In this paper we find further versions of generalized Hadamard type fractional integral inequality for k-fractional integrals. For this purpose we utilize the definition of h-convex function. The presented results hold simultaneously for variant types of convexities and fractional integrals.
Citation: Fangfang Ma. Fractional version of the Jensen-Mercer and Hermite-Jensen-Mercer type inequalities for strongly h-convex function[J]. AIMS Mathematics, 2022, 7(1): 784-803. doi: 10.3934/math.2022047
[1] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[2] | Yamin Sayyari, Mana Donganont, Mehdi Dehghanian, Morteza Afshar Jahanshahi . Strongly convex functions and extensions of related inequalities with applications to entropy. AIMS Mathematics, 2024, 9(5): 10997-11006. doi: 10.3934/math.2024538 |
[3] | Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121 |
[4] | Muhammad Zakria Javed, Muhammad Uzair Awan, Loredana Ciurdariu, Omar Mutab Alsalami . Pseudo-ordering and $ \delta^{1} $-level mappings: A study in fuzzy interval convex analysis. AIMS Mathematics, 2025, 10(3): 7154-7190. doi: 10.3934/math.2025327 |
[5] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[6] | Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043 |
[7] | Fangfang Shi, Guoju Ye, Dafang Zhao, Wei Liu . Some integral inequalities for coordinated log-$ h $-convex interval-valued functions. AIMS Mathematics, 2022, 7(1): 156-170. doi: 10.3934/math.2022009 |
[8] | Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589 |
[9] | Miguel Vivas-Cortez, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor . Some new generalized $ \kappa $–fractional Hermite–Hadamard–Mercer type integral inequalities and their applications. AIMS Mathematics, 2022, 7(2): 3203-3220. doi: 10.3934/math.2022177 |
[10] | Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506 |
In this paper we find further versions of generalized Hadamard type fractional integral inequality for k-fractional integrals. For this purpose we utilize the definition of h-convex function. The presented results hold simultaneously for variant types of convexities and fractional integrals.
Convex functions and mathematical inequalities play vital role in the advancement of several fields of pure and applied sciences. Various inequalities for convex and related functions have been studied in recent decades, also their variants in fractional calculus are analyzed, see [1,2,3,4,5].
The employment of fractional integral operators for establishing the generalized versions of classical inequalities become a fashion in the study of mathematical inequalities. In this regard the most celebrated inequality called Hadamard inequality has been studied extensively for fractional integral operators. The presence of Mittag-Leffler function in fractional integral operators produces interesting fractional integral inequalities.
The purpose of this paper is to present new Hadamard type inequalities for k-fractional integrals of strongly h-convex functions.
Let f∈[ϕ,φ] then the Riemann-Liouville fractional integrals Jεϕ+f and Jεφ−f of order ε with ε>0, 0 ≤ϕ<φ are defined by [6]:
(Jεϕ+)f(v)=1Γ(ε)∫vϕ(v−t)ε−1f(t)dt(v>ϕ), | (1.1) |
and
(Jεφ−)f(v)=1Γ(ε)∫φv(t−v)ε−1f(t)dt(v<φ). | (1.2) |
respectively, where Γ(ε)=∫∞0e−ttϕ−1dt is the Gamma function and (J0ϕ+)f(v)=(J0φ−)f(v)=f(v).
In [7], Jarad et al. defined the new fractional integral operator as follows:
δϕJεt(v)=1Γ(δ)∫vϕ((v−ϕ)ε−(t−ϕ)εε)δ−1f(t)(t−ϕ)1−εdt, | (1.3) |
and
δJεφt(v)=1Γ(δ)∫φv((φ−v)γ−(φ−t)εε)δ−1f(t)(φ−t)1−εdt. | (1.4) |
Note that, by taking ϕ = 0 and ε→0, the new conformable fractional integral operator coincides with the generalized fractional integrals [8], by taking ϕ = 0 and ε = 1, the (1.3) becomes Riemann-Liouville fractional operator (1.1). Furthermore, by taking φ = 0 and ε = 1, the (1.4) reduces to the Riemann-Liouville.
The generalized k-fractional conformable integrals [9] are defined as follows:
δkJεϕ+t(v)=1kΓk(δ)∫vϕ((v−ϕ)ε−(t−ϕ)εε)δk−1f(t)(t−ϕ)1−εdt, | (1.5) |
and
δkJεφ−t(v)=1kΓk(δ)∫φv((φ−v)ε−(φ−t)γε)δk−1f(t)(φ−t)1−εdt. | (1.6) |
If k > 0, then the k-Gamma function Γk is defined as [10]:
Γk(ε)=limm→∞m!km(mk)εk−1(ε)m,k. | (1.7) |
If Re (ε>0), then k-Gamma function in integral form is defined as
Γk(ε)=∫∞0exp−ϕkkϕε−1dϕ |
with εΓk(ε)=Γk(ε+k).
Let f : I∘⊆ R → R be a convex function. Then
f(ϕ+φ2)≤1φ−ϕ∫φϕf(t)dt≤f(ϕ)+f(φ)2. |
holds ∀ ϕ,φ∈I∘ with ϕ≠φ and is known as Hermite-Hadamard inequality. The above inequality is reversed, if f is a concave function on I∘, see [11,12,13,14,15].
In [16], the following generalization of Hermite-Hadamard inequality for strongly h-convex function is established:
Let f:I∘⊆R→R is Lebesgue integrable and strongly h-convex function with modulus c >0. If h : (0, 1)→(0,∞) be a given function. Then
12h(12)[f(u+v2)+c12(v−u)2]≤1v−u∫vuf(x)dx≤(f(u)+f(v))∫10h(t)dt−c6(v−u)2. |
holds ∀ u, v ∈I∘, u < v.
Some further interesting extensions and refinements of the Hermite-Hadamard inequalities for strongly h-convex mappings have been widely studied in the literature, see [17]. The other well known inequality is Jensen inequality and different variants of Jensen-Mercer inequalities are present in literature, see [18,19,20,21].
In this paper we find further versions of generalized Hadamard type fractional integral inequality for k-fractional integrals. For this purpose we utilize the definition of h-convex function.
Next, we recall some basic definitions which will be used in the present article:
The gamma function is denoted by Γ(.) and is defined as follows:
Γ(τ)=∫∞0e−ttτ−1dt,τ>0, |
The beta function is denoted by β and is defined as follows:
β(x,y)=∫10tx−1(1−t)y−1dt, |
where x,y,q are positive real numbers.
The L1[a,b] is a class of all real-valued functions integrable in [a,b].
Further, we give definitions of convex and related functions which are useful to understand the inequalities established in this work.
