We present new Mercer variants of Hermite-Hadamard (HH) type inequalities via Atangana-Baleanu (AB) fractional integral operators pertaining non-local and non-singular kernels. We establish trapezoidal type identities for fractional operator involving non-singular kernel and give Jensen-Mercer (JM) variants of Hermite-Hadamard type inequalities for differentiable mapping Υ possessing convex absolute derivatives. We establish connections of our results with several renowned results in the literature and also give applications to special functions.
Citation: Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon. Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator[J]. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121
[1] | Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu . Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Mathematics, 2022, 7(8): 15159-15181. doi: 10.3934/math.2022831 |
[2] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[3] | Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589 |
[4] | Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506 |
[5] | Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683 |
[6] | Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043 |
[7] | Yamin Sayyari, Mana Donganont, Mehdi Dehghanian, Morteza Afshar Jahanshahi . Strongly convex functions and extensions of related inequalities with applications to entropy. AIMS Mathematics, 2024, 9(5): 10997-11006. doi: 10.3934/math.2024538 |
[8] | Muhammad Zakria Javed, Muhammad Uzair Awan, Loredana Ciurdariu, Omar Mutab Alsalami . Pseudo-ordering and $ \delta^{1} $-level mappings: A study in fuzzy interval convex analysis. AIMS Mathematics, 2025, 10(3): 7154-7190. doi: 10.3934/math.2025327 |
[9] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[10] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
We present new Mercer variants of Hermite-Hadamard (HH) type inequalities via Atangana-Baleanu (AB) fractional integral operators pertaining non-local and non-singular kernels. We establish trapezoidal type identities for fractional operator involving non-singular kernel and give Jensen-Mercer (JM) variants of Hermite-Hadamard type inequalities for differentiable mapping Υ possessing convex absolute derivatives. We establish connections of our results with several renowned results in the literature and also give applications to special functions.
In recent years, the concept of convex functions has been generalized extensively. In several zones of Mathematics, applications of convex functions are widely seen in many areas of modern analysis. Especially in optimization theory they are magical due to number of expedient properties. Convex functions have significant relation with inequality theory. Many important and useful inequalities can be obtained by using convex functions. As a consequence of its growing variety of applications, it is one of the more intensively developed fields of mathematical analysis. Due to their applicability in theory of inequality and convex programming, convex functions are the subject of researchers in several fields.
Definition 1.1. A function Υ:[μ,ν]⊆ℜ→ℜ is called convex function if
Υ(ζx+(1−ζ)y)≤ζΥ(x)+(1−ζ)Υ(y), | (1.1) |
holds for all x,y∈[μ,ν] and ζ∈[0,1]. We say that Υ is concave if (−Υ) is convex.
For more material on convexity of different types and their role in inequalities, see [1-3]. The literature and results presented in these books are the major motivation behind the progress and investigation of the integral inequalities pertaining convex functions. The most important and notable inequalities for convex functions are the Jensen and related inequalities due their immense variety of applications in real world problems like optimization, computational problems, information theory, probability theory see [4-6] and references there in.
The following variant of Jensen's inequality has been given by Mercer [7]:
Theorem 1.1. For a convex function Υ on [μ,ν], we have
Υ(μ+ν−n∑i=1 ξi ωi)≤Υ(μ)+Υ(ν)−n∑i=1ξi Υ(ωi), | (1.2) |
∀ ωi∈[μ,ν] and all ξi∈[0,1], (i=1,2,...,n).
For recent results concerning Jensen-Mercer inequality and its applications, we refer to [8-11].
Fractional calculus is the generalization of the classical calculus and is effectively utilized in sciences, particularly in engineering. In most sections of the applied areas of the sciences, the classical calculus offers a powerful method for modeling and describing many significant dynamic processes. The main motivation behind the theory of Fractional calculus is to unify and generalize the integer-order differentiation and n-fold integration. Fractional analysis is an important part of applied sciences. Many results on the fractional models appeared in different areas of science. Fractional calculus is more equipped to deal with the time-dependent changes analyzed in real-world processes including fractional-order relaxation-oscillation model (and memristive chaotic circuit), mathematical biology and economics see [12,13].
Due to the fact that the solutions obtained from the fractional integral and derivative operators are more closer to real world problems, these operators contribute to improve the relationships between mathematics and other disciplines. One can see the evolution of fractional integral and derivative operators time to time by looking at the few selected papers [14-17] and references there in. The most latest compact review about fractional calculus is by two eminent Professors D. Balenu and R. P. Agrwal in there review article "Fractional calculus in the sky" [18].
In recent years, fractional derivative and the corresponding integral operators have drawn attention of several researchers to solve many complex real world models in an intrinsic manner. The operators with nonsingular kernels are highly effective in solving non-locality of real world problems in an appropriate desired manner. Therefore, we recall the notion of the Caputo-Fabrizio (CF) derivative operator:
Definition 1.2. [19] Let Υ∈H1(0,ν), η∈[0,1] and ν>μ. Then the new CF derivative is defined as:
CFDηΥ(t)=M(η)1−η∫tμΥ′(s)exp[−η(1−η)(t−s)]ds, | (1.3) |
where M(η) denotes the normalization function.
Moreover, the corresponding CF fractional integral operator is given as:
Definition 1.3. [20] Let Υ∈H1(0,ν), ν>μ, η∈[0,1].
(CFμIη)(t)=1−ηB(η)Υ(t)+ηB(η)∫tμΥ(y)dy, |
and
(CFIην)(t)=1−ηB(η)Υ(t)+ηB(η)∫νtΥ(y)dy, |
with normalization function B(η).
The CF operator is a highly functional operator by definition, which is of significance importance in-order to study discrete and continuous dynamical systems, physical phenomena, COVID-19 and highly epidemic models. Besides its usefulness in many ways, it has one drawback of not retrieving original function for η=1. Recently, Atangana & Baleanu successfully proposed a new fractional derivative operator which also over comes this deficiency. They formulate a new fractional operator pertaining the Mittag-Leffler (ML) function in the kernel, that solve the problem of retrieving original function (a clear advantage on CF operator). In modeling physical and natural phenomena, ML function is found to be more suitable than power law. This made this operator more effective and helpful. As a result many researchers have shown keen interest in utilizing this operator [21-23]. Atangana & Baleanu introduced the derivative operator both in Caputo and Reimann-Liouville sense:
Definition 1.4. [24] Let ν>μ, η∈[0,1] and Υ∈H1(μ,ν). The new fractional derivative is given as:
ABCμDηt[Υ(t)]=B(η)1−η∫tμΥ′(x)Eη[−η(t−x)η(1−η)]dx. | (1.4) |
Definition 1.5. [24] Let Υ∈H1(μ,ν), μ>ν, η∈[0,1]. The new fractional derivative is given as:
ABRμDηt[Υ(t)]=B(η)1−ηddt∫tμΥ(x)Eη[−η(t−x)η(1−η)]dx. | (1.5) |
However in the same paper they give corresponding Atangana-Baleanu fractional integral operator as:
Definition 1.6. [24] Let Υ∈H1(μ,ν), then its fractional integral operator with non-local kernel is defined as:
ABμIηt{Υ(t)}=1−ηB(η)Υ(t)+ηB(η)Γ(η)∫tμΥ(y)(t−y)η−1dy, |
where ν>μ,η∈[0,1].
Let Γ(η) is the Gamma function, then the right hand side of AB-fractional integral operator[25] is
ABνIηt{Υ(t)}=1−ηB(η)Υ(t)+ηB(η)Γ(η)∫νtΥ(y)(y−t)η−1dy. |
The positivity of the normalization function B(η) implies that for any positive function, its fractional AB-integral is positive. We obtain the classical integral and the initial function when η→1 and η→0 respectively. Some recent development in theory of integral inequalities involving AB operators can be seen in [26-28].
In this study, we present new versions of Hermite-Mercer type inequalities for convex functions through AB integral operators. The ultimate goal to employ AB operators is to obtain results which yield general inequalities of Hermite-Mercer type. The case α=1 in obtained results produce certain variants of the classical Hermite-Mercer type inequalities. At the end, the obtained results have been supported by reduced results and applications.
By using JM inequalities, we can express the HH type inequalities in AB-fractional integrals form as follows:
Theorem 2.1. For a positive convex function Υ:[μ,ν]→ℜ with 0≤μ<ν and Υ∈Xc(μ,ν), the inequalities for Atangana-Baleanu fractional integrals hold:
2B(η)Γ(η)Υ(μ+ν−ϰ1+ϰ22)≤1(ϰ2−ϰ1)η[{AB(μ+ν−ϰ2)Iη(μ+ν−ϰ1)Υ(μ+ν−ϰ1)+AB(μ+ν−ϰ1)Iη(μ+ν−ϰ2)Υ(μ+ν−ϰ2)}−1−ηB(η){Υ(μ+ν−ϰ1)+Υ(μ+ν−ϰ2)}]≤1B(η)Γ(η)(2[Υ(μ)+Υ(ν)]−[Υ(ϰ1)+Υ(ϰ2)]), | (2.1) |
and
1B(η)Γ(η)Υ(μ+ν−ϰ1+ϰ22)≤1B(η)Γ(η)(Υ(μ)+Υ(ν))−12(ϰ2−ϰ1)η[{ ABϰ1Iηϰ2Υ(ϰ2)+ ABϰ2Iηϰ1Υ(ϰ1)}−1−ηB(η){Υ(ϰ1)+Υ(ϰ2)}]≤1B(η)Γ(η)[Υ(μ)+Υ(ν)−Υ(ϰ1+ϰ22)], | (2.2) |
for all ϰ1,ϰ2∈[μ,ν], η>0.
Proof. As we know that Υ is convex on [μ,ν], we obtain
2Υ(μ+ν−u+v2)≤Υ(μ+ν−u)+Υ(μ+ν−v) | (2.3) |
∀u,v∈[μ,ν].
