Research article

Soft weakly connected sets and soft weakly connected components

  • Received: 07 August 2023 Revised: 28 November 2023 Accepted: 29 November 2023 Published: 12 December 2023
  • MSC : 54A40, 54D05

  • Although the concept of connectedness may seem simple, it holds profound implications for topology and its applications. The concept of connectedness serves as a fundamental component in the Intermediate Value Theorem. Connectedness is significant in various applications, including geographic information systems, population modeling and robotics motion planning. Furthermore, connectedness plays a crucial role in distinguishing between different topological spaces. In this paper, we define soft weakly connected sets as a new class of soft sets that strictly contains the class of soft connected sets. We characterize this new class of sets by several methods. We explore various results related to soft subsets, supersets, unions, intersections and subspaces within the context of soft weakly connected sets. Additionally, we provide characterizations for soft weakly connected sets classified as soft pre-open, semi-open or $ \alpha $-open sets. Furthermore, we introduce the concept of a soft weakly connected component as follows: Given a soft point $ a_{x} $ in a soft topological space $ \left(X, \Delta, A\right) $, we define the soft weakly component of $ \left(X, \Delta, A\right) $ determined by $ a_{x} $ as the largest soft weakly connected set, with respect to the soft inclusion ($ \widetilde{\subseteq } $) relation, that contains $ a_{x} $. We demonstrate that the family of soft weakly components within a soft topological space comprises soft closed sets, forming a soft partition of the space. Lastly, we establish that soft weak connectedness is preserved under soft $ \alpha $-continuity.

    Citation: Samer Al-Ghour, Hanan Al-Saadi. Soft weakly connected sets and soft weakly connected components[J]. AIMS Mathematics, 2024, 9(1): 1562-1575. doi: 10.3934/math.2024077

    Related Papers:

  • Although the concept of connectedness may seem simple, it holds profound implications for topology and its applications. The concept of connectedness serves as a fundamental component in the Intermediate Value Theorem. Connectedness is significant in various applications, including geographic information systems, population modeling and robotics motion planning. Furthermore, connectedness plays a crucial role in distinguishing between different topological spaces. In this paper, we define soft weakly connected sets as a new class of soft sets that strictly contains the class of soft connected sets. We characterize this new class of sets by several methods. We explore various results related to soft subsets, supersets, unions, intersections and subspaces within the context of soft weakly connected sets. Additionally, we provide characterizations for soft weakly connected sets classified as soft pre-open, semi-open or $ \alpha $-open sets. Furthermore, we introduce the concept of a soft weakly connected component as follows: Given a soft point $ a_{x} $ in a soft topological space $ \left(X, \Delta, A\right) $, we define the soft weakly component of $ \left(X, \Delta, A\right) $ determined by $ a_{x} $ as the largest soft weakly connected set, with respect to the soft inclusion ($ \widetilde{\subseteq } $) relation, that contains $ a_{x} $. We demonstrate that the family of soft weakly components within a soft topological space comprises soft closed sets, forming a soft partition of the space. Lastly, we establish that soft weak connectedness is preserved under soft $ \alpha $-continuity.