Definition 2.1. [23] A function f:[a,b]→R is said to be convex if
f(tx+(1−t)y)≤tf(x)+(1−t)f(y),∀x,y∈[a,b],t∈[0,1]. | (2.1) |
holds. If the inequality in (2.1) is reversed, then f is called concave function.
Definition 2.2. [24,25] Let I⊂(0,∞) be an interval and p∈R∖{0}. Then a function f:I→R is said to be p-convex, if
f((tap+(1−t)bp)1p)≤tf(a)+(1−t)f(b). | (2.2) |
holds for a,b∈I and t∈[0,1]. If the inequality in (2.2) is reversed, then f is called p-concave function.
Definition 2.3. [23] Let I,J be intervals in R, (0,1)⊆J and h:J→R be a non-negative function and h≠0. A function f:I→R is said to be an h-convex, if
f(tx+(1−t)y)≤h(t)f(x)+h(1−t)f(y). | (2.3) |
holds for x,y∈I and t∈(0,1). If the inequality in (2.3) is reversed, then f is called h-concave function.
Definition 2.4. [26] Let h:J⊇(0,1)→R be a positive function. Let I⊂(0,∞) be an interval and p∈R∖{0}. A function f:I→R is said to be (p, h)-convex, if
f((tap+(1−t)bp)1p)≤h(t)f(a)+h(1−t)f(b). | (2.4) |
holds for a,b∈I and t∈[0,1]. If the inequality in (2.4) is reversed, then f is called (p, h)-concave function.
Definition 2.5. A function h : I∘⊆R→ R is called superadditive function if
h(u+v)≥h(u)+h(v). | (2.5) |
∀ u, v ∈I∘.
Definition 2.6. [27] Let h:J⊇(0,1)→R be a positive function and I⊂(0,∞) be an interval. A function f:I∘⊆R→ R is said to be strongly convex function with modulus c, u, v ∈I∘ and t∈[0,1] if the following inequality holds
f(tu+(1−t)v)≤tf(u)+1−tf(v)−ct(1−t)(u−v)2. | (2.6) |
Definition 2.7. [16] Let h:J⊇(0,1)→R be a positive function and I⊂(0,∞) be an interval. A function f:I∘⊆R→ R is said to be strongly convex function with modulus c, u, v ∈I∘ and t∈[0,1] if the following inequality holds
f(tu+(1−t)v)≤h(t)f(u)+h(1−t)f(v)−ct(1−t)(u−v)2. | (2.7) |
Our main purpose of this section is to prove the Jensen-Mercer inequality for strongly h-convex function. To present Jensen-Mercer inequality first we will prove the following lemma:
Let 0<u1≤u2≤...≤un be real numbers and let tj(1≤j≤n) be positive weights associated with these uj and ∑nJ=1uj = 1. let h:I∘→ R be a non negative function defined over an interval I∘⊂R such that (0,1)∈I∘.
Lemma 3.1. Let f:I∘→ R be a strongly h-convex function with modulus c > 0, then
f(u1+un−uj)≤M′(f(u1)+f(un))−f(uj)−2ct(1−t)(u1−un)2. | (3.1) |
for any uj∈I∘,(1≤j≤n) and for all t∈(0,1), where M′=sup{h(t):t∈(0,1)}.
Proof. Write vj=u1+un−uj. Then u1+un=uj+vj so that the pairs u1, un and uj, vj posses the same mid point. Since that is the case, there exist a t such that
uj=tu1+(1−t)unandvj=(1−t)u1+tun. |
where 0≤t≤1 and 1≤j≤n. Then, applying strongly h-convexity of f
f(vj)=f((1−t)u1+tun)≤h(1−t)f(u1)+h(t)f(un)−ct(1−t)(u1−un)2=h(1−t)f(u1)+h(t)f(un)+h(t)f(u1)+h(1−t)f(un)−(h(t)f(u1)+h(1−t)f(un)−ct(1−t)(u1−un)2)−2ct(1−t)(u1−un)2=(h(t)+h(1−t))(f(u1)+f(un))−(h(t)f(u1)+h(1−t)f(un)−ct(1−t)(u1−un)2)−2ct(1−t)(u1−un)2≤(h(t)+h(1−t))(f(u1)+f(un))−f(tu1+(1−t)un)−2ct(1−t)(u1−un)2≤2M(f(u1)+f(un))−f(uj)−2ct(1−t)(u1−un)2≤M′(f(u1)+f(un))−f(uj)−2ct(1−t)(u1−un)2. |
where M′=sup{h(t):t∈(0,1)} and since vj=u1+un−uj, then
f(u1+un−uj)≤M′(f(u1)+f(un))−f(uj)−2ct(1−t)(u1−un)2. |
This completes the proof.
Remark 3.2. 1. Taking M′ = sup {h(t):t∈(0,1)} = 1 and c = 0 in Lemma 3.1, we get Lemma 1.3 of [20].
2. Taking c = 0 in Lemma 3.1, we get Lemma 3.1 of [18].
3. Taking M′ = sup {h(t):t∈(0,1)} = 1 in Lemma 3.1, we get Lemma 2.2 of [19].
Theorem 3.3. Let f:I∘⊂R→R be a strongly h-convex function with modulus c>0 and 0<u1≤u2≤...≤un be real numbers in I∘. If tj(1≤j≤n) be positive numbers such that ∑nj=1tj=1 and ˉu=∑nj=1tjuj. Then
f(u1+un−n∑j=1tjuj)≤M′(f(u1)+f(un))−n∑j=1h(tj)f(uj)−c(2n∑j=1h(tj)t(1−t)(u1−un)2+n∑j=1tj(uj−ˉu)2), | (3.2) |
where M′=sup{h(t):t∈(0,1)}.
Proof. Since ∑nj=1tj = 1 we have
f(u1+un−n∑j=1tjuj)=f(n∑j=1tj(u1+un−uj))≤n∑j=1h(tj)f(u1+un−uj)−cn∑j=1tj(uj−ˉu)2. |
By using Lemma 3.1, we have
f(u1+un−n∑j=1tjuj)≤n∑j=1h(tj)f(u1+un−uj)−cn∑j=1tj(uj−ˉu)2≤n∑j=1h(tj)[M′(f(u1)+f(un))−f(uj)−2ct(1−t)(u1−un)2]−cn∑j=1tj(uj−ˉu)2≤M′(f(u1)+f(un))−n∑j=1h(tj)f(uj)−c(2n∑j=1h(tj)t(1−t)(u1−un)2+n∑j=1tj(uj−ˉu)2). |
This completes the proof.
Remark 3.4. 1. Taking c=0 in Theorem 3.3, we get Theorem 3.2 of [18].