Replacing u=ζϰ1+(1−ζ)ϰ2 and v=(1−ζ)ϰ1+ζϰ2, ∀ϰ1,ϰ2∈[μ,ν] and ζ∈[0,1] in (2.3), we have
2Υ(μ+ν−ϰ1+ϰ22)≤Υ(μ+ν−(ζϰ1+(1−ζ)ϰ2))+Υ(μ+ν−((1−ζ)ϰ1+ζϰ2)). |
Multiplying ηB(η)Γ(η)ζη−1 on both sides and integrating the inequality w.r.t ζ∈[0,1], we have
2B(η)Γ(η)Υ(μ+ν−ϰ1+ϰ22)≤ηB(η)Γ(η)∫10ζη−1Υ(μ+ν−(ζϰ1+(1−ζ)ϰ2))dζ+ηB(η)Γ(η)∫10ζη−1Υ(μ+ν−((1−ζ)ϰ1+ζϰ2))dζ, |
2B(η)Γ(η)Υ(μ+ν−ϰ1+ϰ22)≤ 1(ϰ2−ϰ1)η[ AB(μ+ν−ϰ2)Iη(μ+ν−ϰ1)Υ(μ+ν−ϰ1)+AB(μ+ν−ϰ1)Iη(μ+ν−ϰ2)Υ(μ+ν−ϰ2)−1−ηB(η){Υ(μ+ν−ϰ1)+Υ(μ+ν−ϰ2)}], |
and we obtain the first inequality in (2.1).
Now, to prove inequality of (2.1), since Υ is convex on [μ,ν], so for ζ∈[0,1], it gives
(μ+ν−(ζϰ1+(1−ζ)ϰ2))≤Υ(μ)+Υ(ν)−ζΥ(ϰ1)−(1−ζ)Υ(ϰ2), | (2.4) |
and
(μ+ν−((1−ζ)ϰ1+ζϰ2))≤Υ(μ)+Υ(ν)−(1−ζ)Υ(ϰ1)−ζΥ(ϰ2). | (2.5) |
By adding (2.4) and (2.5) we get
Υ(μ+ν−(ζϰ1+(1−ζ)ϰ2))+Υ(μ+ν−((1−ζ)ϰ1+ζϰ2))≤2Υ(μ)+2Υ(ν)−ζΥ(ϰ1)−(1−ζ)Υ(ϰ2)−(1−ζ)Υ(ϰ1)−ζΥ(ϰ2). |
Multiplying ηB(η)Γ(η)ζη−1 on both sides and integrating w.r.t ζ∈[0,1], we get the required inequality of (2.1). Next we prove inequality (2.2). Since Υ is convex, we have
Υ(μ+ν−u+v2)≤Υ(μ)+Υ(ν)−Υ(u)+Υ(v)2. | (2.6) |
Let ζ∈[0,1], by replacing u=ζϰ1+(1−ζ)ϰ2 and v=(1−ζ)ϰ1+ζϰ2 in (2.6) we obtain
Υ(μ+ν−ϰ1+ϰ22)≤Υ(μ)+Υ(ν)−Υ(ζϰ1+(1−ζ)ϰ2)+Υ(ζϰ2+(1−ζ)ϰ1)2. | (2.7) |
Multiplying ηB(η)Γ(η)ζη−1 on both sides and integrating w.r.t ζ we get
1B(η)Γ(η)Υ(μ+ν−ϰ1+ϰ22)≤1B(η)Γ(η)(Υ(μ)+Υ(ν))−12(ϰ2−ϰ1)η[{ ABϰ1Iηϰ2Υ(ϰ2)+ ABϰ2Iηϰ1Υ(ϰ1)}−1−ηB(η){Υ(ϰ1)+Υ(ϰ2)}], | (2.8) |
and we obtain the first inequality in (2.2). To prove the other inequality in (2.2), we observe that if Υ is convexity, then for ζ∈[0,1],
Υ(ϰ1+ϰ22)=Υ(ζϰ1+(1−ζ)ϰ2+ζϰ2+(1−ζ)ϰ12),Υ(ϰ1+ϰ22)≤12[Υ(ζϰ1+(1−ζ)ϰ2)+Υ(ζϰ2+(1−ζ)ϰ1)]. | (2.9) |
Multiplying both sides by ηB(η)Γ(η)ζη−1 and integrating w.r.t ζ∈[0,1], we get
1B(η)Γ(η)Υ(ϰ1+ϰ22)≤12(ϰ2−ϰ1)η[{ ABϰ1Iηϰ2Υ(ϰ2)+ ABϰ2Iηϰ1Υ(ϰ1)}−1−ηB(η){Υ(ϰ1)+Υ(ϰ2)}]. | (2.10) |
Multiplying (-1) by (2.10)
−1B(η)Γ(η)Υ(ϰ1+ϰ22)≥−12(ϰ2−ϰ1)η[{ ABϰ1Iηϰ2Υ(ϰ2)+ ABϰ2Iηϰ1Υ(ϰ1)}−1−ηB(η){Υ(ϰ1)+Υ(ϰ2)}]. |
By adding 1B(η)Γ(η)(Υ(μ)+Υ(ν)) in above, we get
1B(η)Γ(η)(Υ(μ)+Υ(ν))−12(ϰ2−ϰ1)η[{ ABϰ1Iηϰ2Υ(ϰ2)+ ABϰ2Iηϰ1Υ(ϰ1)}−1−ηB(η){Υ(ϰ1)+Υ(ϰ2)}]≤1B(η)Γ(η)[Υ(μ)+Υ(ν)−Υ(ϰ1+ϰ22)]. |
Thus, the second inequality is proved.
Remark 2.1. If we choose η=1 in Theorem 2.1 is proved by Kian and Moslehian in ([8], Theorem 2.1).
Lemma 3.1. For a differentiable Υ from [μ,ν] to ℜ with 0≤μ<ν, the equality for Atangana-Baleanu fractional integral holds:
((ϰ2−ϰ1)ηB(η)Γ(η)+1−ηB(η))[Υ(μ+ν−ϰ1)+Υ(μ+ν−ϰ2)]−[ AB(μ+ν−ϰ2)Iη(μ+ν−ϰ1){Υ(μ+ν−ϰ1)}+ AB(μ+ν−ϰ1)Iη(μ+ν−ϰ2){Υ(μ+ν−ϰ2)}]=(ϰ2−ϰ1)η+1B(η)Γ(η)∫10(ζη−(1−ζ)η) Υ′(μ+ν−(ζϰ1+(1−ζ)ϰ2))dζ. | (3.1) |
for all ϰ1,ϰ2∈[μ,ν] η>0 ζ∈[0,1].
Proof. Note that
K1= ∫10ζη Υ′(μ+ν−(ζϰ1+(1−ζ)ϰ2))dζ=Υ(μ+ν−ϰ1)(ϰ2−ϰ1)−ηϰ2−ϰ1∫10ζη−1 Υ(μ+ν−(ζϰ1+(1−ζ)ϰ2))dζ. |
and
K2=∫10(1−ζ)η Υ′(μ+ν−(ζϰ1+(1−ζ)ϰ2))dζ= − Υ(μ+ν−ϰ2)(ϰ2−ϰ1) +ηϰ2−ϰ1 ∫10 (1−ζ)η−1 Υ(μ+ν−(ζϰ1+(1−ζ)ϰ2))dζ. |
Now K1−K2 and multiplying by (ϰ2−ϰ1)η+1B(η)Γ(η), using definition of the AB-fractional Integrals, we get (3.1).
Remark 3.1. If we choose η=1 and ϰ1=μ and ϰ2=ν in Lemma (1), we get in ([29], Lemma 2.1).
Theorem 3.1. For a differentiable Υ:[μ,ν]→ℜ with 0≤μ<ν and Υ′∈L1[μ,ν] such that |Υ′| is convex function on [μ,ν], the inequality for Atangana-Baleanu fractional integrals holds:
|((ϰ2−ϰ1)ηB(η)Γ(η)+1−ηB(η))[Υ(μ+ν−ϰ1)+Υ(μ+ν−ϰ2)]−[ AB(μ+ν−ϰ2)Iη(μ+ν−ϰ1){Υ(μ+ν−ϰ1)}+ AB(μ+ν−ϰ1)Iη(μ+ν−ϰ2){Υ(μ+ν−ϰ2)}]|≤ 2(ϰ2−ϰ1)η+1(η+1)B(η)Γ(η)(1−12η){|Υ′(μ)|+|Υ′(ν)|−(|Υ′(ϰ1)|+|Υ′(ϰ2)|2)}. |
Proof. By Lemma 3.1 and using JM inequality, we have
|((ϰ2−ϰ1)ηB(η)Γ(η)+1−ηB(η))[Υ(μ+ν−ϰ1)+Υ(μ+ν−ϰ2)]−[ AB(μ+ν−ϰ2)+Iη(μ+ν−ϰ1){f(μ+ν−ϰ1)}+ AB(μ+ν−ϰ1)−Iη(μ+ν−ϰ2){f(μ+ν−ϰ2)}]|≤(ϰ2−ϰ1)η+1B(η)Γ(η) ∫10|(ζη−(1−ζ)η)||Υ′(μ+ν−(ζϰ1+(1−ζ)ϰ2))|dζ≤(ϰ2−ϰ1)η+1B(η)Γ(η) ∫10|ζη−(1−ζ)η|×{|Υ′(μ)|+|Υ′(ν)|−(ζ|Υ′(ϰ1)|+(1−ζ)|Υ′(ϰ2)|)}dζ=(ϰ2−ϰ1)η+1B(η)Γ(η)[I1+I2]. |
where
I1=∫120((1−ζ)η−ζη)×{|Υ′(μ)|+|Υ′(ν)|−(ζ|Υ′(ϰ1)|+(1−ζ)|Υ′(ϰ2)|)}dζ=(|Υ′(μ)|+|Υ′(ν)|)(1η+1−2−ηη+1)−{|Υ′(ϰ1)|(1(η+1)(η+2)−2−η−1η+1)+|Υ′(ϰ2)|(1(η+2)−2−η−1η+1)}, |
and
I2=∫112(ζη−(1−ζ)η)×{|Υ′(μ)|+|Υ′(ν)|−(ζ|Υ′(ϰ1)|+(1−ζ)|Υ′(ϰ2)|)}dζ=(|Υ′(μ)|+|Υ′(ν)|)(1(η+1)−2−ηη+1)−{|Υ′(ϰ1)|(1(η+2)−2−η−1(η+1))+|Υ′(ϰ2)|(1(η+1)(η+2)−2−η−1(η+1))}. |
Placing the values of the evaluated integrals I1 and I2 gives require inequality.
Theorem 3.2. For a differentiable Υ:[μ,ν]→ℜ with 0≤μ<ν and Υ′∈L1[μ,ν] such that |Υ′|r is convex on [μ,ν], the inequality for Atangana-Baleanu fractional integrals holds:
|((ϰ2−ϰ1)ηB(η)Γ(η)+1−ηB(η))[Υ(μ+ν−ϰ1)+Υ(μ+ν−ϰ2)]−[ AB(μ+ν−ϰ2)Iη(μ+ν−ϰ1){Υ(μ+ν−ϰ1)}+ AB(μ+ν−ϰ1)Iη(μ+ν−ϰ2){Υ(μ+ν−ϰ2)}]|≤(ϰ2−ϰ1)η+1B(η)Γ(η)(2−21−η(sη+1))1s{|Υ′(μ)|r+|Υ′(ν)|r−(|Υ′(ϰ1)|r+|Υ′(ϰ2)|r2)}1r, | (3.2) |
where 1r+1s=1, ζ∈[0,1] and ϰ1,ϰ2∈[μ,ν].
Proof. By Lemma 3.1, we have
|((ϰ2−ϰ1)ηB(η)Γ(η)+1−ηB(η))[Υ(μ+ν−ϰ1)+Υ(μ+ν−ϰ2)]−[ AB(μ+ν−ϰ2)Iη(μ+ν−ϰ1){Υ(μ+ν−ϰ1)}+ AB(μ+ν−ϰ1)Iη(μ+ν−ϰ2){Υ(μ+ν−ϰ2)}]|≤(ϰ2−ϰ1)η+1B(η)Γ(η) ∫10|(ζη−(1−ζ)η)||Υ′(μ+ν−(ζϰ1+(1−ζ)ϰ2))|dζ. |
By applying Hölder's inequality with Jensen Mercer's inequality and convexity of |Υ′|r, we get
|((ϰ2−ϰ1)ηB(η)Γ(η)+1−ηB(η))[Υ(μ+ν−ϰ1)+Υ(μ+ν−ϰ2)]−[ AB(μ+ν−ϰ2)Iη(μ+ν−ϰ1){Υ(μ+ν−ϰ1)}+ AB(μ+ν−ϰ1)Iη(μ+ν−ϰ2){Υ(μ+ν−ϰ2)}]|≤(ϰ2−ϰ1)η+1B(η)Γ(η)[(∫10|ζη−(1−ζ)η|sdζ)1s(∫10|Υ′(μ+ν−(ζϰ1+(1−ζ)ϰ2))|rdζ)1r]. |
Where
∫10|Υ′(μ+ν−(ζϰ1+(1−ζ)ϰ2))|rdζ≤∫10[|Υ′(μ)|r+|Υ′(ν)|r−ζ|Υ′(ϰ1)|r−(1−ζ)|Υ′(ϰ2)|r]dζ. |
It can be easily notice that
∫10ζ dζ=12=∫10(1−ζ) dζ. |
After simplification, we get (3.2).
Theorem 3.3. For a differentiable Υ:[μ,ν]→ℜ with 0≤μ<ν and Υ′∈L1[μ,ν] such that |Υ′|r is convex on [μ,ν], the inequality for Atangana-Baleanu fractional integrals holds:
|((ϰ2−ϰ1)ηB(η)Γ(η)+1−ηB(η))[Υ(μ+ν−ϰ1)+Υ(μ+ν−ϰ2)]−[ AB(μ+ν−ϰ2)Iη(μ+ν−ϰ1){Υ(μ+ν−ϰ1)}+ AB(μ+ν−ϰ1)Iη(μ+ν−ϰ2){Υ(μ+ν−ϰ2)}]|≤(ϰ2−ϰ1)η+1B(η)Γ(η){(2−21−ηs(sη+1))+|Υ′(μ)|r+|Υ′(ν)|rr−(|Υ′(ϰ1)|r+|Υ′(ϰ2)|r2r)}. |
Where 1s+1r=1.
Proof. By Lemma 3.1, we have
|((ϰ2−ϰ1)ηB(η)Γ(η)+1−ηB(η))[Υ(μ+ν−ϰ1)+Υ(μ+ν−ϰ2)]−[ AB(μ+ν−ϰ2)Iη(μ+ν−ϰ1){Υ(μ+ν−ϰ1)}+ AB(μ+ν−ϰ1)Iη(μ+ν−ϰ2){Υ(μ+ν−ϰ2)}]|≤(ϰ2−ϰ1)η+1B(η)Γ(η) ∫10|(ζη−(1−ζ)η)||Υ′(μ+ν−(ζϰ1+(1−ζ)ϰ2))|dζ. |
By using Young's inequality xy≤1sxs+1ryr.
≤(ϰ2−ϰ1)η+1B(η)Γ(η)[1s∫10|(ζη−(1−ζ)η)|sdζ+1r∫10|Υ′(μ+ν−(ζϰ1+(1−ζ)ϰ2))|rdζ]. |
After further simplifications, we get required result.
Lemma 3.2. Suppose that Υ:[μ,ν]→ℜ is a differentiable mapping on (μ,ν) with 0≤μ<ν. If \Upsilon^{"} \in L[\mu, \nu], then
\begin{align} & \bigg(\frac{\big( \varkappa_{2}-\varkappa_{1}\big) ^{\eta }}{B(\eta)\Gamma(\eta)}+\frac{1-\eta}{B(\eta)}\bigg)\bigg[\Upsilon\big( \mu+\nu-\varkappa_{1}\big) +\Upsilon\big( \mu+\nu-\varkappa_{2}\big)\bigg] \\& - \bigg[ \ _{(\mu+\nu-\varkappa_{2})}^{AB}I_{(\mu+\nu-\varkappa_{1})}^{\eta}\{\Upsilon(\mu+\nu-\varkappa_{1})\}+\ _{(\mu+\nu-\varkappa_{1})}^{AB}I_{(\mu+\nu-\varkappa_{2})}^{\eta}\{\Upsilon(\mu+\nu-\varkappa_{2})\} \bigg] \\& = \frac{\eta(\varkappa_{2}-\varkappa_{1})^{\eta+2}}{B(\eta)\Gamma(\eta+2)}\Bigg[\int_{0}^{1}\big[ 1-\zeta^{\eta+1 }\big]\Upsilon^{"}\Big( \mu+\nu-\left( \zeta \varkappa_{1}+\left(1- \zeta\right) \varkappa_{2}\right) \Big)d\zeta\\&-\int_{0}^{1}\zeta^{\eta+1}\Upsilon^{"}\Big( \mu+\nu-\left( (1-\zeta)\varkappa_{1}+\zeta \varkappa_{2}\right) \Big)d\zeta\Bigg], \end{align} | (3.3) |
for all \varkappa_{1}, \varkappa_{2}\in \left[ \mu, \nu \right] \, \ \eta > 0\, \ \zeta\in\left[ 0, 1\right].
Proof. It is easy to write that
\begin{align*} & \frac{\eta(\varkappa_{2}-\varkappa_{1})^{\eta+2}}{B(\eta)\Gamma(\eta+2)}\Bigg[\int_{0}^{1}\big[ 1-\zeta^{\eta+1 }\big]\Upsilon^{"}\Big( \mu+\nu-\left( \zeta \varkappa_{1}+\left(1- \zeta\right) \varkappa_{2}\right) \Big)d\zeta\notag\\&-\int_{0}^{1} \zeta^{\eta+1} \Upsilon^{"}\Big( \mu+\nu-\left( (1-\zeta)\varkappa_{1}+\zeta \varkappa_{2}\right) \Big)d\zeta\Bigg] \\&\notag \end{align*} |
\begin{align} & \frac{\eta(\varkappa_{2}-\varkappa_{1})^{\eta+2}}{B(\eta)\Gamma(\eta+2)}[K_1 -K_2]. \end{align} | (3.4) |
Where
\begin{align*} K_{1}& = \int_{0}^{1}\big[ 1-\zeta^{\eta+1 }\big]\Upsilon^{"}\Big( \mu+\nu-\left( \zeta \varkappa_{1}+\left(1- \zeta\right) \varkappa_{2}\right) \Big) d\zeta \\& \notag = -\frac{\Upsilon{'}\left( \mu+\nu-\varkappa_{2}\right) }{\varkappa_{2}-\varkappa_{1}}\ +\frac{\eta+1 }{\varkappa_{2}-\varkappa_{1}} \int_{0}^{1}\zeta^{\eta}\ \Upsilon^{'}\Big( \mu+\nu-\left( \zeta \varkappa_{1}+(1-\zeta) \varkappa_{2}\right) \Big) d\zeta \\& \notag = -\frac{\Upsilon{'}\left( \mu+\nu-\varkappa_{2}\right) }{\varkappa_{2}-\varkappa_{1}}\ +\frac{\eta+1 }{(\varkappa_{2}-\varkappa_{1})^2}\Upsilon\left( \mu+\nu-\varkappa_{1}\right) \\& \notag -\frac{\eta(\eta+1) }{(\varkappa_{2}-\varkappa_{1})^{\eta+2}}\int_{\mu+\nu-\varkappa _{2}}^{\mu+\nu-\varkappa _{1}}[u-(\mu+\nu-\varkappa _{2})]^{\eta-1}\Upsilon(u)du, \end{align*} |
and
\begin{align*} K_{2}& = \int_{0}^{1} \zeta^{\eta+1} \notag\Upsilon^{"}\Big( \mu+\nu-\left( (1-\zeta)\varkappa_{1}+\zeta \varkappa_{2}\right) \Big) d\zeta \\&\notag = -\frac{\Upsilon\left( \mu+\nu-\varkappa_{2}\right) }{\varkappa_{2}-\varkappa_{1}}\ +\frac{\eta+1 }{\varkappa_{2}-\varkappa_{1}} \int_{0}^{1}\zeta^{\eta}\ \Upsilon^{'}\Big( \mu+\nu-\left( \zeta \varkappa_{2}+(1-\zeta) \varkappa_{1}\right) \Big) d\zeta \notag\\& = -\frac{\Upsilon{'}\left( \mu+\nu-\varkappa_{2}\right) }{\varkappa_{2}-\varkappa_{1}}\ -\frac{\eta+1 }{(\varkappa_{2}-\varkappa_{1})^2}\Upsilon\left( \mu+\nu-\varkappa_{2}\right) \\& \notag +\frac{\eta(\eta+1) }{(\varkappa_{2}-\varkappa_{1})^{\eta+2}}\int_{\mu+\nu-\varkappa _{2}}^{\mu+\nu-\varkappa _{1}}[(\mu+\nu-\varkappa _{1})-u]^{\eta-1}\Upsilon(u)du. \end{align*} |
Substituting the value of K_1 and K_2 in (3.4), we get (3.3).
Theorem 3.4. For a twice differentiable function \Upsilon on \left[ \mu, \nu \right] such that 0\leq \mu < \nu with \Upsilon^{"} \in L_1[\mu, \nu] and |\Upsilon^{"}| is convex, then
\begin{align} &\bigg|\bigg(\frac{\big( \varkappa_{2}-\varkappa_{1}\big) ^{\eta }}{B(\eta)\Gamma(\eta)}+\frac{1-\eta}{B(\eta)}\bigg)\bigg[\Upsilon\big( \mu+\nu-\varkappa_{1}\big) +\Upsilon\big( \mu+\nu-\varkappa_{2}\big)\bigg] \\& - \bigg[ \ _{(\mu+\nu-\varkappa_{2})}^{AB}I_{(\mu+\nu-\varkappa_{1})}^{\eta}\{\Upsilon(\mu+\nu-\varkappa_{1})\}+\ _{(\mu+\nu-\varkappa_{1})}^{AB}I_{(\mu+\nu-\varkappa_{2})}^{\eta}\{\Upsilon(\mu+\nu-\varkappa_{2})\} \bigg] \bigg| \\& \leq \frac{\eta \left( \varkappa_{2}-\varkappa_{1}\right) ^{\eta +2}}{B\left( \eta \right) \Gamma \left( \eta +2\right) }\bigg[\bigg\{\left( \left\vert \Upsilon^{^{\prime \prime }}\left( \mu\right)\right\vert +\left\vert \Upsilon^{^{\prime \prime }}\left( \nu\right) \right\vert \right) \frac{1}{\eta +2}-\left( \frac{\left\vert \Upsilon^{^{\prime \prime }}\left( \varkappa_{1}\right) \right\vert }{\left( \eta +2\right)\left( \eta +3\right)}+\frac{\left\vert \Upsilon^{^{\prime \prime }}\left( \varkappa_{2}\right) \right\vert }{ \eta +3 }\right) \bigg\} \\& +\bigg\{\left( \left\vert \Upsilon^{^{\prime \prime }}\left( \mu\right)\right\vert +\left\vert \Upsilon^{^{\prime \prime }}\left( \nu\right) \right\vert \right) \frac{ \eta +1}{\eta +2} -\left( \frac{\eta +1}{ 2\left( \eta +3\right) } \left\vert \Upsilon^{^{\prime \prime }}\left( \varkappa_{1}\right) \right\vert +\frac{\left( \eta +1\right) \left( \eta +4\right) }{2\left( \eta +2\right) \left( \eta +3\right) } \left\vert \Upsilon^{^{\prime \prime }}\left( \varkappa_{2}\right) \right\vert \right) \bigg\}\bigg], \end{align} | (3.5) |
for all \varkappa_{1}, \varkappa_{2}\in \left[ \mu, \nu \right] \, \ \eta > 0\, \ \zeta\in\left[ 0, 1\right] \ and\ \Gamma \left(.\right) \ is\ the\ Gamma\ function.
Proof. From the Lemma 3.2 and applying the modulus property along with Jensen-Mercer's inequality for the convex function |\Upsilon^{"}| , we have
\begin{align*} & \bigg|\bigg(\frac{\big( \varkappa_{2}-\varkappa_{1}\big) ^{\eta }}{B(\eta)\Gamma(\eta)}+\frac{1-\eta}{B(\eta)}\bigg)\bigg[\Upsilon\big( \mu+\nu-\varkappa_{1}\big) +\Upsilon\big( \mu+\nu-\varkappa_{2}\big)\bigg] \notag\\& - \bigg[ \ _{(\mu+\nu-\varkappa_{2})}^{AB}I_{(\mu+\nu-\varkappa_{1})}^{\eta}\{\Upsilon(\mu+\nu-\varkappa_{1})\}+\ _{(\mu+\nu-\varkappa_{1})}^{AB}I_{(\mu+\nu-\varkappa_{2})}^{\eta}\{\Upsilon(\mu+\nu-\varkappa_{2})\} \bigg]\bigg| \notag\\& \leq \frac{\eta(\varkappa_{2}-\varkappa_{1})^{\eta+2}}{B(\eta)\Gamma(\eta+2)}\Bigg[\int_{0}^{1}\bigg| 1-\zeta^{\eta+1 } \bigg| \bigg|\Upsilon^{"}\Big( \mu+\nu-\left( \zeta \varkappa_{1}+\left(1- \zeta\right) \varkappa_{2}\right) \Big)\bigg| d\zeta\notag\\&+\int_{0}^{1} \bigg| \zeta^{\eta+1} \bigg| \bigg| \Upsilon^{"}\Big( \mu+\nu-\left( (1-\zeta)\varkappa_{1}+\zeta \varkappa_{2}\right) \Big) \bigg| d\zeta\Bigg] \\& \leq \frac{\eta(\varkappa_{2}-\varkappa_{1})^{\eta+2}}{B(\eta)\Gamma(\eta+2)}\Bigg[\int_{0}^{1}\bigg| 1-\zeta^{\eta+1 } \bigg| \bigg\{\left\vert \Upsilon^{^{\prime \prime }}\left( \mu\right)\right\vert +\left\vert \Upsilon^{^{\prime \prime }}\left( \nu\right) \right\vert -\left( \zeta\left\vert \Upsilon^{^{\prime \prime }}\left( \varkappa_{1}\right) +\left( 1-\zeta\right) \Upsilon^{^{\prime \prime }}\left( \varkappa_{2}\right) \right\vert \right) \bigg\}d\zeta \\& + \Bigg[\int_{0}^{1}\bigg| \zeta^{\eta+1 } \bigg|\bigg\{\left\vert \Upsilon^{^{\prime \prime }}\left( \mu\right)\right\vert +\left\vert \Upsilon^{^{\prime \prime }}\left( \nu\right) \right\vert -\left( \left( 1-\zeta\right) \left\vert \Upsilon^{^{\prime \prime }}\left( \varkappa_{1}\right) +\zeta \Upsilon^{^{\prime \prime }}\left( \varkappa_{2}\right) \right\vert \right) \bigg\}d\zeta. \end{align*} |
After further simplifications, we get required result.
Corollary 3.1. If we let \eta = 1 in Theorem 3.4, then we have the following inequality
\begin{align*} & \left\vert \frac{\Upsilon\left( \mu+\nu-\varkappa_{1}\right) +\Upsilon \left( \mu+\nu-\varkappa_{2}\right) }{2}-\frac{1}{\varkappa_{2}-\varkappa_{1}}\int_{\mu+\nu-\varkappa_{2}}^{\mu+\nu-\varkappa_{1}}\Upsilon \left( u\right) du\right\vert \\& \leq \frac{\left( \varkappa_{2}-\varkappa_{1}\right) ^{2}}{4} \bigg[\left( \left\vert \Upsilon^{^{\prime \prime }}\left( \mu\right)\right\vert +\left\vert \Upsilon^{^{\prime \prime }}\left( \nu\right) \right\vert \right) -\left( \frac{1}{3}\left\vert \Upsilon^{^{\prime \prime }}\left( \varkappa_{1}\right) \right\vert +\frac{2}{3}\left\vert \Upsilon^{^{\prime \prime }}\left( \varkappa_{2}\right) \right\vert \right) \bigg]. \end{align*} |
Theorem 3.5. For a twice differentiable function \Upsilon on \left[ \mu, \nu \right] such that 0\leq \mu < \nu with \Upsilon^{"} \in L_1[\mu, \nu] and |\Upsilon^{"}|^r is convex with r > 1 , then
\begin{align} &\bigg|\bigg(\frac{\big( \varkappa_{2}-\varkappa_{1}\big) ^{\eta }}{B(\eta)\Gamma(\eta)}+\frac{1-\eta}{B(\eta)}\bigg)\bigg[\Upsilon\big( \mu+\nu-\varkappa_{1}\big) +\Upsilon\big( \mu+\nu-\varkappa_{2}\big)\bigg] \\& - \bigg[ \ _{(\mu+\nu-\varkappa_{2})}^{AB}I_{(\mu+\nu-\varkappa_{1})}^{\eta}\{\Upsilon(\mu+\nu-\varkappa_{1})\}+\ _{(\mu+\nu-\varkappa_{1})}^{AB}I_{(\mu+\nu-\varkappa_{2})}^{\eta}\{\Upsilon(\mu+\nu-\varkappa_{2})\} \bigg] \bigg| \\ & \leq \frac{\eta \left( \varkappa_{2}-\varkappa_{1}\right) ^{\eta +2}}{B\left( \eta \right) \Gamma \left( \eta +2\right) }\bigg[\left( \frac{1}{\left( \eta +1\right) s+1}\right) ^{\frac{1}{s}}\left( \left\vert \Upsilon^{^{\prime \prime }} \left( \mu\right) \right\vert ^{r}+\left\vert \Upsilon^{^{\prime \prime }} \left( \nu\right) \right\vert ^{r}-\left( \frac{\left\vert \Upsilon^{^{\prime \prime }}\left( \varkappa_{1}\right) \right\vert ^{r}+\left\vert \Upsilon^{^{\prime \prime }}\left( \varkappa_{2}\right) \right\vert ^{r}}{2}\right) \right) ^{\frac{1}{r}} \\ & +\ \left( \frac{\left( \eta +1\right) s}{\left( \eta +1\right) s+1} \right) ^{\frac{1}{s}}\left( \left\vert \Upsilon^{^{\prime \prime }} \left( \mu\right) \right\vert ^{r}+\left\vert \Upsilon^{^{\prime \prime }}\left( \nu\right) \right\vert ^{r}-\left( \frac{\left\vert \Upsilon^{^{\prime \prime }}\left( \varkappa_{1}\right) \right\vert ^{r}+\left\vert \Upsilon^{^{\prime \prime }}\left( \varkappa_{2}\right) \right\vert ^{r}}{2}\right) \right) ^{\frac{1}{r}}, \end{align} | (3.6) |
for all \varkappa_{1}, \varkappa_{2}\in \left[ \mu, \nu \right] \, \ \eta > 0\, \ \zeta\in\left[ 0, 1\right] \ and\ \Gamma \left(.\right) \ is\ the\ Gamma\ function.
