain the relation (3.10).
Remark 3.4. Put α=β in Theorem 3.3 we get Theorem 3.1. Moreover, if ρ =1 in Theorem 3.3 we get [49, Theorem 4].
Theorem 3.5. Let ϖ,z,ω>0 be continuous functions on J with ϖ(ϰ)≤ω(ϰ) for all ϰ∈J and such that ϖω is a decreasing function and ϖ,z are increasing functions. Assume that Φ is a convex function with Φ(0)=0. Then the inequality
GPFI(α,ρ)a+[ϖ(ϰ)]GPFI(α,ρ)a+[ω(ϰ)]≥GPFI(α,ρ)a+[Φ(ϖ(ϰ))z(ϰ)]GPFI(α,ρ)a+[Φ(ω(ϰ))z(ϰ)] |
holds for the GPF integral (2.5).
Proof. Since Φ(ϰ) is convex function with Φ(0)=0, the function Φ(ϰ)ϰ is an increasing. Besides, from the increasing property of the function ϖ, the function Φ(ϖ(⋅))ϖ(⋅) is an increasing. Since the function ϖ(⋅)ω(⋅) is a decreasing, thus, for each σ∈[a,ϰ] and a<ϰ≤b, we obtain
(Φ(ϖ(σ))ϖ(σ)z(σ)−Φ(ϖ(ϰ))ϖ(ϰ)z(ϰ))(ϖ(ϰ)ω(σ)−ϖ(σ)ω(ϰ))≥0. | (3.12) |
It follows that
Φ(ϖ(σ))z(σ)ϖ(σ)ϖ(ϰ)ω(σ)+Φ(ϖ(ϰ))z(ϰ)ϖ(ϰ)ϖ(σ)ω(ϰ)−Φ(ϖ(ϰ))z(ϰ)ϖ(ϰ)ϖ(ϰ)ω(σ)−Φ(ϖ(σ))z(σ)ϖ(σ)ϖ(σ)ω(ϰ)≥0. | (3.13) |
Multiplying (3.13) by 1ραΓ(α)(ϰ−σ)α−1exp[ρ−1ρ(ϰ−σ)] and integrating the resulting inequality with respect to σ over [a,ϰ], a<ϰ≤b, we obtain
1ραΓ(α)∫ϰa(ϰ−σ)α−1exp[ρ−1ρ(ϰ−σ)]Φ(ϖ(σ))ϖ(σ)ϖ(ϰ)ω(σ)z(σ)dσ+1ραΓ(α)∫ϰa(ϰ−σ)α−1exp[ρ−1ρ(ϰ−σ)]Φ(ϖ(ϰ))ϖ(ϰ)ϖ(σ)ω(ϰ)z(ϰ)dσ−1ραΓ(α)∫ϰa(ϰ−σ)α−1exp[ρ−1ρ(ϰ−σ)]Φ(ϖ(ϰ))ϖ(ϰ)ϖ(ϰ)ω(σ)z(ϰ)dσ−1ραΓ(α)∫ϰa(ϰ−σ)α−1exp[ρ−1ρ(ϰ−σ)]Φ(ϖ(σ))ϖ(σ)ϖ(σ)ω(ϰ)z(σ)dσ≥0. |
Consequently,
ϖ(ϰ)GPFI(α,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ)z(ϰ))+(Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ)z(ϰ)) GPFI(α,ρ)a+(ϖ(ϰ))−(Φ(ϖ(ϰ))ϖ(ϰ)ϖ(ϰ)z(ϰ)) GPFI(α,ρ)a+(ω(ϰ))−ω(ϰ) GPFI(α,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ϖ(ϰ)z(ϰ))≥0. | (3.14) |
By the same arguments as before on the inequality (3.14), we get
GPFI(α,ρ)a+(ϖ(ϰ))GPFI(α,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ)z(ϰ))+ GPFI(α,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ)z(ϰ)) GPFI(α,ρ)a+(ϖ(ϰ))≥ GPFI(α,ρ)a+(Φ(ϖ(ϰ))z(ϰ)) GPFI(α,ρ)a+(ω(ϰ))+ GPFI(α,ρ)a+(ω(ϰ)) GPFI(α,ρ)a+(Φ(ϖ(ϰ))z(ϰ)). |
This follows that
GPFI(α,ρ)a+ϖ(ϰ)GPFI(α,ρ)a+ω(ϰ)≥GPFI(α,ρ)a+(Φ(ϖ(ϰ)z(ϰ))GPFI(α,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ)z(ϰ)). | (3.15) |
Moreover, since ϖ(ϰ)≤ω(ϰ) for all ϰ∈J, then using the fact that the function ϰ→Φ(ϰ)ϰ is an increasing, thus for σ∈[a,ϰ] we can write
Φ(ϖ(σ))ϖ(σ)≤Φ(ω(σ))ω(σ). | (3.16) |
With the same technique as before, inequality (3.16) leads to
1ραΓ(α)∫ϰa(ϰ−σ)α−1exp[ρ−1ρ(ϰ−σ)]Φ(ϖ(σ))ϖ(σ)ω(σ)z(σ)dσ≤1ραΓ(α)∫ϰa(ϰ−σ)α−1exp[ρ−1ρ(ϰ−σ)]Φ(ω(σ))z(σ)dσ. |
In view of (2.5), the last inequality can be written as follows
GPFI(α,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ)z(ϰ))≤GPFI(α,ρ)a+(Φ(ω(ϰ))z(ϰ)). | (3.17) |
From (3.17) and (3.15), we get the desired result.
Remark 3.6.
1. If ρ=1 in Theorem 3.5, we obtain the result in [49, Theorem 5].
2. If α=1, ρ=1 and ϰ=b in Theorem 3.5, we obtain Theorem 1.2.
Theorem 3.7. Let ϖ,z,ω>0 be continuous functions on J with ϖ(ϰ)≤ω(ϰ) for all ϰ∈J and such that ϖω is a decreasing function, and ϖ,z are increasing functions on J. Then for any convex function Φ with Φ(0)=0, the inequality
GPFI(α,ρ)a+[ϖ(ϰ)]GPFI(β,ρ)a+[Φ(ω(ϰ))z(ϰ)]+GPFI(β,ρ)a+[ϖ(ϰ)]GPFI(α,ρ)a+[Φ(ω(ϰ))z(ϰ)]GPFI(α,ρ)a+[ω(ϰ)]GPFI(β,ρ)a+[Φ(ϖ(ϰ))z(ϰ)]+GPFI(β,ρ)a+[ω(ϰ)]GPFI(α,ρ)a+[Φ(ϖ(ϰ))z(ϰ)]≥1 | (3.18) |
holds for the GPF integral (2.5).
Proof. Multiplying both sides of (3.14) by 1ρβΓ(β)(ϰ−σ)β−1exp[ρ−1ρ(ϰ−σ)] then integrating the resulting inequality with respect to σ over [a,ϰ], a<ϰ≤b, we obtain
GPFI(β,ρ)a+ϖ(ϰ)GPFI(α,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ)z(ϰ))+ GPFI(β,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ)z(ϰ)) GPFI(α,ρ)a+(ϖ(ϰ))≥GPFI(β,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ϖ(ϰ)z(ϰ)) GPFI(α,ρ)a+(ω(ϰ))+ GPFI(β,ρ)a+ω(ϰ) GPFI(α,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ϖ(ϰ)z(ϰ)). | (3.19) |
Since ϖ(ϰ)≤ω(ϰ) for all ϰ∈J, then using the fact that the function ϰ→Φ(ϰ)ϰ is an increasing, thus for σ∈[a,ϰ] and ϰ∈J, we have
Φ(ϖ(σ))ϖ(σ)≤Φ(ω(σ))ω(σ). | (3.20) |
Multiplying the last inequality by 1ραΓ(α)(ϰ−σ)α−1exp[ρ−1ρ(ϰ−σ)]ω(σ)z(σ), then integrating the resulting inequality with respect to σ over [a,ϰ], a<ϰ≤b, we get
GPFI(α,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ)z(ϰ))≤GPFI(α,ρ)a+(Φ(ω(ϰ))z(ϰ)). | (3.21) |
By following similar arguments as previously mentioned, we obtain
GPFI(β,ρ)a+(Φ(ϖ(ϰ))ϖ(ϰ)ω(ϰ)z(ϰ))≤GPFI(β,ρ)a+(Φ(ω(ϰ))z(ϰ)). | (3.22) |
Hence, thanks to (3.19), (3.21) and (3.22), we get the desired inequality (3.18).
Remark 3.8. If in Theorem 3.7 α=β, then we obtain Theorem 3.5.
Remark 3.9. If in Theorem 3.7 ρ =1, then we obtain [49, Theorem 5].
In this work, we have established some inequalities for generalized proportional fractional integrals by means of convex functions. As well as we have established many new special results by using the relationship between the generalized proportional fractional integral and the R-L integral. The obtained results cover the given results by Dahmani [48] for ρ=1, and Liu et al. [8, Theorems 9 and 10] for α=1 and ρ=1.
Besides, if we replaced the generalized proportional fractional integral with the tempered fractional integral, then the acquired inequalities will reduce to the results of Rahman et al. [49].
We would like to thank the referees very much for their valuable comments and suggestions. Moreover, the authors would like to thank Universiti Kebangsaan Malaysia (UKM) for funding this work.
The authors declare that they have no competing interest.
[1] | P. L. Chebyshev, Sur les expressions approximatives des int égrales définies par les autres prises entre les mêmes limites, Proc. Math. Soc. Charkov, 2 (1882), 93–98. |
[2] | Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev functional involving a Riemann-Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38–44. |
[3] | S. K. Ntouyas, P. Agarwal, J. Tariboon, On Pó lya-Szegö and Chebyshev type inequalities involving the Riemann-Liouville fractional integral operators, J. Math. Inequal., 10 (2016), 491–504. |
[4] | G. Pólya-Szegö, Aufgaben und Lehrsatze aus der Analysis, Band 1. Die Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, 1925. |
[5] | S. S. Dragomir, N. T. Diamond, Integral inequalities of G¨russ type via Pólya-Szegö and Shisha-Mond results, East Asian Math. J., 19 (2003), 27–39. |
[6] | Q. A. Ngo, D. D. Thang, T. T. Dat, D. A. Tuan, Notes on an integral inequality, J. Inequal. Pure Appl. Math., 7 (2006), 120. |
[7] | W. J. Liu, G. S. Cheng, C. C. Li, Further development of an open problem concerning an integral inequality, JIPAM J. Inequal. Pure Appl. Math., 9 (2008), 14. |
[8] | W. J. Liu, Q. A. Ngo, V. N. Huy, Several interesting integral inequalities, J. Math. Inequal., 3 (2009), 201–212. |
[9] |
J. T. Machado, A. M Galhano, J. J. Trujillo, On development of fractional calculus during the last fifty years, Scientometrics, 98 (2014), 577–582. doi: 10.1007/s11192-013-1032-6
![]() |
[10] | A. A. Kilbas, H. M. Sarivastava, J. J. Trujillo, Theory and application of fractional differential equation, North-Holland Mathematics Studies; Elsevier Sciences B.V.: Amsterdam, The Netherland, 2006. |
[11] |
S. S. Redhwan, S. L. Shaikh, M. S. Abdo, Implicit fractional differential equation with anti-periodic boundary condition involving Caputo-Katugampola type, AIMS Math., 5 (2020), 3714–3730. doi: 10.3934/math.2020240
![]() |
[12] | A. Ekinci, M. E. Ozdemir, Some new integral inequalities via Riemann Liouville integral operators, Appl. Comput. Math., 3 (2019), 288–295. |
[13] | S. Y. Al-Mayyahi, M. S. Abdo, S. S. Redhwan, B. N. Abood, Boundary value problems for a coupled system of Hadamard-type fractional differential equations, IAENG Int. J. Appl. Math., 51 (2021), 1–10. |