    加载中


    [1] U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Comput. Math. Appl., 59 (2010), 3458–3463. http://doi.org/10.1016/j.camwa.2010.03.034 doi: 10.1016/j.camwa.2010.03.034
    [2] M. Akdag, A. Ozkan, Soft $\alpha $-open sets and soft $\alpha $ -continuous functions, Abstr. Appl. Anal., 2014 (2014), 891341. http://doi.org/10.1155/2014/891341 doi: 10.1155/2014/891341
    [3] H. Aktas, N. C. Agman, Soft sets and soft groups, Inform. Sci., 177 (2007), 2726–2735. http://doi.org/10.1016/j.ins.2006.12.008 doi: 10.1016/j.ins.2006.12.008
    [4] S. Al Ghour, A. Bin-Saadon, On some generated soft topological spaces and soft homogeneity, Heliyon, 5 (2019), e02061. https://doi.org/10.1016/j.heliyon.2019.e02061 doi: 10.1016/j.heliyon.2019.e02061
    [5] S. Al Ghour, W. Hamed, On two classes of soft sets in soft topological spaces, Symmetry, 12 (2020), 265. http://doi.org/10.3390/sym12020265 doi: 10.3390/sym12020265
    [6] S. Al Ghour, Z. A. Ameen, Maximal soft compact and maximal soft connected topologies, Appl. Comput. Intell. Soft Comput., 2022 (2022), 9860015. http://doi.org/10.1155/2022/9860015 doi: 10.1155/2022/9860015
    [7] H. H. Al-jarrah, A. Rawshdeh, T. M. Al-shami, On soft compact and soft Lindelof spaces via soft regular closed sets, Afr. Mat., 33 (2022), 23. http://doi.org/10.1007/s13370-021-00952-z doi: 10.1007/s13370-021-00952-z
    [8] T. M. Al-shami, M. E. El-Shafei, Partial belong relation on soft separation axioms and decision-making problem, two birds with one stone, Soft Comput., 24 (2020), 5377–5387. http://doi.org/10.1007/s00500-019-04295-7 doi: 10.1007/s00500-019-04295-7
    [9] T. M. Al-shami, On soft separation axioms and their applications on decision-making problem, Math. Probl. Eng., 2021 (2021), 8876978. http://doi.org/10.1155/2021/8876978 doi: 10.1155/2021/8876978
    [10] T. M. Al-shami, E. S. A. Abo-Tabl, Connectedness and local connectedness on infra soft topological spaces, Mathematics, 9 (2021), 1759. http://doi.org/10.3390/math9151759 doi: 10.3390/math9151759
    [11] T. M. Al-shami, Compactness on soft topological ordered spaces and its application on the information system, J. Math., 2021 (2021), 6699092. http://doi.org/10.1155/2021/6699092 doi: 10.1155/2021/6699092
    [12] T. M. Al-shami, A. Mhemdi, R. Abu-Gdairi, M. E. El-Shafei, Compactness and connectedness via the class of soft somewhat open sets, AIMS Mathematics, 8 (2022), 815–840. http://doi.org/10.3934/math.2023040 doi: 10.3934/math.2023040
    [13] T. M. Al-shami, R. A. Hosny, A. Mhemdi, R. Abu-Gdairi, S. Saleh, Weakly soft $b$-open sets and their usages via soft topologies: A novel approach, J. Intell. Fuzzy Syst., 45 (2023), 7727–7738. http://doi.org/10.3233/JIFS-230436 doi: 10.3233/JIFS-230436
    [14] I. Arockiarani, A. Selvi, On soft slightly $\pi g$continuous functions, J. Prog. Res. Math., 3 (2015), 168–174. http://scitecresearch.com/journals/index.php/jprm/article/view/105
    [15] A. Aygunoglu, H. Aygun, Some notes on soft topological spaces, Neural Comput. Appl., 21 (2011), 113–119. http://doi.org/10.1007/s00521-011-0722-3 doi: 10.1007/s00521-011-0722-3
    [16] B. Chen, Soft semi-open sets and related properties in soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 287–294. http://doi.org/10.12785/amis/070136 doi: 10.12785/amis/070136
