This manuscript is concerned with the stability and synchronization for fractional-order delayed gene regulatory networks (FODGRNs) via Razumikhin approach. First of all, the existence of FODGRNs are established by using homeomorphism theory, 2-norm based on the algebraic method and Cauchy Schwartz inequality. The uniqueness of this work among the existing stability results are, the global Mittag-Leffler stability of FODGRNs is explored based on the fractional-order Lyapunov Razumikhin approach. In the meanwhile, two different controllers such as linear feedback and adaptive feedback control, are designed respectively. With the assistance of fractional Razumikhin theorem and our designed controllers, we have established the global Mittag-Leffler synchronization and adaptive synchronization for addressing master-slave systems. Finally, three numerical cases are given to justify the applicability of our stability and synchronization results.
Citation: Pratap Anbalagan, Evren Hincal, Raja Ramachandran, Dumitru Baleanu, Jinde Cao, Michal Niezabitowski. A Razumikhin approach to stability and synchronization criteria for fractional order time delayed gene regulatory networks[J]. AIMS Mathematics, 2021, 6(5): 4526-4555. doi: 10.3934/math.2021268
This manuscript is concerned with the stability and synchronization for fractional-order delayed gene regulatory networks (FODGRNs) via Razumikhin approach. First of all, the existence of FODGRNs are established by using homeomorphism theory, 2-norm based on the algebraic method and Cauchy Schwartz inequality. The uniqueness of this work among the existing stability results are, the global Mittag-Leffler stability of FODGRNs is explored based on the fractional-order Lyapunov Razumikhin approach. In the meanwhile, two different controllers such as linear feedback and adaptive feedback control, are designed respectively. With the assistance of fractional Razumikhin theorem and our designed controllers, we have established the global Mittag-Leffler synchronization and adaptive synchronization for addressing master-slave systems. Finally, three numerical cases are given to justify the applicability of our stability and synchronization results.
[1] | R. Anbuvithya, K. Mathiyalagan, R. Sakthivel, P. Prakash, Sampled-data state estimation for genetic regulatory networks with time varying delays, Neurocomputing, 15 (2015), 737–744. |
[2] | M. S. Ali, R. Agalya, K. S. Hong, Non-fragile synchronization of genetic regulatory networks with randomly occurring controller gain fluctuation, Chin. J. Phys., 62 (2019), 132–143. doi: 10.1016/j.cjph.2019.09.019 |
[3] | D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos, Solitons Fractals, 134 (2020), 109705. doi: 10.1016/j.chaos.2020.109705 |
[4] | D. Baleanu, S. Sadati, R. Ghaderi, A. Ranjbar, T. Abdeljawad, F. Jarad, Razumikhin stability theorem for fractional systems with delay, Abstract Appl. Anal., 9 (2010), 124812. |
[5] | I. Barbalat, Systems d'equations differential d'oscillations nonlinearities, Revue Roumaine De Math. Pures Et Appl., 4 (1959), 267–270. |
[6] | J. Cao, D. W. Ho, X. Huang, LMI-based criteria for global robust stability of bidirectional associative memory networks with time delay, Nonlinear Anal., 66 (2007), 1558–1572. doi: 10.1016/j.na.2006.02.009 |
[7] | S. Ding, Z. Wang, Event-triggered synchronization of discrete-time neural networks: A switching approach, Neural Networks., 125 (2020), 31–40. doi: 10.1016/j.neunet.2020.01.024 |
[8] | S. Ding, Z. Wang, N. Rong, Intermittent control for quasisynchronization of delayed discrete-time neural networks, IEEE Trans. Cybern., 51 (2021), 862–873. doi: 10.1109/TCYB.2020.3004894 |
[9] | S. Ding, Z. Wang, Synchronization of coupled neural networks via an event-dependent intermittent pinning control, IEEE Trans. Syst., Man, Cybern.: Syst., (2020). Available from: Doi: 10.1109/TSMC.2020.3035173. |
[10] | Z. Ding, Y. Shen, L. Wang, Global Mittag-Leffler synchronization of fractional order neural networks with discontinuous activations, Neural Networks., 73 (2016), 77–85. doi: 10.1016/j.neunet.2015.10.010 |
[11] | F. Du, J. G. Lu, New criterion for finite-time stability of fractional delay systems, Appl. Math. Lett., 104 (2020), 106248. doi: 10.1016/j.aml.2020.106248 |
[12] | F. Du, J. G. Lu, Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities, Appl. Math. Comput., 375 (2020), 125079. |
[13] | M. A. Duarte-Mermoud, N. Aguila-Camacho, J. A, Gallegos, R. Castro-Linares, Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Comm. Nonlinear Sci. Numer. Simul., 22 (2015), 650–659. doi: 10.1016/j.cnsns.2014.10.008 |