2. Taking h(t)=t and M′ = sup {h(t):t∈(0,1)} = 1 in Theorem 3.3, we get Theorem 2.2 of [19].
3. Taking c=0, h(t)=t and M′ = sup {h(t):t∈(0,1)} = 1 in Theorem 3.3, we get Theorem 1.2 of [20]).
Theorem 3.5. Assume f:I∘⊆R→ R be a strongly h-convex function with modulus c > 0 and ϕ,φ∈I∘ with ϕ<φ. If h is a super-additive function and take ε,δ> 0. Then
f(ϕ+φ−u+v2)≤h(12)2εδkεδkΓk(δ+k)(v−u)εδk{δkJε(ϕ+φ−u+v2)+f(ϕ+φ−u)+δkJε(ϕ+φ−u+v2)−f(ϕ+φ−v)}−c(14)(δkβ(δk,2ε+1))(u−v)2≤h(12)2M′[f(ϕ)+f(φ)]−h(12)h(1)[f(u)+f(v)]−c(12h(12)(1−δkβ(δk,2ε+1))(u−v)2+14(δkβ(δk,2ε+1))(u−v)2). | (3.3) |
holds ∀ u, v ∈[ϕ,φ], where M′ = sup {h(t):t∈(0,1)}.
Proof. Since f is strongly h-convex function then we write
f(ϕ+φ−u1+v12)=f(ϕ+φ−u1+ϕ+φ−v12)≤h(12)(f(ϕ+φ−u1)+f(ϕ+φ−v1))−c(14)((ϕ+φ−u1)−(ϕ+φ−v1))2. |
∀ u1,v1∈[ϕ,φ].
If we take u1=t2u+2−t2v and v1=2−t2u+t2v. Then for u, v ∈[ϕ,φ] and t∈[0,1], we have
f(ϕ+φ−u1+v12)≤h(12)(f(ϕ+φ−(t2u+2−t2v))+f(ϕ+φ−(2−t2u+t2v)))−c(14)(1−t)2(u−v)2. | (3.4) |
Multiplying (3.4) by (1−(1−t)εγ)δk−1(1−t)ε−1 and integrating the resulting inequality with respect to t over [0, 1] and then combining the obtained inequality with the definition of integral operator gives
f(ϕ+φ−u+v2)∫10(1−(1−t)εε)δk−1(1−t)ε−1dt≤∫10(1−(1−t)εε)δk−1(1−t)ε−1[h(12){f(ϕ+φ−(t2u+2−t2v))+f(ϕ+φ−(2−t2u+t2v))}−c(14)(1−t)2(u−v)2]dt=h(12){∫ϕ+φ−u+v2ϕ+φ−v(1−((ϕ+φ−u+v2)−t1v−u2)εε)δk−1((ϕ+φ−u+v2)−t1v−u2)ε−1f(t1)×(2v−udt1)+∫ϕ+φ−uϕ+φ−u+v2(1−(t2−(ϕ+φ−u+v2)v−u2)ε)δk−1(t2−(ϕ+φ−u+v2)v−u2)ε−1×(f(t2)2v−udt2)}−c(14)(u−v)2∫10(1−(1−t)εε)δk−1(1−t)ε+1dt=h(12)(2v−u)εδk{kΓk(δ)δkJγ(ϕ+φ−u+v2)+f(ϕ+φ−u)+kΓk(δ)δkJγ(ϕ+φ−u+v2)−f(ϕ+φ−v)}−c(14)(1εδkβ(δk,2ε+1))(u−v)2. |
Note that
∫10(1−(1−t)εε)δk−1(1−t)ε−1dt=1δkεδk. | (3.5) |
By simple calculations, we have
f(ϕ+φ−u+v2)≤h(12)2εδkεδkΓk(δ+k)(v−u)γδk{δkJε(ϕ+φ−u+v2)+f(ϕ+φ−u)+δkJε(ϕ+φ−u+v2)−f(ϕ+φ−v)}−c(14)(δkβ(δk,2ε+1))(u−v)2. | (3.6) |
which completes the proof of first inequality of (3.3).
For second part of inequality (3.3) take the definition of strongly h-convex function and by similar discussion, we get
f(ϕ+φ−(t2u+2−t2v))≤M′[f(ϕ)+f(φ)]−(h(t2)f(u)+h(2−t2)f(v))−c(t2(2−t2))(u−v)2 |
and
f(ϕ+φ−(2−t2u+t2v))≤M′[f(ϕ)+f(φ)]−(h(2−t2)f(u)+h(t2)f(v))−c((2−t2)t2)(u−v)2. |
Adding the above two inequalities give
f(ϕ+φ−(t2u+2−t2v))+f(ϕ+φ−(2−t2u+t2v))≤2M′[f(ϕ)+f(φ)]−[(h(t2)+h(2−t2))f(u)+(h(2−t2)+h(t2))f(v)]−2c((2−t2)t2)(u−v)2. |
By using super-additivity of function, we have
f(ϕ+φ−(t2u+2−t2v))+f(ϕ+φ−(2−t2u+t2v))≤2M′[f(ϕ)+f(φ)]−h(1)[f(u)+f(v)]−2c(2t−t24)(u−v)2. | (3.7) |
Multiplying (3.7) by (1−(1−t)γγ)δk−1(1−t)γ−1 and then integrating the resulting inequality with respect to t over [0, 1], we obtain
∫10(1−(1−t)εε)δk−1(1−t)ε−1{f(ϕ+φ−(t2u+2−t2v))+f(ϕ+φ−(2−t2u+t2v))}dt≤{2M′[f(ϕ)+f(φ)]−h(1)[f(u)+f(v)]−2c(2t−t24)(u−v)2}(∫10(1−(1−t)εε)δk−1(1−t)ε−1dt). |
By computing the above integrals, we have
(2v−u)εδk{kΓk(δ)δkJε(ϕ+φ−u+v2)+f(ϕ+φ−u)+kΓk(δ)δkJε(ϕ+φ−u+v2)−f(ϕ+φ−v)}≤1δkεδk{2M′[f(ϕ)+f(φ)]−h(1)[f(u)+f(v)]}−12c(1δkεδk−1εδkβ(δk,2ε+1))(u−v)2. |
that is,
2εδkεδkΓk(δ+k)(v−u)γδk{δkJε(ϕ+φ−u+v2)+f(ϕ+φ−u)+δkJε(ϕ+φ−u+v2)−f(ϕ+φ−v)}≤2M′[f(ϕ)+f(φ)]−h(1)[f(u)+f(v)]−12c(1−δkβ(δk,2ε+1))(u−v)2. | (3.8) |
Multiplying both sides of (3.8) by h(12) and then subtract c(14)(δkβ(δk,2ε+1))(u−v)2 leads to the conclusion that
h(12)2εδkεδkΓk(δ+k)(v−u)γδk{δkJε(ϕ+φ−u+v2)+f(ϕ+φ−u)+δkJε(ϕ+φ−u+v2)−f(ϕ+φ−v)}−c(14)(δkβ(δk,2ε+1))(u−v)2≤h(12)2M′[f(ϕ)+f(φ)]−h(12)h(1)[f(u)+f(v)]−c(12h(12)(1−δkβ(δk,2ε+1))(u−v)2+14(δkβ(δk,2ε+1))(u−v)2). | (3.9) |
Combining (3.6) and (3.9) lead to (3.3).
