We present new Mercer variants of Hermite-Hadamard (HH) type inequalities via Atangana-Baleanu (AB) fractional integral operators pertaining non-local and non-singular kernels. We establish trapezoidal type identities for fractional operator involving non-singular kernel and give Jensen-Mercer (JM) variants of Hermite-Hadamard type inequalities for differentiable mapping $ \Upsilon $ possessing convex absolute derivatives. We establish connections of our results with several renowned results in the literature and also give applications to special functions.
Citation: Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon. Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator[J]. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121
We present new Mercer variants of Hermite-Hadamard (HH) type inequalities via Atangana-Baleanu (AB) fractional integral operators pertaining non-local and non-singular kernels. We establish trapezoidal type identities for fractional operator involving non-singular kernel and give Jensen-Mercer (JM) variants of Hermite-Hadamard type inequalities for differentiable mapping $ \Upsilon $ possessing convex absolute derivatives. We establish connections of our results with several renowned results in the literature and also give applications to special functions.
[1] | D. S. Mitrinović, J. Pečarić, A. M. Fink, Classical and new inequalities in analysis, In: Mathematics and its Applications (East European Series), Springer Science and Business Media, 1993. doi: 10.1007/978-94-017-1043-5. |
[2] | S. S. Dragomir, C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, 2003. |
[3] | P. Agarwal, S. S. Dragomir, M. Jleli, B. Samet, Advances in mathematical inequalities and applications, Springer Singapore, 2018. doi: 10.1007/978-981-13-3013-1. |
[4] | S. I. Butt, M. K. Bakula, D. Pečarić, J. Pečarić, Jensen-Grüss inequality and its applications for the Zipf-Mandelbrot law, Math. Method. Appl. Sci., 44 (2021), 1664–1673. doi: 10.1002/mma.6869. |
[5] | S. Khan, M. A. Khan, S. I. Butt, Y. M. Chu, A new bound for the Jensen gap pertaining twice differentiable functions with applications, Adv. Differ. Equ., 2020 (2020), 333. doi: 10.1186/s13662-020-02794-8. |
[6] | S. A. Azar, Jensen's inequality in finance, Int. Adv. Econ. Res., 14 (2008), 433–440. doi: 10.1007/s11294-008-9172-9. |
[7] | A. Mcd Mercer, A Variant of jensen's inequality, J. Inequal. Pure Appl. Math., 4 (2003), 73. |
[8] | M. Kian, M. Moslehian, Refinements of the operator Jensen-Mercer inequality, Electron. J. Linear Al., 26 (2013), 742–753. doi: 10.13001/1081-3810.1684. |
[9] | H. R. Moradi, S. Furuichi, Improvement and generalization of some Jensen-Mercer-type inequalities, J. Math. Inequal., 14 (2020), 377–383. doi: 10.7153/jmi-2020-14-24. |
[10] | M. A. Khan, Z. Husain, Y. M. Chu, New estimates for csiszar divergence and Zipf-Mandelbrot entropy via Jensen-Mercer's inequality, Complexity, 2020 (2020), 8928691. doi: 10.1155/2020/8928691. |
[11] | S. I. Butt, M. Umar, S. Rashid, A. O. Akdemir, Y. M. Chu, New Hermite-Mercer type inequalities via k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 635. doi: 10.1186/s13662-020-03093-y. |
[12] | R. Gorenflo, Fractals and fractional calculus in continuum mechanics, In: International centre for mechanical sciences, Springer, Vienna, 1997,277–290. doi: 10.1007/978-3-7091-2664-6. |
[13] | A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[14] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. doi: 10.1016/j.amc.2011.03.062. |
[15] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. doi: 10.1016/j.cam.2014.10.016. |
[16] | T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. doi: 10.1016/S0034-4877(17)30059-9. |
[17] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. doi: 10.1016/j.cam.2014.01.002. |
[18] | D. Baleanu, R. P. Agarwal, Fractional calculus in the sky, Adv. Differ. Equ., 2021 (2021), 117. doi: 10.1186/s13662-021-03270-7. |
[19] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1–13. |
[20] | T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. doi: 10.1016/S0034-4877(17)30059-9. |
[21] | K. M. Saad, M. Alqhtani, Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear, AIMS Mathematics, 6 (2021), 3788–3804. doi: 10.3934/math.2021225. |
[22] | H. M. Srivastava, K. M. Saad, Some new and modified fractional analysis of the time-fractional Drinfeld-Sokolov-Wilson system, Chaos, 30 (2020), 113104. doi: 10.1063/5.0009646. |
[23] | S. Aljhani, M. S. Md Noorani, K. M. Saad, A. K. Alomari, Numerical solutions of certain new models of the time-fractional Gray-Scott, J. Funct. Space., 2021 (2021), 2544688. doi: 10.1155/2021/2544688. |
[24] | A. Atangana, D. Baleanu, New fractional derivatices with non-local and non-singular kernel, Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A. |
[25] | T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107. doi: 10.22436/jnsa.010.03.20. |
[26] | E. Set, S. I. Butt, A. O. Akdemir, A. Karaoglan, T. Abdeljawad, New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators, Chaos Soliton. Fract., 143 (2021), 110554. doi: 10.1016/j.chaos.2020.110554. |
[27] | S. I. Butt, S. Yousaf, A. O. Akdemir, M. A Dokuyucu, New Hadamard-type integral inequalities via a general form of fractional integral operators, Chaos Soliton. Fract., 148 (2021), 111025. doi: 10.1016/j.chaos.2021.111025. |
[28] | S. Rashid, Z. Hammouch, D. Baleanu, Y. M. Chu, New generalizations in the sense of the weighted non-singular fractional integral operator, Fractals, 28 (2020), 2040003. doi: 10.1142/S0218348X20400034. |
[29] | S. S. Dragomir, R. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. doi: 10.1016/S0893-9659(98)00086-X. |
[30] | G. N. Watson, A treatise on the theory of Bessel functions, Cambridge university press, 1995. |
[31] | D. V. Widder, The Laplace transform, Princeton University Press, 1946. |