    [17] M. K. El-Bably, M. I. Ali, E. S. A. Abo-Tabl, New topological approaches to generalized soft rough approximations with medical applications, J. Math., 2021 (2021), 2559495. http://doi.org/10.1155/2021/2559495 doi: 10.1155/2021/2559495
    [18] M. K. El-Bably, R. Abu-Gdairi, M. A. El-Gayar, Medical diagnosis for the problem of Chikungunya disease using soft rough sets, AIMS Mathematics, 8 (2023), 9082–9105. http://doi.org/10.3934/math.2023455 doi: 10.3934/math.2023455
    [19] M. A. El-Gayar, R. Abu-Gdairi, M. K. El-Bably, D. I. Taher, Economic decision-making using rough topological structures, J. Math., 2023 (2023), 4723233. http://doi.org/10.1155/2023/4723233 doi: 10.1155/2023/4723233
    [20] M. E. El-Shafei, T. M. Al-shami, Applications of partial belong and total non-belong relations on soft separation axioms and decision-making problem, Comput. Appl. Math., 39 (2020), 138. http://doi.org/10.1007/s40314-020-01161-3 doi: 10.1007/s40314-020-01161-3
    [21] F. Feng, Y. B. Jun, X. Zhao, Soft semirings, Fuzzy Sets Syst.: Theory Appl., 56 (2008), 2621–2628. http://doi.org/10.1016/j.camwa.2008.05.011 doi: 10.1016/j.camwa.2008.05.011
    [22] S. Hussain, B. Ahmad, Soft separation axioms in soft topological spaces, Hacettepe J. Math. Stat., 44 (2015), 559–568. http://doi.org/10.15672/HJMS.2015449426 doi: 10.15672/HJMS.2015449426
    [23] S. Hussain, A note on soft connectedness, J. Egypt. Math. Soc., 23 (2015), 6–11. http://doi.org/10.1016/j.joems.2014.02.003 doi: 10.1016/j.joems.2014.02.003
    [24] S. Hussain, Binary soft connected spaces and an application of binary soft sets in decision making problem, Fuzzy Inf. Eng., 11 (2019), 506–521. http://doi.org/10.1080/16168658.2020.1773600 doi: 10.1080/16168658.2020.1773600
    [25] M. Irfan Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. http://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009
    [26] Y. B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl., 56 (2008), 1408–1413. http://doi.org/10.1016/j.camwa.2008.02.035 doi: 10.1016/j.camwa.2008.02.035
    [27] Y. Jiang, Y. Tang, Q. Chen, J. Wang, S. Tang, Extending soft sets with description logics, Comput. Math. Appl., 59 (2010), 2087–2096. http://doi.org/10.1016/j.camwa.2009.12.014 doi: 10.1016/j.camwa.2009.12.014
    [28] Y. B. Jun, K. J. Lee, C. H. Park, Soft set theory applied to ideals in $d$-algebras, Comput. Math. Appl., 57 (2009), 367–378. http://doi.org/10.1016/j.camwa.2008.11.002 doi: 10.1016/j.camwa.2008.11.002
    [29] Y. B. Jun, K. J. Lee, A. Khan, Soft ordered semigroups, Math. Logic Quart., 56 (2010), 42–50. http://doi.org/10.1002/malq.200810030 doi: 10.1002/malq.200810030
    [30] Z. Kong, L. Gao, L. Wang, S. Li, The normal parameter reduction of soft sets and its algorithm, Comput. Math. Appl., 56 (2008), 3029–3037. http://doi.org/10.1016/j.camwa.2008.07.013 doi: 10.1016/j.camwa.2008.07.013
    [31] D. V. Kovkov, V. M. Kolbanov, D. A. Molodtsov, Soft sets theory-based optimization, J. Comput. Syst. Sci. Int., 46 (2007), 872–880. http://doi.org/10.1134/S1064230707060032 doi: 10.1134/S1064230707060032
    [32] F. Lin, Soft connected spaces and soft paracompact spaces, Int. J. Math. Sci. Eng. Phys. Sci., 6 (2013), 1–7. http://doi.org/10.5281/zenodo.1335680 doi: 10.5281/zenodo.1335680
    [33] P. K. Maji, R. Biswas, R. Roy, An application of soft sets in decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. http://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X