[14] | S. S. Redhwan, S. L. Shaikh, M. S. Abdo, Some properties of Sadik transform and its applications of fractional-order dynamical systems in control theory, ATNAA, 4 (2019), 51–66. |
[15] | I. Podlubny, Fractional differential equations, Academic Press: London, UK, 1999. |
[16] | S. G. Samko, Fractional integrals and derivatives, theory and applications, Minsk; Nauka I Tekhnika, 1987. |
[17] | R. Hilfer, Applications of fractional calculus in physics, World Scientific: Singapore, 2000. |
[18] | M. A. Dokuyucu, Caputo and Atangana-Baleanu-Caputo fractional derivative applied to garden equation, Turkish J. Sci., 5 (2020), 1–7. |
[19] | M. Kunt, İ. İşcan, Fractional Hermite–Hadamard–Fejér type inequalities for GA-convex functions, Turkish J. Inequal., 2 (2018), 1–20. |
[20] | T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., 78 (2017), 1–9. |
[21] |
T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. doi: 10.1016/S0034-4877(17)30059-9
![]() |
[22] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel Theory and application to heat transfer, Model. Thermal Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A
![]() |
[23] | M. Caputo, M. A. Fabrizio, New definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. |
[24] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92. |
[25] |
F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. doi: 10.1140/epjst/e2018-00021-7
![]() |
[26] | Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493–497. |
[27] | G. Rahman, K. S. Nisar, S. Mubeen, J. Choi, Certain Inequalities involving the (k, ρ)-fractional integral operator, FJMS Far East J. Math. Sci., 103 (2018), 1879–1888. |
[28] | Z. Dahmani, L. Tabharit, On weighted Grüss type inequalities via fractional integration, J. Adv. Res. Pure Math., 2 (2010), 31–38. |
[29] | E. Set, M. Tomar, M. Z. Sarikaya, On generalized Gr üss type inequalities for k-fractional integrals, Appl. Math. Comput., 269 (2015), 29–34. |
[30] | K. S. Nisar, F. Qi, G. Rahman, S. Mubeen, M. Arshad, Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function, J. Inequal. Appl., 135 (2018), 1–12. |
[31] | K. S. Nisar, F. Qi, G. Rahman, S. Mubeen, M. Arshad, Certain Gronwall type inequalities associated with Riemann–Liouville k- and Hadamard k-fractional derivatives and their applications, East Asian Math. J., 34 (2018), 249–263. |
[32] |
A. O. Akdemir, S. I. Butt, M. Nadeem, M. A. Ragusa, New general variants of Chebyshev type inequalities via generalized fractional integral operators, Math., 9 (2021), 122. doi: 10.3390/math9020122
![]() |
[33] |
S. I. Butt, A. O. Akdemir, A. Ekinci, M. Nadeem, Inequalities of Chebyshev-Pólya-Szegö type via generalized proportional fractional integral operators, Miskolc Math. Notes, 21 (2020), 717–732. doi: 10.18514/MMN.2020.3363
![]() |
[34] |
K. S. Nisar, G. Rahman, K. Mehrez, Chebyshev type inequalities via generalized fractional conformable integrals, J. Inequal. Appl., 2019 (2019), 245. doi: 10.1186/s13660-019-2197-1
![]() |
[35] |
F. Qi, G. Rahman, S. M. Hussain, W. S. Du, K. S. Nisar, Some inequalities of Cébyśev type for conformable k-fractional integral operators, Symmetry, 10 (2018), 614. doi: 10.3390/sym10110614
![]() |
[36] |
