Research article

A weak form of soft $ \alpha $-open sets and its applications via soft topologies

  • Received: 20 December 2022 Revised: 27 February 2023 Accepted: 05 March 2023 Published: 13 March 2023
  • MSC : 54A05, 03E72, 54C08

  • In this work, we present some concepts that are considered unique ideas for topological structures generated by soft settings. We first define the concept of weakly soft $ \alpha $-open subsets and characterize it. It is demonstrated the relationships between this class of soft subsets and some generalizations of soft open sets with the help of some illustrative examples. Some interesting results and relationships are obtained under some stipulations like extended and hyperconnected soft topologies. Then, we introduce the interior and closure operators inspired by the classes of weakly soft $ \alpha $-open and weakly soft $ \alpha $-closed subsets. We establish their master features and derive some formulas that describe the relations among them. Finally, we study soft continuity with respect to this class of soft subsets and investigate its essential properties. In general, we discuss the systematic relations and results that are missing through the frame of our study. The line adopted in this study will create new roads in the branch of soft topology.

    Citation: Tareq M. Al-shami, Abdelwaheb Mhemdi. A weak form of soft $ \alpha $-open sets and its applications via soft topologies[J]. AIMS Mathematics, 2023, 8(5): 11373-11396. doi: 10.3934/math.2023576

    Related Papers:

  • In this work, we present some concepts that are considered unique ideas for topological structures generated by soft settings. We first define the concept of weakly soft $ \alpha $-open subsets and characterize it. It is demonstrated the relationships between this class of soft subsets and some generalizations of soft open sets with the help of some illustrative examples. Some interesting results and relationships are obtained under some stipulations like extended and hyperconnected soft topologies. Then, we introduce the interior and closure operators inspired by the classes of weakly soft $ \alpha $-open and weakly soft $ \alpha $-closed subsets. We establish their master features and derive some formulas that describe the relations among them. Finally, we study soft continuity with respect to this class of soft subsets and investigate its essential properties. In general, we discuss the systematic relations and results that are missing through the frame of our study. The line adopted in this study will create new roads in the branch of soft topology.