    [34] P. K. Maji, R. Biswas, R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. http://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6
    [35] P. Majumdar, S. K. Samanta, Similarity measure of soft sets, New Math. Nat. Comput., 4 (2008), 1–12. http://doi.org/10.1142/S1793005708000908 doi: 10.1142/S1793005708000908
    [36] D. Molodtsov, Soft set theory first results, Comput. Math. Appl., 37 (1999), 9–31. http://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [37] D. Molodtsov, V. Y. Leonov, D. V. Kovkov, Soft sets technique and its application, Fuzzy Syst. Soft Comput., 1 (2006), 8–39.
    [38] E. Peyghan, B. Samadi, A. Tayebi, Some results related to soft topological spaces, Facta Univ. Ser. Math. Inform., 29 (2014), 325–336.
    [39] M. Riaz, N. Cagman, I. Zareef, M. Aslam, $N$-soft topology and its applications to multi-criteria group decision making, J. Intell. Fuzzy Syst., 36 (2019), 6521–6536. http://doi.org/10.3233/JIFS-182919 doi: 10.3233/JIFS-182919
    [40] M. Riaz, S. T. Tehrim, On bipolar fuzzy soft topology with decision-making, Soft Comput., 24 (2020), 18259–18272. http://doi.org/10.1007/s00500-020-05342-4 doi: 10.1007/s00500-020-05342-4
    [41] S. Saleh, T. M. Al-Shami, L. R. Flaih, M. Arar, R. Abu-Gdairi, $ R_{i}$-separation axioms via supra soft topological spaces, J. Math. Comput. Sci., 32 (2024), 263–274. http://doi.org/10.22436/jmcs.032.03.07 doi: 10.22436/jmcs.032.03.07
    [42] A. Sezgin, A. O. Atagun, On operations of soft sets, Comput. Math. Appl., 61 (2011), 1457–1467. http://doi.org/10.1016/j.camwa.2011.01.018 doi: 10.1016/j.camwa.2011.01.018
    [43] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. http://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006
    [44] S. S. Thakur, A. S. Rajput, $P$-connectedness between soft sets, Facta Univ. Ser. Math. Inform., 31 (2016), 335–347.
    [45] S. S. Thakur, A. S. Rajput, Connectedness between soft sets, New Math. Nat. Comput., 14 (2018), 53–71. http://doi.org/10.1142/S1793005718500059 doi: 10.1142/S1793005718500059
    [46] Z. Xiao, L. Chen, B. Zhong, S. Ye, Recognition for soft information based on the theory of soft sets, Proceedings of the International Conference on Services Systems and Services Management, 2005, 1104–1106. http://doi.org/10.1109/ICSSSM.2005.1500166 doi: 10.1109/ICSSSM.2005.1500166
    [47] Z. Xiao, K. Gong, S. Xia, Y. Zou, Exclusive disjunctive soft sets, Comput. Math. Appl., 59 (2010), 2128–2137. http://doi.org/10.1016/j.camwa.2009.12.018 doi: 10.1016/j.camwa.2009.12.018
    [48] W. Xu, W. J. Ma, S. Wang, G. Hao, Vague soft sets and their properties, Comput. Math. Appl., 59 (2010), 787–794. http://doi.org/10.1016/j.camwa.2009.10.015 doi: 10.1016/j.camwa.2009.10.015
    [49] H. L. Yang, X. Liao, S. G. Li, On soft continuous mappings and soft connectedness of soft topological spaces, Hacettepe J. Math. Stat., 44 (2015), 385–398. http://doi.org/10.15672/HJMS.2015459876 doi: 10.15672/HJMS.2015459876
    [50] E. D. Yildirim, A. C. Guler, O. B. Ozbakir, On soft $\widetilde{ I}$-Baire spaces, Ann. Fuzzy Math. Inform., 10 (2015), 109–121.
    [51] Y. Zou, Z. Xiao, Data analysis approaches of soft sets under incomplete information, Knowl.-Based Syst., 21 (2008), 941–945. http://doi.org/10.1016/j.knosys.2008.04.004 doi: 10.1016/j.knosys.2008.04.004
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(991) PDF downloads(62) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog