Herein, we applied soft somewhere dense sets to initiate six sorts of soft spaces called almost (nearly, mildly) soft $ SD $-compact and almost (nearly, mildly) soft $ SD $-Lindelöf spaces. We study the master properties of these spaces and illustrate the relations between them with the help of examples. In addition, we clarify that the six soft spaces are equivalent under a soft $ SD $-partition. Moreover, the relationships between the initiated spaces and enriched soft topological spaces and other well-known spaces such as soft $ S $-connected are indicated.
Citation: Tareq M. Al-shami, Abdelwaheb Mhemdi, Amani A. Rawshdeh, Heyam H. Al-jarrah. Soft version of compact and Lindelöf spaces using soft somewhere dense sets[J]. AIMS Mathematics, 2021, 6(8): 8064-8077. doi: 10.3934/math.2021468
Herein, we applied soft somewhere dense sets to initiate six sorts of soft spaces called almost (nearly, mildly) soft $ SD $-compact and almost (nearly, mildly) soft $ SD $-Lindelöf spaces. We study the master properties of these spaces and illustrate the relations between them with the help of examples. In addition, we clarify that the six soft spaces are equivalent under a soft $ SD $-partition. Moreover, the relationships between the initiated spaces and enriched soft topological spaces and other well-known spaces such as soft $ S $-connected are indicated.
[1] | J. C. R. Alcantud, Soft open bases and a novel construction of soft topologies from bases for topologies, Mathematics, 8 (2020), 672. doi: 10.3390/math8050672 |
[2] | M. I. Ali, F. Feng, X. Y. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. doi: 10.1016/j.camwa.2008.11.009 |
[3] | T. M. Al-shami, Somewhere dense sets and $ST_{1}$-spaces, Punjab Univ. J. Math., 49 (2017), 101–111. |
[4] | T. M. Al-shami, Soft somewhere dense sets on soft topological spaces, Commun. Korean Math. Soc., 33 (2018), 1341–1356. |
[5] | T. M. Al-shami, Comments on some results related to soft separation axioms, Afr. Mat., 31 (2020), 1105–1119. doi: 10.1007/s13370-020-00783-4 |
[6] | T. M. Al-shami, Compactness on soft topological ordered spaces and its application on the information system, J. Math., 2021 (2021), 6699092. |
[7] | T. M. Al-shami, On soft separation axioms and their applications on decision-making problem, Math. Probl. Eng., 2021 (2021), 8876978. |
[8] | T. M. Al-shami, I. Alshammari, B. A. Asaad, Soft maps via soft somewhere dense sets, Filomat, 34 (2020), 3429–3440. doi: 10.2298/FIL2010429A |
[9] | T. M. Al-shami, M. E. El-Shafei, $T$-soft equality relation, Turk. J. Math., 44 (2020), 1427–1441. doi: 10.3906/mat-2005-117 |
[10] | T. M. Al-shami, M. E. El-Shafei, M. Abo-Elhamayel, Almost soft compact and approximately soft Lindelöf spaces, J. Taibah Univ. Sci., 12 (2018), 620–630. doi: 10.1080/16583655.2018.1513701 |
[11] | T. M. Al-shami, T. Noiri, More notions and mappings via somewhere dense sets, Afr. Mat., 30 (2019), 1011–1024. doi: 10.1007/s13370-019-00700-4 |
[12] | T. M. Al-shami, T. Noiri, Compactness and Lindelöfness using somewhere dense and $cs$-dense sets, Novi Sad J. Math., 2021, DOI: 10.30755/NSJOM.12283. |
[13] | B. A. Asaad, Results on soft extremally disconnectedness of soft topological spaces, J. Math. Computer Sci., 17 (2017), 448–464. doi: 10.22436/jmcs.017.04.02 |
[14] | A. Aygünoǧlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Applic., 21 (2012), 113–119. doi: 10.1007/s00521-011-0722-3 |
[15] | S. Das, S. K. Samanta, Soft metric, Ann. Fuzzy Math. Inform., 6 (2013), 77–94. |
[16] | M. E. El-Shafei, M. Abo-Elhamayel, T. M. Al-shami, Partial soft separation axioms and soft compact spaces, Filomat, 32 (2018), 4755–4771. doi: 10.2298/FIL1813755E |
[17] | M. E. El-Shafei, T. M. Al-shami, Some operators of a soft set and soft connected spaces using soft somewhere dense sets, J. Interdiscipl. Math., 2021, DOI: 10.1080/09720502.2020.1842348. |
[18] | F. Feng, C. X. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Comput., 14 (2010), 899–911. doi: 10.1007/s00500-009-0465-6 |
[19] | T. Hida, A comprasion of two formulations of soft compactness, Ann. Fuzzy Math. Inform., 8 (2014), 511–524. |
[20] | A. Kharal, B. Ahmad, Mappings on soft classes, New Math. Nat. Comput., 7 (2011), 471–481. |
[21] | P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. |
[22] | W. K. Min, A note on soft topological spaces, Comput. Math. Appl., 62 (2011), 3524–3528. doi: 10.1016/j.camwa.2011.08.068 |
[23] | D. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (1999), 19–31. |
[24] | S. Nazmul, S. K. Samanta, Neighbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inform., 6 (2013), 1–15. |
[25] | S. Nazmul, S. K. Samanta, Some properties of soft topologies and group soft topologies, Ann. Fuzzy Math. Inform., 8 (2014), 645–661. |
[26] | G. Şenel, A Comparative research on the definition of soft point, Int. J. Comput. Appl., 163 (2017), 1–4. |
[27] | M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. doi: 10.1016/j.camwa.2011.02.006 |
[28] | A. Singh, N. S. Noorie, Remarks on soft axioms, Ann. Fuzzy Math. Inform., 14 (2017), 503–513. doi: 10.30948/afmi.2017.14.5.503 |
[29] | I. Zorlutuna, M. Akdag, W. K. Min, S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Mathem. Inform., 3 (2012), 171–185. |
[30] | I. Zorlutuna, H. Çakir, On continuity of soft mappings, Appl. Math. Inf. Sci., 9 (2015), 403–409. doi: 10.12785/amis/090147 |