[14] | N. Jiang, X. Liu, W. Yu, J. Shen, Finite-time stochastic synchronization of genetic regulatory networks, Neurocomputing, 167 (2015), 314–321. doi: 10.1016/j.neucom.2015.04.064 |
[15] | C. Huang, J. Cao, M. Xiao, Hybrid control on bifurcation for a delayed fractional gene regulatory network, Chaos, Solitons Fractals, 87 (2016), 19–29. doi: 10.1016/j.chaos.2016.02.036 |
[16] | S. Lakshmanan, J. H. Park, H. Y.Jung, P. Balasubramaniam, S. M. Lee, Design of state estimator for genetic regulatory networks with time-varying delays and randomly occurring uncertainties, Biosystems, 111 (2013), 51–70. doi: 10.1016/j.biosystems.2012.11.001 |
[17] | H. Li, J. Cao, H. Jiang, A. Alsaedi, Graph theory-based finite-time synchronization of fractional-order complex dynamical networks, J. Franklin Inst., 355 (2018), 5771–5789. doi: 10.1016/j.jfranklin.2018.05.039 |
[18] | S. Liang, R. Wu, L. Chen, Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay, Physica A., 444 (2016), 49–62. doi: 10.1016/j.physa.2015.10.011 |
[19] | P. L. Liu, Robust stability analysis of genetic regulatory network with time delays, ISA Trans., 52 (2013), 326–334. doi: 10.1016/j.isatra.2013.01.003 |
[20] | Q. Luo, R. Zhang, X. Liao, Unconditional global exponential stability in Lagrange sense of genetic regulatory networks with SUM regulatory logic, Cogn Neurodyn., 4 (2010), 251–261. doi: 10.1007/s11571-010-9113-1 |
[21] | S. Mohamad, Exponential stability in Hopfield type neural networks with impulses, Chaos Solitions Fractals, 32 (2007), 457–467. |
[22] | I. Podlubny, Fractional differential equations, San Diego California: Academic Press, 1999. |
[23] | Y. Qiao, H. Yan, L. Duan, J. Miao, Finite-time synchronization of fractional-order gene regulatory networks with time delay, Neural Networks, 126 (2020), 1–10. doi: 10.1016/j.neunet.2020.02.004 |
[24] | J. Qiu, K. Sun, C. Yang, X. Chen, C. Xiang, A. Zhangyong, Finite-time stability of genetic regulatory networks with impulsive effects, Neurocomputing, 219 (2017), 9–14. doi: 10.1016/j.neucom.2016.09.017 |
[25] | F. Ren, F. Cao, J. Cao, Mittag-Leffler stability and generalized Mittag–Leffler stability of fractional-order gene regulatory networks, Neurocomputing., 160 (2015), 185–190. doi: 10.1016/j.neucom.2015.02.049 |
[26] | S. Senthilraj, R. Raja, Q. Zhu, R. Samidurai, H. Zhou, Delay-dependent asymptotic stability criteria for genetic regulatory networks with impulsive perturbations, Neurocomputing, 214 (2016), 981–990. doi: 10.1016/j.neucom.2016.07.018 |
[27] | I. Stamova, Stability of impulsive fractional differential equations, Berlin: Walter de Gruyter. |
[28] | T. Stamov, I. Stamova, Design of impulsive controllers and impulsive control strategy for the Mittag–Leffler stability behavior of fractional gene regulatory networks, Neurocomputing, 424 (2021), 54–62. doi: 10.1016/j.neucom.2020.10.112 |
[29] | B. Tao, M. Xiao, Q. Sun, J. Cao, Hopf bifurcation analysis of a delayed fractional-order genetic regulatory network model, Neurocomputing, 275 (2018), 677–686. doi: 10.1016/j.neucom.2017.09.018 |
[30] | X. Yang, T. Huang, Q. Song, J. Huang, Synchronization of fractional-order memristor-based complex valued neural networks with uncertain parameters and time delays, Chaos, Solitons Fractals, 110 (2018), 105–123. doi: 10.1016/j.chaos.2018.03.016 |
[31] | H. Wu, X. Zhang, S. Xue, L. Wang, Y. Wang, LMI conditions to global Mittag-Leffler stability of fractional-order neural networks with impulses, Neurocomputing, 193 (2016), 148–154. doi: 10.1016/j.neucom.2016.02.002 |
[32] | J. Yan, J. Shen, Impulsive stabilization of impulsive functional differential equations by Lyapunov-Razumikhin functions, Nonlinear Anal., 37 (1999), 245–255. doi: 10.1016/S0362-546X(98)00045-5 |
[33] | X. Yang, C. Li, T. Huang, Q. Song, X. Chen, Quasi-uniform synchronization of fractional-order memristor-based neural networks with delay, Neurocomputing, 234 (2017), 205–215. doi: 10.1016/j.neucom.2017.01.014 |
[34] | J. Yu, C. Hu, H. Jiang, Projective synchronization for fractional neural networks, Neural Networks, 49 (2014), 87–95. doi: 10.1016/j.neunet.2013.10.002 |
[35] | D. Yue, Z. H. Guan, T. Li, R. Q. Liao, F. Liu, Q. Lai, Event-based cluster synchronization of coupled genetic regulatory networks, Physica A., 482 (2017), 649–665. doi: 10.1016/j.physa.2017.04.024 |
[36] | L. Zhang, X. Zhang, Y. Xue, X. Zhang, New method to global exponential stability analysis for switched genetic regulatory networks with mixed delays, IEEE Trans. NanoBiosci., 19 (2020), 308–314. |
[37] | S. Zhang, Y. Yu, H. Wang, Mittag-Leffler stability of fractional-order Hopfield neural networks, Nonlinear Anal.: Hybrid Syst., 16 (2015), 104–121. doi: 10.1016/j.nahs.2014.10.001 |