Remark 3.6. 1. Taking h(t) = t, M′ = sup {h(t):t∈(0,1)} = 1 and c = 0 in Theorem 3.5, we get Theorem 2.1 of [28].
2. Taking h(t) = t, M′ = sup {h(t):t∈(0,1)} = 1, c = 0, k = 1, u = ϕ, and v = φ in Theorem 3.5, we get Theorem 2.1 of [29].
3. Taking (t) = t, M′ = sup {h(t):t∈(0,1)} = 1, c = 0, ε=k=1, u=ϕ and v=φ in Theorem 3.5, we get Theorem 2 of [30].
Theorem 3.7. Let f:I∘⊆R→ R be a strongly h-convex function with modulus c > 0 and ϕ,φ∈I∘ with f<φ. If h is a super-additive function and take ε,δ> 0. Then
f(ϕ+φ−u+v2)≤h(12)2M′[f(ϕ)+f(φ)]−h(12)h(1)εδkΓk(δ+k)(v−u)εδk{δkJεu+f(v)+δkJεv−f(u)}−c[12h(12)(1−δkβ(δk,2ε+1))(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2+14(δkβ(δk,2ε+1))(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2]≤h(12)2M′[f(ϕ)+f(φ)]−h(1)f(u+v2)−c[14h(1)(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2+12h(12)(1−δkβ(δk,2ε+1))×(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2+14(δkβ(δk,2ε+1))(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2]. | (3.10) |
and
f(ϕ+φ−u+v2)≤h(12)εδkΓk(δ+k)(v−u)εδk{δkJε(ϕ+φ−v)+f(ϕ+φ−u)+δkJε(ϕ+φ−u)−f(ϕ+φ−v)}−c(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(u−v)2≤h(1)(h(12)2M′[f(ϕ)+f(φ)]−h(1)h(12)[f(u)+f(v)])−c(2h(1)h(12)δk(β(βk,1ε+1)−β(βk,2ε+1))(u−v)2+2h(12)δk(β(βk,1ε+1)−β(βk,2ε+1))(v−u)2+(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(u−v)2). | (3.11) |
holds ∀ u, v ∈[ϕ,φ], where M ′ = sup {h(t):t∈(0,1)}.
Proof. Employing Jensen-Mercer inequality (3.3), we have
f(ϕ+φ−u1+v12)≤h(12)2M′[f(ϕ)+f(φ)]−h(12)h(1)[f(u1)+f(v1)]−c(12h(12)(1−δkβ(δk,2ε+1))(u1−v1)2+14(δkβ(δk,2ε+1))(u1−v1)2). | (3.12) |
∀ u1,v1∈[ϕ,].
By changing variables u1=tu+(1−t)v and v1=(1−t)u+tv for all u, v ∈[ϕ,φ] and t∈[0,1] in (3.12), we get
f(ϕ+φ−u+v2)≤h(12)2M′[f(c)+f(φ)]−h(12)h(1)[f(tu+(1−t)v)+f((1−t)u+tv)]−c(12h(12)(1−δkβ(δk,2ε+1))(1−2t)2(v−u)2+14(δkβ(δk,2ε+1))(1−2t)2(v−u)2). | (3.13) |
Multiplying (3.13) by (1−(1−t)εε)δk−1(1−t)ε−1 and integrating the obtained inequality with respect to t over [0, 1] gives
f(ϕ+φ−u+v2)∫10(1−(1−t)εε)δk−1(1−t)ε−1dt≤∫10(1−(1−t)εε)δk−1(1−t)ε−1×[(h(12)2M′[f(ϕ)+f(φ)]−h(12)h(1)[f(tu+(1−t)v)+f((1−t)u+tv)])−c(12h(12)(1−δkβ(δk,2ε+1))(1−2t)2(v−u)2+14(δkβ(δk,2ε+1))(1−2t)2(v−u)2)]dt. |
that is,
f(ϕ+φ−u+v2)≤h(12)2M′[f(ϕ)+f(φ)]−h(12)h(1)εδkΓk(δ+k)(v−u)εδk{δkJεu+f(v)+δkJεv−f(u)}−c[12h(12)(1−δkβ(δk,2ε+1))(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2+14(δkβ(δk,2ε+1))(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2], | (3.14) |
this completes the proof of first inequality of (3.10).
Now for second part of inequality (3.10) take the definition of strongly h-convex function, we have
f(u+v2)=f(tu+(1−t)v+(1−t)u+tv2)≤h(12){f(tu+(1−t)v)+f((1−t)u+tv)}−c(14)((tu+(1−t)v)−((1−t)u+tv))2. | (3.15) |
Multiplying (3.15) by (1−(1−t)εε)δk−1(1−t)ε−1 and then integrating the resulting inequality with respect to t over [0, 1], we obtain
f(u+v2)∫10(1−(1−t)εε)δk−1(1−t)ε−1dt≤∫10(1−(1−t)εε)δk−1(1−t)ε−1(h(12){f(tu+(1−t)v)+f((1−t)u+tv)}−c(14)(1−2t)2(v−u)2)dt. |
By some calculations, we get
f(u+v2)≤h(12)εδkΓk(δ+k)(v−u)εδk{δkJεu+f(v)+δkJεv−f(u)},−c(14)(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2−f(u+v2)≥−h(12)εδkΓk(δ+k)(v−u)εδk{δkJεu+f(v)+δkJεv−f(u)}+c(14)(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2. | (3.16) |
Multiplying (3.16) by h(1), we have
−h(1)f(u+v2)≥−h(12)h(1)εδkΓk(δ+k)(v−u)εδk{δkJεu+f(v)+δkJεv−f(u)}+c(14)h(1)(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2. | (3.17) |
Adding h(12)2M′[f(ϕ)+f(φ)] to both sides of (3.17), we get
h(12)2M′[f(ϕ)+f(φ)]−h(1)f(u+v2)≥h(12)2M′[f(ϕ)+f(φ)]−h(12)h(1)εδkΓk(δ+k)(n−m)εδk{δkJεu+f(v)+δkJεv−f(u)}+c(14)h(1)(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2. |
Adding −c[12h(12)(1−δkβ(δk,2ε+1))(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2+14(δkβ(δk,2ε+1))(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2] to both sides of above inequality, we have
h(12)2M′[f(ϕ)+f(φ)]−h(12)h(1)εδkΓk(δ+k)(v−u)εδk{δkJεu+f(v)+δkJεv−f(u)}−c[12h(12)(1−δkβ(δk,2ε+1))(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2+14(δkβ(δk,2ε+1))(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2]≤h(12)2M′[f(ϕ)+f(φ)]−h(1)f(u+v2)−c[14h(1)(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2+12h(12)(1−δkβ(δk,2ε+1))(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2+14(δkβ(δk,2ε+1))(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(v−u)2]. | (3.18) |
Combining (3.14) and (3.18) yields (3.10).