G. Rahman, Z. Ullah, A. Khan, E. Set, K. S. Nisar, Certain Chebyshev type inequalities involving fractional conformable integral operators, Mathematics, 7 (2019), 364. doi: 10.3390/math7040364
![]() |
[37] |
D. Nie, S. Rashid, A. O. Akdemir, D. Baleanu, J. B. Liu, On some new weighted inequalities for differentiable exponentially convex and exponentially quasi-convex functions with applications, Math., 7 (2019), 727. doi: 10.3390/math7080727
![]() |
[38] |
N. Ekinci, N. Eroğlu, New generalizations for convex functions via conformable fractional integrals, Filomat, 33 (2019), 4525–4534. doi: 10.2298/FIL1914525E
![]() |
[39] | M. E. Zdemir, A. Ekinci, A. O. Akdemir, Some new integral inequalities for functions whose derivatives of absolute values are convex and concave, TWMS J. Pure Appl. Math., 2 (2019), 212–224. |
[40] | E. Set, A. O. Akdemir, F. Ozata, Grüss type inequalities for fractional integral operator involving the extended generalized Mittag Leffler function, Appl. Comput. Math., 19 (2020), 402–414. |
[41] |
J. Alzabut, T. Abdeljawad, F. Jarad, W. A. Sudsutad, Gronwall inequality via the generalized proportional fractional derivative with applications, J. Inequal. Appl., 2019 (2019), 101. doi: 10.1186/s13660-019-2052-4
![]() |
[42] |
G. Rahman, A. Khan, T. Abdeljawad, K. S. Nisar, The Minkowski inequalities via generalized proportional fractional integral operators, Adv. Differ. Equ., 2019 (2019), 287. doi: 10.1186/s13662-019-2229-7
![]() |
[43] |
E. Set, S. I. Butt, A. O. Akdemir, A. Karaoğlan, T. Abdeljawad, New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators, Chaos Solitons Fractals, 143 (2021), 110554. doi: 10.1016/j.chaos.2020.110554
![]() |
[44] |
S. I. Butt, J. Pečarić, I. Perić, Refinement of integral inequalities for monotone functions, J. Inequal. Appl., 2012 (2012), 1–11. doi: 10.1186/1029-242X-2012-1
![]() |
[45] | Z. Dahmani, New classes of integral inequalities of fractional order, Le Matematiche, 69 (2014), 237–247. |
[46] | C. J. Huang, G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some Inequalities of Hermite-Hadamard type for k-fractional conformable integrals, Aust. J. Math. Anal. Appl., 16 (2019), 1–9. |
[47] | G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of the Grüss type for conformable k-fractional integral operators, RACSAM, Rev. R. ACAD. A, 9 (2020), 114. |
[48] | Z. A. Dahmani, A note on some new fractional results involving convex functions, Acta Math. Univ. Comenianae, 80 (2012), 241–246. |
[49] |
G. Rahman, K. S. Nisar, T. Abdeljawad, Tempered fractional integral inequalities for convex functions, Math., 8 (2020), 500. doi: 10.3390/math8040500
![]() |
[50] | C. Li, W. Deng, L. Zhao, Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations, Discret. Contin. Dyn. Syst. B, 24 (2019), 1989–2015. |
[51] |
A. Fernandez, C. Ustaglu, On some analytic properties of tempered fractional calculus, J. Comput. Appl. Math., 366 (2020), 112400. doi: 10.1016/j.cam.2019.112400
![]() |
1. | Majid K. Neamah, Alawiah Ibrahim, Hala Shaker Mehdy, Saleh S. Redhwan, Mohammed S. Abdo, Humberto Rafeiro, Some New Fractional Inequalities Involving Convex Functions and Generalized Fractional Integral Operator, 2022, 2022, 2314-8888, 1, 10.1155/2022/2350193 |