Where \frac{1}{s}+\frac{1}{r} = 1 .
Proof. Using the Hölder's integral inequality along with Jensen-Mercer's inequality for |\Upsilon^{"}|^r in Lemma 3.2 , we have
\begin{align*} & \bigg|\bigg(\frac{\big( \varkappa_{2}-\varkappa_{1}\big) ^{\eta }}{B(\eta)\Gamma(\eta)}+\frac{1-\eta}{B(\eta)}\bigg)\bigg[\Upsilon\big( \mu+\nu-\varkappa_{1}\big) +\Upsilon\big( \mu+\nu-\varkappa_{2}\big)\bigg] \notag\\& - \bigg[ \ _{(\mu+\nu-\varkappa_{2})}^{AB}I_{(\mu+\nu-\varkappa_{1})}^{\eta}\{\Upsilon(\mu+\nu-\varkappa_{1})\}+\ _{(\mu+\nu-\varkappa_{1})}^{AB}I_{(\mu+\nu-\varkappa_{2})}^{\eta}\{\Upsilon(\mu+\nu-\varkappa_{2})\} \bigg]\bigg| \notag\\& \leq \frac{\eta(\varkappa_{2}-\varkappa_{1})^{\eta+2}}{B(\eta)\Gamma(\eta+2)}\Bigg[\int_{0}^{1}\bigg| 1-\zeta^{\eta+1 } \bigg| \bigg|\Upsilon^{"}\Big( \mu+\nu-\left( \zeta \varkappa_{1}+\left(1- \zeta\right) \varkappa_{2}\right) \Big)\bigg| d\zeta\notag\\&+\int_{0}^{1} \bigg| \zeta^{\eta+1} \bigg| \bigg| \Upsilon^{"}\Big( \mu+\nu-\left( (1-\zeta)\varkappa_{1}+\zeta \varkappa_{2}\right) \Big) \bigg| d\zeta\Bigg] \\&\leq \frac{\eta(\varkappa_{2}-\varkappa_{1})^{\eta+2}}{B(\eta)\Gamma(\eta+2)}\bigg[ \bigg( \int_{0}^{1}\bigg\vert 1-\zeta^{\eta+1}\bigg\vert^{s} d\zeta\bigg) ^{\frac{1}{s}}\bigg( \int_{0}^{1}\bigg\vert \Upsilon^{"}\bigg( \mu+\nu\notag \\&-\bigg((1-\zeta)\varkappa_{2}+\zeta \varkappa_{1}\bigg) \bigg\vert^r\ d\zeta\bigg)^{\frac{1}{r}}+\bigg( \int_{0}^{1}\zeta^{s(\eta+1)} d\zeta\bigg) ^{\frac{1}{s}}\notag \\&\times\bigg( \int_{0}^{1}\bigg\vert \Upsilon^{"}\bigg( \mu+\nu-\bigg(\zeta \varkappa_{2}+(1-\zeta) \varkappa_{1}\bigg) \bigg\vert^r\ d\zeta\bigg)^{\frac{1}{r}}\bigg]\notag\\& \leq\frac{\eta(\varkappa_{2}-\varkappa_{1})^{\eta+2}}{B(\eta)\Gamma(\eta+2)}\bigg[ \bigg( \int_{0}^{1}\bigg\vert 1-\zeta^{\eta+1}\bigg\vert^{s} d\zeta\bigg) ^{\frac{1}{s}} \bigg\{ \bigg\vert \Upsilon^{"} \left( \mu\right) \bigg\vert ^{r}\int_{0}^{1}d\zeta\ \notag \\&+\bigg\vert \Upsilon^{"} \left( \nu\right) \bigg\vert ^{r}\int_{0}^{1}d\zeta-\ \bigg\vert \Upsilon^{"}\big( \varkappa_{2}\big) \big\vert ^{r}\int_{0}^{1}(1-\zeta)d\zeta-\bigg\vert \Upsilon^{"}\big( \varkappa_{1}\big) \bigg\vert ^{r}\int_{0}^{1}\zeta d\zeta \bigg\} ^{\frac{1}{r}}\notag \\&\quad+\bigg( \int_{0}^{1}\zeta^{s(\eta+1)} d\zeta\bigg) ^{\frac{1}{s}}\bigg\{ \bigg\vert \Upsilon^{"} \left( \mu\right) \bigg\vert ^{r}\ +\bigg\vert \Upsilon^{"} \left( \nu\right) \bigg\vert ^{r}\notag \\&-\ \bigg\vert \Upsilon^{"}\big( \varkappa_{2}\big) \bigg\vert ^{r}\int_{0}^{1}\zeta d\zeta-\bigg\vert \Upsilon^{"}\big( \varkappa_{1}\big) \bigg\vert^{r} \int_{0}^{1}(1-\zeta)d\zeta \bigg\} ^{\frac{1}{r}}\bigg]. \end{align*} |
After simplification we get 3.6.
Corollary 3.2. If we let \eta = 1 in Theorem 3.5, then we have the following inequality
\begin{align*} & \left\vert \frac{\Upsilon\left( \mu+\nu-\varkappa_{1}\right) +\Upsilon \left( \mu+\nu-\varkappa_{2}\right) }{2}-\frac{1}{\varkappa_{2}-\varkappa_{1}}\int_{\mu+\nu-\varkappa_{2}}^{\mu+\nu-\varkappa_{1}}\Upsilon \left( u\right) du\right\vert \\& \leq \frac{\left( \varkappa_{2}-\varkappa_{1}\right) ^{2}}{4}\bigg[\left( \frac{1}{2s+1} \right) ^{\frac{1}{s}}\left( \left\vert \Upsilon^{^{\prime \prime }} \left( \mu\right) \right\vert ^{r}+\left\vert \Upsilon^{^{\prime \prime }}\left( \nu\right) \right\vert ^{r}-\left( \frac{\left\vert \Upsilon^{^{\prime \prime }}\left( \varkappa_{1}\right) \right\vert ^{r}+\left\vert \Upsilon^{^{\prime \prime }}\left( \varkappa_{2}\right) \right\vert ^{r}}{2}\right) \right) ^{\frac{1}{r}} \\& +\ \left( \frac{2s}{2s+1}\right) ^{\frac{1}{s}}\left( \left\vert \Upsilon^{^{\prime \prime }}\left( \mu\right)\right\vert ^{r}+\left\vert \Upsilon^{^{\prime \prime }} \left( \nu\right) \right\vert ^{r}-\left( \frac{\left\vert \Upsilon^{^{\prime \prime }}\left( \varkappa_{1}\right) \right\vert ^{r}+\left\vert \Upsilon^{^{\prime \prime }}\left( \varkappa_{2}\right) \right\vert ^{r}}{2}\right) \right) ^{\frac{1}{r}}\bigg]. \end{align*} |
Theorem 3.6. For a twice differentiable function \Upsilon on \left[ \mu, \nu \right] such that 0\leq \mu < \nu with \Upsilon^{"} \in L_1[\mu, \nu] and |\Upsilon^{"}|^r is convex, then
\begin{align} & \bigg|\bigg(\frac{\big( \varkappa_{2}-\varkappa_{1}\big) ^{\eta }}{B(\eta)\Gamma(\eta)}+\frac{1-\eta}{B(\eta)}\bigg)\bigg[\Upsilon\big( \mu+\nu-\varkappa_{1}\big) +\Upsilon\big( \mu+\nu-\varkappa_{2}\big)\bigg] \\& - \bigg[ \ _{(\mu+\nu-\varkappa_{2})}^{AB}I_{(\mu+\nu-\varkappa_{1})}^{\eta}\{\Upsilon(\mu+\nu-\varkappa_{1})\}+\ _{(\mu+\nu-\varkappa_{1})}^{AB}I_{(\mu+\nu-\varkappa_{2})}^{\eta}\{\Upsilon(\mu+\nu-\varkappa_{2})\} \bigg]\bigg| \\&\leq \frac{\eta(\varkappa_{2}-\varkappa_{1})^{\eta+2}}{B(\eta)\Gamma(\eta+2)}\bigg[\bigg(\frac{\eta+1}{\eta+2} \bigg)^{1-\frac{1}{r}}\bigg( \frac{\eta+1}{\eta+2}\big\vert \Upsilon^{"}\big( \mu \big) \big\vert ^{r} \\&+\frac{\eta+1}{\eta+2}\big\vert \Upsilon^{"}\big( \nu \big)) \big\vert ^{r} -\bigg(\frac{(\eta+1)(\eta+4)}{2(\eta+3)(\eta+2)}\bigg)\big\vert \Upsilon^{"}\big( \varkappa_{2}\big) \big\vert ^{r} -\bigg(\frac{\eta+1}{2(\eta+3)}\bigg)\big\vert \Upsilon^{"}\big( \varkappa_{1}\big) \big\vert ^{r} \bigg)^{\frac{1}{r}} \\&+\bigg(\frac{1}{\eta+2} \bigg)^{1-\frac{1}{r}}\bigg(\frac{1}{\eta+2}\big\vert \Upsilon^{"}\big( \mu \big) \big\vert ^{r} \\&+\frac{1}{\eta+2}\big\vert \Upsilon^{"}\big( \nu \big)) \big\vert ^{r} -\frac{1}{\eta+3}\big\vert \Upsilon^{"}\big( \varkappa_{2}\big) \big\vert ^{r} -\frac{1}{(\eta+2)(\eta+3)}\big\vert\big\vert \Upsilon^{"}\big( \varkappa_{1}\big) \big\vert ^{r} \bigg)^{\frac{1}{r}} \bigg], \end{align} | (3.7) |
for all \varkappa_{1}, \varkappa_{2}\in \left[ \mu, \nu \right] \, \ \eta > 0\, \ \zeta\in\left[ 0, 1\right] \ and\ \Gamma \left(.\right) \ is\ the\ Gamma\ function. Where \frac{1}{s}+\frac{1}{r} = 1 .
Proof. Applying the inequality along with Jensen-Mercer's inequality for |\Upsilon^{"}|^r in Lemma 3.2 , we have
\begin{align*} & \bigg|\bigg(\frac{\big( \varkappa_{2}-\varkappa_{1}\big) ^{\eta }}{B(\eta)\Gamma(\eta)}+\frac{1-\eta}{B(\eta)}\bigg)\bigg[\Upsilon\big( \mu+\nu-\varkappa_{1}\big) +\Upsilon\big( \mu+\nu-\varkappa_{2}\big)\bigg] \notag\\& - \bigg[ \ _{(\mu+\nu-\varkappa_{2})}^{AB}I_{(\mu+\nu-\varkappa_{1})}^{\eta}\{\Upsilon(\mu+\nu-\varkappa_{1})\}+\ _{(\mu+\nu-\varkappa_{1})}^{AB}I_{(\mu+\nu-\varkappa_{2})}^{\eta}\{\Upsilon(\mu+\nu-\varkappa_{2})\} \bigg]\bigg| \notag\\& \leq \frac{\eta(\varkappa_{2}-\varkappa_{1})^{\eta+2}}{B(\eta)\Gamma(\eta+2)}\Bigg[\int_{0}^{1} \bigg| 1-\zeta^{\eta+1 } \bigg| \bigg| \Upsilon^{"}\Big( \mu+\nu-\left( \zeta \varkappa_{1}+\left(1- \zeta\right) \varkappa_{2}\right) \Big)\bigg| d\zeta \notag\\& +\int_{0}^{1} \bigg| \zeta^{\eta+1} \bigg|\bigg| \Upsilon^{"}\Big( \mu+\nu-\left( (1-\zeta)\varkappa_{1}+\zeta \varkappa_{2}\right) \Big) \bigg| d\zeta\Bigg] \\&\leq \frac{\eta(\varkappa_{2}-\varkappa_{1})^{\eta+2}}{B(\eta)\Gamma(\eta+2)}\bigg[ \bigg( \int_{0}^{1} \big[ 1-\zeta^{\eta+1}\big] d\zeta\bigg) ^{1-\frac{1}{r}}\bigg( \int_{0}^{1}\big[ 1-\zeta^{\eta+1}\big]\bigg\vert \Upsilon^{"}\bigg( \mu+\nu\notag \\&-\bigg((1-\zeta)\varkappa_{2}+\zeta \varkappa_{1}\bigg) \bigg\vert^r\ d\zeta\bigg)^{\frac{1}{r}}+\bigg( \int_{0}^{1}\zeta^{\eta+1} d\zeta\bigg) ^{1-\frac{1}{r}}\notag \\&\times\bigg( \int_{0}^{1}\zeta^{\eta+1}\bigg\vert \Upsilon^{"}\bigg( \mu+\nu-\bigg(\zeta \varkappa_{2}+(1-\zeta) \varkappa_{1}\bigg) \bigg\vert^r\ d\zeta\bigg)^{\frac{1}{r}}\bigg]\notag \\& \leq \frac{\eta(\varkappa_{2}-\varkappa_{1})^{\eta+2}}{B(\eta)\Gamma(\eta+2)}\bigg[ \bigg( \int_{0}^{1}\big[ 1-\zeta^{\eta+1}\big] d\zeta\bigg) ^{1-\frac{1}{r}} \bigg\{ \bigg\vert \Upsilon^{"}\big( \mu \big) \bigg\vert ^{r}\int_{0}^{1}\big[ 1-\zeta^{\eta+1}\big]d\zeta\ \notag \\&+\bigg\vert \Upsilon^{"}\big( \nu \big)) \bigg\vert ^{r}\int_{0}^{1}\big[ 1-\zeta^{\eta+1}\big]d\zeta-\ \bigg\vert \Upsilon^{"}\big( \varkappa_{2}\big) \big\vert ^{r}\int_{0}^{1}\big[ 1-\zeta^{\eta+1}\big](1-\zeta)d\zeta\notag \\&-\bigg\vert \Upsilon^{"}\big( \varkappa_{1}\big) \bigg\vert ^{r}\int_{0}^{1}\big[ 1-\zeta^{\eta+1}\big]\zeta d\zeta \bigg\} ^{\frac{1}{r}}\notag \\&\quad+\bigg( \int_{0}^{1}\zeta^{\eta+1} d\zeta\bigg) ^{1-\frac{1}{r}}\bigg\{ \bigg\vert \Upsilon^{"}\big( \mu \big) \bigg\vert ^{r}\int_{0}^{1}\zeta^{\eta+1} d\zeta\ +\bigg\vert \Upsilon^{"}\big( \nu \big)) \bigg\vert ^{r}\int_{0}^{1}\zeta^{\eta+1} d\zeta\notag \\&-\ \bigg\vert \Upsilon^{"}\big( \varkappa_{2}\big) \bigg\vert ^{r}\int_{0}^{1}\zeta^{\eta+1}\zeta d\zeta-\bigg\vert \Upsilon^{"}\big( \varkappa_{1}\big) \bigg\vert^{r} \int_{0}^{1}\zeta^{\eta+1}(1-\zeta)d\zeta \bigg\} ^{\frac{1}{r}}\bigg]. \end{align*} |
After simplification, we get inequality 3.7.
Consider the following two special means for \varkappa_{1}\neq \varkappa_{2}, with 0 < \varkappa_{1} < \varkappa_{2}.
The arithmetic mean:
\begin{equation*} A(\varkappa_{1},\varkappa_{2}) = \frac{\varkappa_{1}+\varkappa_{2}}{2}. \end{equation*} |
The Harmonic mean:
\begin{equation*} H(\varkappa_{1},\varkappa_{2}) = \frac{2\varkappa_{1}\varkappa_{2}}{\varkappa_{1}+\varkappa_{2}}. \end{equation*} |
The logarithmic-mean:
\begin{equation*} L(\varkappa_{1},\varkappa_{2}) = \frac{\varkappa_{2}-\varkappa_{1}}{log \varkappa_{2}-log \varkappa_{1}}. \end{equation*} |
The generalized logarithmic-mean:
\begin{equation*} L_{m}(\varkappa_{1},\varkappa_{2}) = \Bigg[\frac{\varkappa_{2}^{m+1}-\varkappa_{1}^{m+1}}{(m+1)(\varkappa_{2}-\varkappa_{1})}\Bigg]^{\frac{1}{m}};\;\;m\in \Re \setminus \{-1,0\}. \end{equation*} |
Proposition 4.1. Suppose \varkappa_{1}, \varkappa_{2}\in \Re such that 0 < \varkappa_{1} < \varkappa_{2}, 0 does not belongs to [\varkappa_{1}, \varkappa_{2}] and m\in Z, |m|\geq2. Then the following inequality
\begin{align*} & \left\vert A\left( \left( \mu+\nu-\varkappa_{1}\right) ^{m},\left( \mu+\nu-\varkappa_{2}\right) ^{m}\right) -L_{m}^{m}\left( \mu+\nu-\varkappa_{1},\mu+\nu-\varkappa_{2}\right) \right\vert \\& \leq \ \frac{m\left( m-1\right) }{4}\left( \varkappa_{2}-\varkappa_{1}\right) ^{2}\bigg[2A\left( |\mu|^{m-2},|\nu|^{m-2}\right) -\frac{1}{3}\left( |\varkappa_{1}|^{m-2}+2|\varkappa_{2}|^{m-2}\right) \bigg]. \end{align*} |
Proof. Applying the Corollary 1 for the \Upsilon(x) = x^m. one can obtain the result immediately.
Proposition 4.2. Suppose \varkappa_{1}, \varkappa_{2}\in \Re\backslash{0} such that 0 < \varkappa_{1} < \varkappa_{2}, 0 does not belongs to [\varkappa_{1}, \varkappa_{2}]. Then the following inequality
\begin{align*} & \left\vert H^{-1}\left( \mu+\nu-\varkappa_{1},\mu+\nu-\varkappa_{2}\right) -L^{-1}\left( \mu+\nu-\varkappa_{1},\mu+\nu-\varkappa_{2}\right) \right\vert \\& \leq \ \frac{\left( \varkappa_{2}-\varkappa_{1}\right) ^{2}}{4}\bigg[4A\left( \left\vert \mu\right\vert ^{-3},\left\vert \nu\right\vert ^{-3}\right) -\frac{1}{3}\left( 2\left\vert \varkappa_{1}\right\vert ^{-3}+4\left\vert \varkappa_{2}\right\vert ^{-3}\right) \bigg]. \end{align*} |
Proof. Applying the Corollary 1 for the \Upsilon(x) = \frac{1}{x}. one can obtain the result immediately.