Next, we prove inequality (3.11) by using strong h-convexity of f, we have
f(ϕ+φ−u1+v12)=f(ϕ+φ−u1+ϕ+φ−v12)≤h(12){f(ϕ+φ−u1)+f(ϕ+φ−v1)}−c(14)((ϕ+φ−u1)+(ϕ+φ−v1))2. | (3.19) |
for all u1,v1∈[ϕ,φ].
For u1=tu+(1−t)v and v1=(1−t)u+tv. Then (3.19) leads to the conclusion that
f(ϕ+ν−u+v2)≤h(12){f(ϕ+ν−(tu+(1−t)v))+f(c+ν−((1−t)u+tv))}−c(14)(1−2t)2(u−v)2. | (3.20) |
Multiplying (3.20) by (1−(1−t)εε)δk−1(1−t)ε−1 and then integrating the resulting inequality with respect to t over [0, 1], we have
f(ϕ+φ−u+v2)∫10(1−(1−t)εε)δk−1(1−t)ε−1dt≤∫10(1−(1−t)εε)δk−1(1−t)ε−1×(h(12){f(ϕ+φ−(tu+(1−t)v))+f(ϕ+φ−((1−t)u+tv))}−c(14)(1−2t)2(u−v)2)dt, |
By computing the above integrals, we get
f(ϕ+φ−u+v2)≤h(12)εδkΓk(δ+k)(v−u)εδk{δkJγ(ϕ+φ−v)+f(ϕ+φ−u)+δkJε(ϕ+φ−u)−f(ϕ+φ−v)}.−c(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(u−v)2. | (3.21) |
Employing strong h-convexity of f gives
f(t(ϕ+φ−u)+(1−t)(ϕ+φ−v))≤h(t)f(ϕ+φ−u)+h(1−t)f(ϕ+φ−v)−ct(1−t)((ϕ+φ−u)−(ϕ+φ−v))2, |
and
f((1−t)(ϕ+φ−u)+t(ϕ+φ−v))≤h(1−t)f(ϕ+φ−u)+h(t)f(ϕ+φ−v)−c(1−t)t((ϕ+φ−u)−(ϕ+φ−v))2. |
Adding above two inequalities and employing supper-additivity of function, we have
f(t(ϕ+φ−u)+(1−t)(ϕ+φ−v))+f((1−t)(ϕ+φ−u)+t(ϕ+φ−v))≤f(ϕ+φ−u)(h(t)+h(1−t))+f(ϕ+φ−v)(h(1−t)+h(t))−2ct(1−t)(v−u)2≤h(1)(f(ϕ+φ−u)+f(c+φ−v))−2ct(1−t)(v−u)2. |
Now employing the Jensen-Mercer inequality, we get
f(t(ϕ+φ−u)+(1−t)(ϕ+φ−v))+f((1−t)(ϕ+φ−u)+t(ϕ+φ−v))≤h(1)(2M′[f(ϕ)+f(φ)]−h(1)[f(u)+f(v)]−2ct(1−t)(u−v)2)−2ct(1−t)(v−u)2. | (3.22) |
Multiplying (3.22) by (1−(1−t)εε)δk−1(1−t)ε−1 and integrate the resulting inequality with respect to t over [0, 1], we have
∫10(1−(1−t)εε)δk−1(1−t)ε−1{f(t(ϕ+φ−u)+(1−t)(ϕ+φ−v))+f((1−t)(ϕ+φ−u)+t(ϕ+φ−v))}dt≤(h(1)(2M′[f(ϕ)+f(φ)]−h(1)[f(u)+f(v)]−2ct(1−t)(u−v)2)−2ct(1−t)(v−u)2)∫10(1−(1−t)εε)δk−1(1−t)ε−1dt. |
Adding −c(1+4δk(β(δk,2ε+1)−β(δk,1ε+1)))(u−v)2 to both sides of above inequality and combining the result with (3.21) yields (3.11).
Remark 3.8. 1. Taking h(t) = t, c = 0 and M′ = sup {h(t):t∈(0,1)} = 1 in Theorem 3.7, we get Theorem 2.3 of [28].
2. Taking ε=δ=k=1, c = 0, h(t) = t and M′ = sup {h(t):t∈(0,1)} = 1 in Theorem 3.7, we get Theorem 2.1 of [31].
Lemma 3.9. [28] Let ε,δ>0,ϕ<φ and f:[ϕ,φ]→ R be a differentiable mapping such that f′∈L[ϕ,φ]. Then the inequality
2εδk−1Γk(δ+k)(v−u)εδk{δkJε(ϕ+φ−u+v2)+f(ϕ+φ−u)+δkJε(ϕ+φ−u+v2)−f(ϕ+φ−v)}−f(ϕ+φ−u+v2)=(v−u)εδk4∫10(1−(1−t)εε)δk{f′(ϕ+φ−(2−t2u+t2v))−f′(ϕ+φ−(t2u+2−t2v))}dt. | (3.23) |
holds for all u,v∈[ϕ,φ].
Theorem 3.10. Let f:I∘⊆R→ R ba a differentiable function on I∘, ϕ,φ∈I∘ with ϕ<φ and f′∈L[ϕ,φ]. If |f′| is a strongly h-convex function with modulus c> 0 on [ϕ,φ] and take ε,δ> 0. Then
|2εδk−1εk(δ+k)(v−u)εδk{δkJε(ϕ+φ−u+v2)+f(ϕ+φ−u)+δkJε(ϕ+φ−u+v2)−f(ϕ+φ−v)}−f(ϕ+φ−u+v2)|≤(v−u)εδk4[{M′[|f′(ϕ)|+|f′(φ)|](1εδk+1β(δk+1,1ε))−(|f′(u)|β1(h,2−t2)+|f′(v)|β2(h,t2))−c14εδk+1(β(δk+1,1ε)−β(δk+1,3ε))(u−v)2}+{M′[|f′(ϕ)|+|f′(φ)|](1εδk+1β(δk+1,1ε))−(|f′(u)|β2(h,t2)+|f′(v)|β1(h,2−t2))−c14εδk+1(β(δk+1,1ε)−β(δk+1,3ε))(u−v)2}], | (3.24) |
holds ∀ u,v∈[ϕ,φ], where β1(h,2−t2)=∫10(1−(1−t)εε)δkh(2−t2)dt, β2(h,t2)=∫10(1−(1−t)εε)δkh(t2)dt and M′=sup{h(t):t∈(0,1)}.
Proof. Employing Lemma 3.9, inequality (3.2) and definition of strong h-convexity of |f′| yield the desired result.
Remark 3.11. 1. Taking h(t) = t, M′ = sup {h(t):t∈(0,1)} = 1 and c = 0 in Theorem 3.10, we get Theorem 2.10 of [28].
2. Taking h(t) = t, M′ = sup{h(t):t∈(0,1)} = 1, c = 0, k = 1, u = ϕ and v = φ in Theorem 3.10, we get Theorem 3.1 of [29].
3. Taking ε=k=1, h(t) = t, M′ = sup {h(t):t∈(0,1)} = 1, c = 0, u = ϕ and v = φ in Theorem 3.10, we get Theorem 5 of [32] in the case of q = 1.
Theorem 3.12. Let f:I∘⊆R→ R be a differentiable function on I∘, ϕ,φ∈I∘ with ϕ<φ and f′∈L[ϕ,φ]. If |f′|q is a strongly h-convex function with modulus c> 0 on [ϕ,φ] for q> 1 and take ε,δ> 0. Then
|2εδk−1εk(δ+k)(v−u)εδk{δkJε(ϕ+φ−u+v2)+f(ϕ+φ−u)+δkJε(ϕ+φ−u+v2)−f(ϕ+φ−v)}−f(ϕ+φ−u+v2)≤(v−u)εδk4[{(1εδk+1β(δk+1,1ε))1−1q{M′[|f′(ϕ)|q+|f′(φ)|q](1εδk+1β(δk+1,1ε))|−((|f′(u)|qβ2(h,t2)+|f′(v)|qβ1(h,2−t2))−c14εδk+1(β(δk+1,1ε)−β(δk+1,3ε))(u−v)2)1q}}+{(1εδk+1β(δk+1,1ε))1−1q{M′[|f′(ϕ)|q+|f′(φ)|q](1εδk+1β(δk+1,1ε))−((|f′(u)|qβ1(h,2−t2)+|f′(v)|qβ2(h,t2))−c14εδk+1(β(δk+1,1ε)−β(δk+1,3ε))(u−v)2)1q}}], | (3.25) |
holds ∀ u, v ∈[ϕ,φ], where β1(h,2−t2), β2(h,t2) and M′ are same as in Theorem 3.10.
Proof. Employing Lemma 3.9, inequality (3.2), power-mean inequality and definition of strongly h-convex function of |f′| yield the desired result.
Remark 3.13. Taking h(t) = t, M′ = sup {h(t):t∈(0,1)} = 1 and c = 0 in Theorem 3.12, we get Theorem 2.12 of [28].
Theorem 3.14. Let f:I∘⊆R→ R be a differentiable function on I∘, ϕ,φ∈I∘ with ϕ<φ and f′∈L[ϕ,φ]. If |f′|q is a strongly h-convex function with modulus c> 0 on [ϕ,φ] for p,q> 1 with 1p+1q=1 and take ε,δ> 0. Then
|2εδk−1εk(δ+k)(v−u)εδk{δkJε(ϕ+φ−u+v2)+f(ϕ+φ−u)+δkJε(ϕ+φ−u+v2)−f(ϕ+φ−v)}−f(ϕ+φ−u+v2)|≤(v−u)εδk4(1εδkp+1β(δkp+1,1ε))1p{(M′[|f′(ϕ)|q+|f′(φ)|q]−(|f′(u)|qC1(h,2−t2)+|f′(v)|q C2(h,t2))−c16(u−v)2)1q+(M′[|f′(ϕ)|q+|f′(φ)|q]−(|f′(u)|qC2(h,t2)+|f′(v)|qC1(h,2−t2))−c16(u−v)2)1q}, | (3.26) |
holds ∀ u,v∈[ϕ,φ], where C1(h,2−t2)=∫10h(2−t2)dt, C2(h,t2)=∫10h(t2)dt and M′=sup{h(t):t∈(0,1)}.
Proof. From applying Lemma 3.9, inequality 3.2, Hölder integral inequalities and definition of strongly h-convex function simultaneously give the desired result.
Remark 3.15. Taking h(t) = t, M′ = sup {h(t):t∈(0,1)} = 1 and c = 0 in Theorem 3.14, we get Theorem 2.14 of [28].
Theorem 3.16. Assume f:I∘⊆R→ R be a differentiable function on I∘, ϕ,φ∈I∘ with ϕ<φ and f′∈L[ϕ,φ]. If |f′|q is a strongly h-convex function with modulus c> 0 on [ϕ,φ] for p,q> 1 with 1p+1q=1 and take ε,δ> 0. Then
|2εδk−1εk(δ+k)(v−u)εδk{δkJε(ϕ+φ−u+v2)+f(ϕ+φ−u)+δkJε(ϕ+φ−u+v2)−f(ϕ+φ−v)}−f(ϕ+φ−u+v2)|≤(v−u)εδk4{(M′(|f′(ϕ)|q+|f′(φ)|q)(β(δk+1,1ε)εδk+1)−(β1(h,2−t2)|f′(u)|q+β2(h,t2)|f′(v)|q)−c14εδk+1(β(δk+1,1ε)−β(δk+1,3ε))(u−v)2)1q+(M′(|f′(ϕ)|q+|f′(φ)|q)(β(δk+1,1ε)εδk+1)−(β2(h,t2)|f′(u)|q+β1(h,2−t2)|f′(v)|q)−c14εδk+1(β(δk+1,1ε)−β(δk+1,3ε))(u−v)2)1q}, | (3.27) |
holds ∀ u,v∈[ϕ,φ], where β1(h,2−t2), β2(h,t2) and M′ are same as in Theorem 3.10.
Proof. Using Lemma 3.9, inequality (3.2), Hölder integral inequalities and definition of strongly h-convex function, we obtain our desired result.
Remark 3.17. Taking h(t) = t, M′ = sup {h(t):t∈(0,1)} = 1 and c = 0 in Theorem 3.16, we get Theorem 2.16 of [28].
Theorem 3.18. Let f:I∘⊆R→ R be a differentiable function on I∘, ϕ,φ∈I∘ with ϕ<φ and f′∈L[ϕ,φ]. If |f′|q is a strongly h-convex function with modulus c> 0 on [ϕ,φ] for p,q> 1 with 1p+1q=1 and take ε,δ> 0. Then
|2εδk−1εk(δ+k)(v−u)εδk{δkJε(ϕ+φ−u+v2)+f(ϕ+φ−u)+δkJε(ϕ+φ−u+v2)−f(ϕ+φ−v)}−f(ϕ+φ−u+v2)|≤(v−u)εδk4[{(β(2ε,δk+1)εδk+1)1p(M′(|f′(ϕ)|q+|f′(φ)|q)2−(β1((1−t)h,2−t2)|f′(u)|q+β2((1−t)h,t2)|f′(v)|q)−c16(u−v)2)1q+(β(1ε,δkp+1)−β(2ε,δkp+1)εδkp+1)1p(M′(|f′(ϕ)|q+|f′(φ)|q)2−(β3(th,2−t2)|f′(u)|q+β4(th,t2)|f′(v)|q)−c548(u−v)2)1q}+{(β(2ε,δkp+1)εδkp+1)1p(M′(|f′(ϕ)|q+|f′(φ)|q)2−(β2((1−t)h,t2)|f′(u)|q+β1((1−t)h,2−t2)|f′(v)|q)−c16(u−v)2)1q+(β(1ε,δkp+1)−β(2ε,δkp+1)εδkp+1)1p(M′(|f′(ϕ)|q+|f′(φ)|q)2−(β4(th,t2)|f′(u)|q+β3(th,2−t2)|f′(v)|q)−c548(u−v)2)1q}], | (3.28) |
holds for all u, v ∈[ϕ,φ], where β1((1−t)h,2−t2)=∫10(1−t)h(2−t2)dt, β2((1−t)h,t2)=∫10(1−t)h(t2)dt, β3(th,2−t2)=∫10th(2−t2)dt, β4(th,t2)=∫10th(t2)dt and M′=sup{h(t):t∈(0,1)}.
Proof. Using Lemma 3.9, inequality (3.2), Hölder-Íscan integral inequality given in Theorem 1.4 of [33] and definition of strongly h-convex function of |f′|q yield the desired result.
Remark 3.19. Taking h(t) = t, c = 0 and M′=sup{h(t):t∈(0,1)} = 1 in Theorem 3.18, we get Theorem 3.1 of [28].
Theorem 3.20. Let f:I∘⊆R→ R be a differentiable function on I∘, ϕ,φ∈I∘ with ϕ<φ and f′∈L[ϕ,φ]. If |f′|q is a strongly h-convex function with modulus c on [ϕ,φ], where p,q> 1 with 1p+1q=1 and take ε,δ> 0. Then
|2εδk−1εk(δ+k)(v−u)εδk{δkJε(ϕ+φ−u+v2)+f(ϕ+φ−u)+δkJε(ϕ+φ−u+v2)−f(ϕ+φ−v)}−f(ϕ+φ−u+v2)|≤(v−u)εδk4[{(β(2ε,δk+1)εδk+1)1−1q(M′(|f′(ϕ)|q+|f′(φ)|q)(β(2ε,δk+1)εδk+1)−(β1((1−t)h,2−t2)|f′(u)|q+β2((1−t)h,t2)|f′(v)|q)−c14εδk+1(β(δk+1,2ε)−β(δk+1,4ε))(u−v)2)1q+(β(1ε,δk+1)−β(2ε,δk+1)εδk+1)1−1q(M′(|f′(ϕ)|q+|f′(φ)|q)(β(1ε,δk+1)−β(2ε,δk+1)εδk+1)−(β3(th,2−t2)|f′(u)|q+β4(th,t2)|f′(v)|q)−c14εδk+1(β(δk+1,4ε)−β(δk+1,3ε)−β(δk+1,2ε)+β(δk+1,1ε))(u−v)2)1q}+{(β(2ε,δk+1)εδk+1)1−1q(M′(|f′(ϕ)|q+|f′(φ)|q)(β(2ε,δk+1)εδk+1)−(β2((1−t)h,t2)|f′(u)|q+β1((1−t)h,2−t2)|f′(v)|q)−c14εδk+1(β(δk+1,2ε)−β(δk+1,4ε))×(u−v)2)1q+(β(1ε,δk+1)−β(2ε,δk+1)εδk+1)1−1q(M′(|f′(ϕ)|q+|f′(φ)|q)(β(1ε,δk+1)−β(2ε,δk+1)εδk+1)−(β4(th,t2)|f′(u)|q+β3(th,2−t2)|f′(v)|q)−c14εδk+1(β(δk+1,4ε)−β(δk+1,3ε)−β(δk+1,2ε)+β(δk+1,1ε))(u−v)2)1q}], | (3.29) |
holds for all u, v ∈[ϕ,φ], where β1((1−t)h,2−t2)=∫10(1−t)(1−(1−t)εε)δkh(2−t2)dt, β2((1−t)h,t2)=∫10(1−t)(1−(1−t)εε)δkh(t2)dt, β3(th,2−t2)=∫10t(1−(1−t)εε)δkh(2−t2)dt, β4(th,t2)=∫10t(1−(1−t)εε)δkh(t2)dt and M′=sup{h(t):t∈(0,1)}.
Proof. Employing Lemma 3.9, inequality (3.2), improved power-mean integral inequality given in Theorem 1.5 of [33] and definition of strong h-convexity of |f′|q yield the required result.
Remark 3.21. Taking h(t) = t, c = 0 and M = sup {h(t):t∈(0,1)} = 1 in Theorem 3.20, we get Theorem 3.2 of [28].
The convex functions play an important role in applied mathematics as well as in optimization theory. In past years, researchers paid a huge attention to establish properties of different variants of convex functions. In this paper, we studied h-convex functions in the setting of k-fractional integrals. We established various important versions of Hermite-Hadamard type inequalities for h-convex. Our results generalize and extend many existing results in literature.
The study was supported by Fundamental Research Funds for the Central Universities (Grant No. 2020RC14) and Young teachers undergraduate teaching top talents Project of Shandong University of Science and Technology (No. BJRC20190508).
The author declares no conflict of interests.
[1] |
B. Ahmad, A. Alsaedi, M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, J. Comp. Appl. Math., 353 (2019), 120–129. doi: 10.1016/j.cam.2018.12.030. doi: 10.1016/j.cam.2018.12.030
![]() |
[2] |
F. Chen, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions, J. Appl. Math., 2014 (2014), 1–6. doi: 10.1155/2014/386806. doi: 10.1155/2014/386806
![]() |
[3] |
A. Guessab, G. Schmeisser, Necessary and sufficient conditions for the validity of Jensen's inequality, Arch. Math., 100 (2013), 561–570. doi: 10.1007/s00013-013-0522-3. doi: 10.1007/s00013-013-0522-3
![]() |
[4] |
A. Guessab, O. Nouisser, J. Pecaric, A multivariate extension of an inequality of Brenner-Alzer, Arch. Math., 98 (2012), 277–287. doi: 10.1007/s00013-012-0361-7. doi: 10.1007/s00013-012-0361-7
![]() |
[5] |
A. Guessab, Direct and converse results for generalized multivariate Jensen-type inequalities, J. Nonlinear Convex Anal., 13 (2012), 777–797. doi: 10.1186/1029-242X-2012-170. doi: 10.1186/1029-242X-2012-170
![]() |
[6] | A. O. Akdemir, A. Ekinci, E. Set, Conformable fractional integrals and related new integral inequalities, J. Nonlinear Convex Anal., 18 (2017), 661–674. Available from: https://hdl.handle.net/20.500.12501/1401. |
[7] |
F. Jarad, E. Uˇgurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), Article ID 247. doi:10.1186/s13662-017-1306-z. doi: 10.1186/s13662-017-1306-z
![]() |
[8] | A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204. Available from: https://www.koreascience.or.kr/article/JAKO200111920819409.page. |
[9] |
F. Qi, S. Habib, S. Mubeen, M. N. Naeem, Generalized k-fractional conformable integrals and related inequalities, AIMS Math., 4 (2019), 343–368. doi: 10.3934/math.2019.3.343. doi: 10.3934/math.2019.3.343
![]() |
[10] | R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Math., 15 (2007), 179–192. |
[11] | M. U. Awan, On strongly generalized convex functions, Filomat, 31 (2017), 5783–5790. |
[12] | M. Noor, K. Noor, U. Awan, Hermite–Hadamard type inequalities for modified h-convex functions, Transylv. J. Math. Mech., 6 (2014). |
[13] |
M. Bessenyei, Z. Ples, Hermite–Hadamard inequalities for generalized convex functions, Aequ. Math., 69 (2005), 32–40. doi: 10.1007/s00010-004-2730-1. doi: 10.1007/s00010-004-2730-1
![]() |
[14] | V. Ciobotariu-Boer, Hermite–Hadamard and Fejér inequalities for Wright-convex functions, Octogon Math. Mag., 17 (2009), 53–69. |
[15] |
B. S. Mordukhovich, N. M. Nam, An easy path to convex analysis and applications, Synth. Lect. Math. Stat., 6 (2013), 1–218. doi: 10.2200/S00554ED1V01Y201312MAS014. doi: 10.2200/S00554ED1V01Y201312MAS014
![]() |
[16] |
H. Angulo, J. Gimˊenez, A. M. Moros, K. Nikodem, On strongly h-convex functions, Ann. Funct. Anal., 2 (2011), 85–91. doi: 10.15352/afa/1399900197. doi: 10.15352/afa/1399900197
![]() |
[17] | M. U. Awan, M. A. Noor, E. Set, M. V. Mihai, On strongly (p,h)-convex functions, TWMS J. Pure Appl. Math., 9 (2019), 145–153. |
[18] | M. J. Vivas-Cortez, H. Hernández, A variant of Jensen-Mercer Inequality for h-convex functions and operator h-convex functions, Matua: Rev. Matemática. Univ. Atl., 4 (2017), 62–76. |
[19] |
H. R. Moradi, M. E. Omidvar, M. A. Khan, K. Nikodem, Around Jensen's inequality for strongly convex functions, Aequat. Math., 92 (2018), 25–37. doi: 10.1007/s00010-017-0496-5. doi: 10.1007/s00010-017-0496-5
![]() |
[20] | A. McD. Mercer, A variant of Jensen's inequality, J. Inequal. Pure Appl. Math., 4 (2003), Article ID 73. |
[21] |
A. Matković, J. Peˇcarić, I. Perić, A variant of Jensen's inequality of Mercer's type for operators with applications, Linear Algebra Appl., 418 (2006), 551–564. doi: 10.1016/j.laa.2006.02.030. doi: 10.1016/j.laa.2006.02.030
![]() |
[22] |
S. Varoˇsanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. doi: 10.1016/j.jmaa.2006.02.086. doi: 10.1016/j.jmaa.2006.02.086
![]() |
[23] |
G. H. Toader, Some generalization of convexity, Proc. Colloq. Approx. Optim. Cluj Napoca(Romania)., 1984 (1984), 329–338. doi: 10.12691/tjant-2-3-1. doi: 10.12691/tjant-2-3-1
![]() |
[24] |
İ. İscan, Ostrowski type inequalities for p-convex functions, New Trends Math. Sci., 4 (2016), 140–150. doi: 10.20852/ntmsci.2016318838. doi: 10.20852/ntmsci.2016318838
![]() |
[25] |
İ. İscan, S. Turhan, S. Maden, Hermite-Hadamard and Simpson-like type inequalities for differentiable p-quasi-convex functions, Filomat., 31 (2017), 5945–5953. doi: 10.2298/FIL1719945I. doi: 10.2298/FIL1719945I
![]() |
[26] |
Z. B. Fang, R. Shi, On the (p, h)-convex function and some integral inequalities, J. Inequal. Appl., 2014 (2014), Article ID 16. doi: 10.1186/1029-242X-2014-45. doi: 10.1186/1029-242X-2014-45
![]() |
[27] | B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Sov. Math.Dokl., 7 (1966), 72–75. |
[28] |
S. I. Butt, M. Umar, S. Rashid, New Hermite-Jensen-Mercer-type inequalities via k-fractional integrals, Adv. Differ. Equ., 2020 (2020), Article ID 635. doi: 10.1186/s13662-020-03093-y. doi: 10.1186/s13662-020-03093-y
![]() |
[29] |
A. Gözpınar, Some Hermite-Hadamard type inequalities for convex functions via new fractional conformable integrals and related inequalities, AIP Conf. Proc., 1991 (2018), Article ID 020006. doi: 10.1063/1.5047879. doi: 10.1063/1.5047879
![]() |
[30] |
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048. doi: 10.1016/j.mcm.2011.12.048
![]() |
[31] |
M. Kian, M. S. Moslehian, Refinements of the operator Jensen-Mercer inequality, Electron. J. Linear Al., 26 (2013), 742–753. doi: 10.13001/1081-3810.1684. doi: 10.13001/1081-3810.1684
![]() |
[32] |
M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes., 17 (2016), 1049–1059. doi: 10.18514/MMN.2017.1197. doi: 10.18514/MMN.2017.1197
![]() |
[33] |
S. Özcan, I. Iscan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl., 2019 (2019), Article ID 201. doi: 10.1186/s13660-019-2151-2. doi: 10.1186/s13660-019-2151-2
![]() |