Proposition 4.3. Suppose \varkappa_{1}, \varkappa_{2}\in \Re such that 0 < \varkappa_{1} < \varkappa_{2}, 0 does not belongs to [\varkappa_{1}, \varkappa_{2}] and m\in Z, |m|\geq2 with r > 1 . Then the following inequality
\begin{align*} & \bigg\vert A\left( \left( \mu+\nu-\varkappa_{1}\right) ^{m},\left( \mu+\nu-\varkappa_{2}\right) ^{m}\right) -L_{m}^{m}\left( \mu+\nu-\varkappa_{1},\mu+\nu-\varkappa_{2}\right) \bigg\vert \\& \leq \frac{m\left( m-1\right)\big(\varkappa_{2}-\varkappa_{1}\big)^2 }{4}\bigg[\left( \frac{1}{2s+1}\right) ^{\frac{1}{s }}\bigg\{2A\left( \left\vert \mu^{m-2}\right\vert ^{r},\left\vert \nu^{m-2}\right\vert ^{r}\right) -A\left( \left\vert \varkappa_{1}^{m-2}\right\vert ^{r},\left\vert \varkappa_{2}^{m-2}\right\vert ^{r}\right) \bigg\}^{\frac{1}{r}} \\& +\; \left( \frac{2s}{2s+1}\right) ^{\frac{1}{s}}\bigg\{2A\left( \left\vert \mu^{m-2}\right\vert ^{r},\left\vert \nu^{m-2}\right\vert ^{r}\right) -A\left( \left\vert \varkappa_{1}^{m-2}\right\vert ^{r},\left\vert \varkappa_{2}^{m-2}\right\vert ^{r}\right) \bigg\}^{\frac{1}{r}}\bigg]. \end{align*} |
Proof. Applying the Corollary 2 for the \Upsilon(x) = x^m. one can obtain the result immediately.
Suppose 0 < \mathbf{q} < 1, the \mathbf{q} -digamma function \varphi _{ \mathbf{q}}, is the \mathbf{q} -analogue of the digamma function \varphi defined by (see in [30]).
\begin{align*} & \varphi _{\mathbf{q}} = -\ln \left( 1-\mathbf{q}\right) +\ \ln \mathbf{q} \sum\limits_{j = 0}^{\infty }\frac{\mathbf{q}^{j+v}}{1-\mathbf{q}^{j+v}} \\ & \ \ \ \ = -\ln \left( 1-\mathbf{q}\right) +\ \ln \mathbf{q} \sum\limits_{j = 0}^{\infty }\frac{\mathbf{q}^{jv}}{1-\mathbf{q}^{jv}}. \end{align*} |
For \mathbf{q} > 1 and v > 0, \mathbf{q} -digamma function \varphi _{ \mathbf{q}} defined by
\begin{align*} & \varphi_\mathbf{q} = -\ln \left( \mathbf{q}-1\right) +\ \ln \mathbf{q}\bigg[ v-\frac{1}{2} - \sum\limits_{j = 0}^{\infty}\frac{\mathbf{q}^{-(j+v)}}{1-\mathbf{q} ^{-(j+v)}}\bigg] \\ & \ \ \ \ = -\ln \left( \mathbf{q}-1\right) +\ \ln \mathbf{q}\bigg[v-\frac{1}{ 2} - \sum\limits_{j = 0}^{\infty}\frac{\mathbf{q}^{-jv}}{1-\mathbf{q}^{-jv}}\bigg]. \end{align*} |
Proposition 4.4. Let 0 < \mathbf{q} < 1 and \mu, \nu, \mathbf{q}, r, s be real numbers with 0 < \mu < \nu, r > 1 . Then
\begin{align*} & \left\vert \frac{\varphi _{\mathbf{q}}^{^{\prime }}\left( \mu+\nu-\varkappa_{1}\right) +\varphi _{\mathbf{q}}^{^{\prime }}\left( \mu+\nu-\varkappa_{2}\right) }{2}-\frac{\varphi _{\mathbf{q}}\left( \mu+\nu-\varkappa_{1}\right) +\varphi _{\mathbf{q}}\left( \mu+\nu-\varkappa_{2}\right) }{\varkappa_{2}-\varkappa_{1}}\right\vert \\& \leq \frac{\left( \varkappa_{2}-\varkappa_{1}\right) ^{2}}{4}\bigg[\left( \frac{1}{2s+1}\right) ^{ \frac{1}{s}}\left( \left\vert \varphi _{\mathbf{q}}^{\left( 3\right) } \left( \mu\right) \right\vert ^{r}+\left\vert \varphi _{\mathbf{q}}^{\left( 3\right) } \left( \nu\right) \right\vert ^{r}-\left( \frac{\left\vert \varphi _{\mathbf{q}}^{\left( 3\right) }\left( \varkappa_{1}\right) \right\vert ^{r}+\left\vert \varphi _{\mathbf{q}}^{\left( 3\right) }\left( \varkappa_{2}\right) \right\vert ^{r}}{2}\right) \right) ^{\frac{1}{r}} \\& +\ \left( \frac{2s}{2s+1}\right) ^{\frac{1}{s}}\left( \left\vert \varphi _{\mathbf{q}}^{\left( 3\right) } \left( \mu\right) \right\vert ^{r}+\left\vert \varphi _{\mathbf{q}}^{\left( 3\right) } \left( \nu\right) \right\vert ^{r}-\left( \frac{\left\vert \varphi _{\mathbf{q}}^{\left( 3\right) }\left( \varkappa_{1}\right) \right\vert ^{r}+\left\vert \varphi _{\mathbf{q}}^{\left( 3\right) }\left( \varkappa_{2}\right) \right\vert ^{r}}{2}\right) \right) ^{\frac{1}{r}}\bigg]. \end{align*} |
holds true for all v > 0 and s = \frac{r}{r-1}.
Proof. Observe that the \mathbf{q} -trigamma function \Upsilon(v) = \varphi _{\mathbf{q}}^{{\prime }}(v) is completely monotonically on (0, \infty) . That implies the function \varphi _{\mathbf{q}}^{\left(3\right) }(v) is also completely monotonically on (0, \infty) for each \mathbf{q}\in (0, 1). (see in [31], p. 167). The result follows from Corollary 3.2.
The study dealt with investigating new Hermite-Hadamard-Mercer inequalities for AB-fractional integral operators. Several new integral identities are obtained involving first and second-order derivatives. Using new fractional operators, some achievements have been obtained in the study of Hermite-Hadamard type integral inequalities. We also extend the study of Hermite-Hadamard-Mercer type inequalities via AB-fractional integral operators for differentiable mapping whose derivatives in the absolute values are convex. Finally, we have applied our findings to give estimations of inequalities pertaining to special functions. All these integral inequalities are open to being investigated for other classes of generalized convex functions like s -convex, Strong convex and F -convex functions.
This research was funded by King Mongkut's University of Technology North Bangkok. Contract no.KMUTNB-64-KNOW-36.
The authors declare no conflict of interest.
[1] | D. S. Mitrinović, J. Pečarić, A. M. Fink, Classical and new inequalities in analysis, In: Mathematics and its Applications (East European Series), Springer Science and Business Media, 1993. doi: 10.1007/978-94-017-1043-5. |
[2] | S. S. Dragomir, C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, 2003. |
[3] | P. Agarwal, S. S. Dragomir, M. Jleli, B. Samet, Advances in mathematical inequalities and applications, Springer Singapore, 2018. doi: 10.1007/978-981-13-3013-1. |
[4] | S. I. Butt, M. K. Bakula, D. Pečarić, J. Pečarić, Jensen-Grüss inequality and its applications for the Zipf-Mandelbrot law, Math. Method. Appl. Sci., 44 (2021), 1664–1673. doi: 10.1002/mma.6869. |
[5] | S. Khan, M. A. Khan, S. I. Butt, Y. M. Chu, A new bound for the Jensen gap pertaining twice differentiable functions with applications, Adv. Differ. Equ., 2020 (2020), 333. doi: 10.1186/s13662-020-02794-8. |
[6] | S. A. Azar, Jensen's inequality in finance, Int. Adv. Econ. Res., 14 (2008), 433–440. doi: 10.1007/s11294-008-9172-9. |
[7] | A. Mcd Mercer, A Variant of jensen's inequality, J. Inequal. Pure Appl. Math., 4 (2003), 73. |
[8] | M. Kian, M. Moslehian, Refinements of the operator Jensen-Mercer inequality, Electron. J. Linear Al., 26 (2013), 742–753. doi: 10.13001/1081-3810.1684. |
[9] | H. R. Moradi, S. Furuichi, Improvement and generalization of some Jensen-Mercer-type inequalities, J. Math. Inequal., 14 (2020), 377–383. doi: 10.7153/jmi-2020-14-24. |
[10] | M. A. Khan, Z. Husain, Y. M. Chu, New estimates for csiszar divergence and Zipf-Mandelbrot entropy via Jensen-Mercer's inequality, Complexity, 2020 (2020), 8928691. doi: 10.1155/2020/8928691. |
[11] | S. I. Butt, M. Umar, S. Rashid, A. O. Akdemir, Y. M. Chu, New Hermite-Mercer type inequalities via k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 635. doi: 10.1186/s13662-020-03093-y. |
[12] | R. Gorenflo, Fractals and fractional calculus in continuum mechanics, In: International centre for mechanical sciences, Springer, Vienna, 1997,277–290. doi: 10.1007/978-3-7091-2664-6. |
[13] | A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[14] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. doi: 10.1016/j.amc.2011.03.062. |
[15] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. doi: 10.1016/j.cam.2014.10.016. |
[16] | T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. doi: 10.1016/S0034-4877(17)30059-9. |
[17] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. doi: 10.1016/j.cam.2014.01.002. |
[18] | D. Baleanu, R. P. Agarwal, Fractional calculus in the sky, Adv. Differ. Equ., 2021 (2021), 117. doi: 10.1186/s13662-021-03270-7. |
[19] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1–13. |
[20] | T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. doi: 10.1016/S0034-4877(17)30059-9. |
[21] | K. M. Saad, M. Alqhtani, Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear, AIMS Mathematics, 6 (2021), 3788–3804. doi: 10.3934/math.2021225. |
[22] | H. M. Srivastava, K. M. Saad, Some new and modified fractional analysis of the time-fractional Drinfeld-Sokolov-Wilson system, Chaos, 30 (2020), 113104. doi: 10.1063/5.0009646. |
[23] | S. Aljhani, M. S. Md Noorani, K. M. Saad, A. K. Alomari, Numerical solutions of certain new models of the time-fractional Gray-Scott, J. Funct. Space., 2021 (2021), 2544688. doi: 10.1155/2021/2544688. |
[24] | A. Atangana, D. Baleanu, New fractional derivatices with non-local and non-singular kernel, Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A. |
[25] | T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107. doi: 10.22436/jnsa.010.03.20. |
[26] | E. Set, S. I. Butt, A. O. Akdemir, A. Karaoglan, T. Abdeljawad, New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators, Chaos Soliton. Fract., 143 (2021), 110554. doi: 10.1016/j.chaos.2020.110554. |
[27] | S. I. Butt, S. Yousaf, A. O. Akdemir, M. A Dokuyucu, New Hadamard-type integral inequalities via a general form of fractional integral operators, Chaos Soliton. Fract., 148 (2021), 111025. doi: 10.1016/j.chaos.2021.111025. |
[28] | S. Rashid, Z. Hammouch, D. Baleanu, Y. M. Chu, New generalizations in the sense of the weighted non-singular fractional integral operator, Fractals, 28 (2020), 2040003. doi: 10.1142/S0218348X20400034. |
[29] | S. S. Dragomir, R. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. doi: 10.1016/S0893-9659(98)00086-X. |
[30] | G. N. Watson, A treatise on the theory of Bessel functions, Cambridge university press, 1995. |
[31] | D. V. Widder, The Laplace transform, Princeton University Press, 1946. |
1. | Maimoona Karim, Aliya Fahmi, Zafar Ullah, Muhammad Awais Tariq Bhatti, Ather Qayyum, On certain Ostrowski type integral inequalities for convex function via AB-fractional integral operator, 2023, 8, 2473-6988, 9166, 10.3934/math.2023459 | |
2. | Hasan Bayram, Sibel Yalçın, Jia-Bao Liu, Convolution and Coefficient Estimates for (p,q)-Convex Harmonic Functions Associated with Subordination, 2022, 2022, 2314-8888, 1, 10.1155/2022/5317797 | |
3. | Soubhagya Kumar Sahoo, Y.S. Hamed, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, New midpoint type Hermite-Hadamard-Mercer inequalities pertaining to Caputo-Fabrizio fractional operators, 2023, 65, 11100168, 689, 10.1016/j.aej.2022.10.019 | |
4. | Soubhagya Kumar Sahoo, Ravi P. Agarwal, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja, Hadamard–Mercer, Dragomir–Agarwal–Mercer, and Pachpatte–Mercer Type Fractional Inclusions for Convex Functions with an Exponential Kernel and Their Applications, 2022, 14, 2073-8994, 836, 10.3390/sym14040836 | |
5. | Miguel Vivas-Cortez, Muhammad Uzair Awan, Sehrish Rafique, Muhammad Zakria Javed, Artion Kashuri, Some novel inequalities involving Atangana-Baleanu fractional integral operators and applications, 2022, 7, 2473-6988, 12203, 10.3934/math.2022678 | |
6. | Mirna Rodić, On the Converse Jensen-Type Inequality for Generalized f-Divergences and Zipf–Mandelbrot Law, 2022, 10, 2227-7390, 947, 10.3390/math10060947 | |
7. | Bandar Bin-Mohsin, Sehrish Rafique, Clemente Cesarano, Muhammad Zakria Javed, Muhammad Uzair Awan, Artion Kashuri, Muhammad Aslam Noor, Some General Fractional Integral Inequalities Involving LR–Bi-Convex Fuzzy Interval-Valued Functions, 2022, 6, 2504-3110, 565, 10.3390/fractalfract6100565 | |
8. | Saad Ihsan Butt, Iram Javed, Praveen Agarwal, Juan J. Nieto, Newton–Simpson-type inequalities via majorization, 2023, 2023, 1029-242X, 10.1186/s13660-023-02918-0 | |
9. | Fahd Jarad, Soubhagya Kumar Sahoo, Kottakkaran Sooppy Nisar, Savin Treanţă, Homan Emadifar, Thongchai Botmart, New stochastic fractional integral and related inequalities of Jensen–Mercer and Hermite–Hadamard–Mercer type for convex stochastic processes, 2023, 2023, 1029-242X, 10.1186/s13660-023-02944-y | |
10. | Jun Yang, Muhammad Kamran Siddiqui, Mazhar Hussain, Shazia Manzoor, Nazir Hussain, Zohaib Saddique, QSPR Analysis of Some Phenolic Compounds Present in Moringa Oleifera , 2024, 44, 1040-6638, 4197, 10.1080/10406638.2023.2247120 | |
11. | XIAOMAN YUAN, LEI XU, TINGSONG DU, SIMPSON-LIKE INEQUALITIES FOR TWICE DIFFERENTIABLE (s,P)-CONVEX MAPPINGS INVOLVING WITH AB-FRACTIONAL INTEGRALS AND THEIR APPLICATIONS, 2023, 31, 0218-348X, 10.1142/S0218348X2350024X | |
12. | Asfand Fahad, Saad Ihsaan Butt, Josip Pečarić, Marjan Praljak, Generalized Taylor’s Formula and Steffensen’s Inequality, 2023, 11, 2227-7390, 3570, 10.3390/math11163570 | |
13. | Mulugeta Dawud Ali, D. L. Suthar, On the fractional q-integral operators involving q-analogue of Mittag-Leffler function, 2024, 44, 0174-4747, 245, 10.1515/anly-2023-0107 | |
14. | Saad Ihsan Butt, Praveen Agarwal, Juan J. Nieto, New Hadamard–Mercer Inequalities Pertaining Atangana–Baleanu Operator in Katugampola Sense with Applications, 2024, 21, 1660-5446, 10.1007/s00009-023-02547-3 | |
15. | WENBING SUN, HAIYANG WAN, HERMITE–HADAMARD-TYPE INEQUALITIES INVOLVING SEVERAL KINDS OF FRACTIONAL CALCULUS FOR HARMONICALLY CONVEX FUNCTIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23501098 | |
16. | Saad Ihsan Butt, Yamin Sayyari, Praveen Agarwal, Juan J. Nieto, Muhammad Umar, On some inequalities for uniformly convex mapping with estimations to normal distributions, 2023, 2023, 1029-242X, 10.1186/s13660-023-02997-z | |
17. | Muhammad Nadeem, Awais Yousaf, Seemab Sheik, A Novel Approach to Investigate Sadhana and PI Indices, 2024, 44, 1040-6638, 5060, 10.1080/10406638.2023.2259566 | |
18. | Muhammad Tariq, Sotiris K. Ntouyas, Bashir Ahmad, Ostrowski-Type Fractional Integral Inequalities: A Survey, 2023, 3, 2673-9321, 660, 10.3390/foundations3040040 | |
19. | Miguel Vivas–Cortez, Muhammad Zakria Javed, Muhammad Uzair Awan, Muhammad Aslam Noor, Silvestru Sever Dragomir, Bullen-Mercer type inequalities with applications in numerical analysis, 2024, 96, 11100168, 15, 10.1016/j.aej.2024.03.093 | |
20. | Ammara Nosheen, Sana Ijaz, Khuram Ali Khan, Khalid Mahmood Awan, Hüseyin Budak, Quantum symmetric integral inequalities for convex functions, 2024, 47, 0170-4214, 14878, 10.1002/mma.10310 | |
21. | Erhan Set, Ahmet Akdemir, Emin Özdemir, Ali Karaoğlan, Mustafa Dokuyucu, New integral inequalities for Atangana-Baleanu fractional integral operators and various comparisons via simulations, 2023, 37, 0354-5180, 2251, 10.2298/FIL2307251S | |
22. | Timur Gamilov, Ruslan Yanbarisov, Fractional-Order Windkessel Boundary Conditions in a One-Dimensional Blood Flow Model for Fractional Flow Reserve (FFR) Estimation, 2023, 7, 2504-3110, 373, 10.3390/fractalfract7050373 | |
23. | Muhammad Mudassar Hassan, Shamoona Jabeen, Haidar Ali, Parvez Ali, Connection-based modified Zagreb indices of Boron triangular sheet BTS(m,n), 2023, 0026-8976, 10.1080/00268976.2023.2226242 | |
24. | Asfand Fahad, Saad Ihsaan Butt, Bahtiyar Bayraktar, Mehran Anwar, Yuanheng Wang, Some New Bullen-Type Inequalities Obtained via Fractional Integral Operators, 2023, 12, 2075-1680, 691, 10.3390/axioms12070691 | |
25. | Tahir Rasheed, Saad Ihsan Butt, Ðilda Pečarić, Josip Pečarić, New bounds of Popoviciu's difference via weighted Hadamard type inequalities with applications in information theory, 2024, 47, 0170-4214, 5750, 10.1002/mma.9889 | |
26. | Shanhe Wu, Muhammad Adil Khan, Shah Faisal, Tareq Saeed, Eze R. Nwaeze, Derivation of Hermite-Hadamard-Jensen-Mercer conticrete inequalities for Atangana-Baleanu fractional integrals by means of majorization, 2024, 57, 2391-4661, 10.1515/dema-2024-0024 | |
27. | Zeynep Çiftci, Merve Coşkun, Çetin Yildiz, Luminiţa-Ioana Cotîrlă, Daniel Breaz, On New Generalized Hermite–Hadamard–Mercer-Type Inequalities for Raina Functions, 2024, 8, 2504-3110, 472, 10.3390/fractalfract8080472 | |
28. | Muhammad Amer Latif, New extensions related to Fejér-type inequalities for GA-convex functions, 2024, 57, 2391-4661, 10.1515/dema-2024-0006 | |
29. | PANUMART SAWANGTONG, K. LOGESWARI, C. RAVICHANDRAN, KOTTAKKARAN SOOPPY NISAR, V. VIJAYARAJ, FRACTIONAL ORDER GEMINIVIRUS IMPRESSION IN CAPSICUM ANNUUM MODEL WITH MITTAG-LEFFLER KERNAL, 2023, 31, 0218-348X, 10.1142/S0218348X23400492 | |
30. | Barış Çelik, Hüseyin Budak, Erhan Set, On generalized Milne type inequalities for new conformable fractional integrals, 2024, 38, 0354-5180, 1807, 10.2298/FIL2405807C | |
31. | Çetin Yıldız, Samet Erden, Seth Kermausuor, Daniel Breaz, Luminiţa-Ioana Cotîrlă, New estimates on generalized Hermite–Hadamard–Mercer-type inequalities, 2025, 2025, 1687-2770, 10.1186/s13661-025-02012-y |