    加载中


    [1] M. Akdag, A. Ozkan, Soft $\alpha$-open sets and soft $\alpha$-continuous functions, Abstr. Appl. Anal., 2014 (2014), 1–7. http://doi.org/10.1155/2014/891341 doi: 10.1155/2014/891341
    [2] I. Arockiarani, A. A. Lancy, Generalized soft $g\beta$ closed sets and soft $gs\beta$ closed sets in soft topological spaces, Int. J. Math. Arch., 4 (2013), 1–7.
    [3] S. Al-Ghour, Boolean algebra of soft $Q$-Sets in soft topological spaces, Appl. Comput. Intell. Soft Comput., 2022 (2022), 5200590. http://doi.org/10.1155/2022/5200590 doi: 10.1155/2022/5200590
    [4] S. Al-Ghour, Z. A. Ameen, Maximal soft compact and maximal soft connected topologies, Appl. Comput. Intell. Soft Comput., 2022 (2022), 9860015. http://doi.org/10.1155/2022/9860015 doi: 10.1155/2022/9860015
    [5] M. I. Ali, F. Feng, X. Y. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. http://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009
    [6] H. Al-jarrah, A. Rawshdeh, T. M. Al-shami, On soft compact and soft Lindelöf spaces via soft regular closed sets, Afr. Mat., 33 (2022), 23. https://doi.org/10.1007/s13370-021-00952-z doi: 10.1007/s13370-021-00952-z
    [7] T. M. Al-shami, Soft somewhere dense sets on soft topological spaces, Commun. Korean Math. Soc., 33 (2018), 1341–1356. http://doi.org/10.4134/CKMS.c170378 doi: 10.4134/CKMS.c170378
    [8] T. M. Al-shami, Comments on some results related to soft separation axioms, Afr. Mat., 31 (2020), 1105–1119. http://doi.org/10.1007/s13370-020-00783-4 doi: 10.1007/s13370-020-00783-4
    [9] T. M. Al-shami, Compactness on soft topological ordered spaces and its application on the information system, J. Math., 2021 (2021), 6699092. http://doi.org/10.1155/2021/6699092 doi: 10.1155/2021/6699092
    [10] T. M. Al-shami, Homeomorphism and quotient mappings in infra soft topological spaces, J. Math., 2021 (2021), 3388288. http://doi.org/10.1155/2021/3388288 doi: 10.1155/2021/3388288
    [11] T. M. Al-shami, On soft separation axioms and their applications on decision-making problem, Math. Probl. Eng., 2021 (2021), 8876978. http://doi.org/10.1155/2021/8876978 doi: 10.1155/2021/8876978
    [12] T. M. Al-shami, Soft somewhat open sets: soft separation axioms and medical application to nutrition, Comput. Appl. Math., 41 (2022), 216. https://doi.org/10.1007/s40314-022-01919-x doi: 10.1007/s40314-022-01919-x
    [13] T. M. Al-shami, J. C. R. Alcantud, A. Mhemdi, New generalization of fuzzy soft sets: $(a, b)$-fuzzy soft sets, AIMS Math., 8 (2023), 2995–3025. https://doi.org/10.3934/math.2023155 doi: 10.3934/math.2023155
    [14] T. M. Al-shami, M. E. El-Shafei, $T$-soft equality relation, Turk. J. Math., 44 (2020), 1427–1441. https://doi.org/10.3906/mat-2005-117 doi: 10.3906/mat-2005-117
    [15] T. M. Al-shami, A. Mhemdi, R. Abu-Gdairi, M. E. El-Shafei, Compactness and connectedness via the class of soft somewhat open sets, AIMS Math., 8 (2022), 815–840. https://doi.org/10.3934/math.2023040 doi: 10.3934/math.2023040
    [16] T. M. Al-shami, A. Mhemdi, R. Abu-Gdairid, A Novel framework for generalizations of soft open sets and its applications via soft topologies, Mathematics, 11 (2023), 840. https://doi.org/10.3390/math11040840 doi: 10.3390/math11040840
    [17] T. M. Al-shami, A. Mhemdi, A. Rawshdeh, H. Al-jarrah, Soft version of compact and Lindelöf spaces using soft somewhere dense set, AIMS Math., 6 (2021), 8064–8077. https://doi.org/10.3934/math.2021468 doi: 10.3934/math.2021468
    [18] T. M. Al-shami, L. D. R. Kočinac, The equivalence between the enriched and extended soft topologies, Appl. Comput. Math., 18 (2019), 149–162. https://doi.org/10.3390/math11040840 doi: 10.3390/math11040840
    [19] Z. A. Ameen, B. A. Asaad, T. M. Al-shami, Soft somewhat continuous and soft somewhat open functions, arXiv, 2022. https://doi.org/10.48550/arXiv.2112.15201
    [20] A. Aygünoǧlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Appl., 21 (2012), 113–119. https://doi.org/10.1007/s00521-011-0722-3 doi: 10.1007/s00521-011-0722-3
    [21] N. Çağman, S. Karataş, S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011), 351–358. https://doi.org/10.1016/j.camwa.2011.05.016
    [22] B. Chen, Soft semi-open sets and related properties in soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 287–294. https://doi.org/10.12785/amis/070136 doi: 10.12785/amis/070136
    [23] M. E. El-Shafei, T. M. Al-shami, Applications of partial belong and total non-belong relations on soft separation axioms and decision-making problem, Comput. Appl. Math., 39 (2020), 138. https://doi.org/10.1007/s40314-020-01161-3 doi: 10.1007/s40314-020-01161-3
    [24] M. E. El-Shafei, M. Abo-Elhamayel, T. M. Al-shami, Partial soft separation axioms and soft compact spaces, Filomat, 32 (2018), 4755–4771. https://doi.org/10.2298/FIL1813755E doi: 10.2298/FIL1813755E
    [25] F. Feng, C. X. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Comput., 14 (2010), 899–911. https://doi.org/10.1007/s00500-009-0465-6 doi: 10.1007/s00500-009-0465-6
    [26] M. T. Hamid, M. Riaz, K. Naeem, $q$-rung orthopair fuzzy soft topology with multi-attribute decision-making, Springer, 2022.
    [27] T. Hida, A comprasion of two formulations of soft compactness, Ann. Fuzzy Math. Inf., 8 (2014), 511–525.
    [28] A. Kharal, B. Ahmad, Mappings on soft classes, New Math. Nat. Comput., 7 (2011), 471–481. https://doi.org/10.1142/S1793005711002025
    [29] L. D. R. Kočinac, T. M. Al-shami, V. Çetkin, Selection principles in the context of soft sets: Menger spaces, Soft Comput., 25 (2021), 12693–12702. https://doi.org/10.1007/s00500-021-06069-6 doi: 10.1007/s00500-021-06069-6
    [30] P. K. Maji, R. Biswas, R. Roy, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X
    [31] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6
    [32] W. K. Min, A note on soft topological spaces, Comput. Math. Appl., 62 (2011), 3524–3528. https://doi.org/10.1016/j.camwa.2011.08.068 doi: 10.1016/j.camwa.2011.08.068
    [33] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [34] S. Nazmul, S. K. Samanta, Neighbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inf., 6 (2013), 1–15.
    [35] K. Qin, Z. Hong, On soft equality, J. Comput. Appl. Math., 234 (2010), 1347–1355. https://doi.org/10.1016/j.cam.2010.02.028
    [36] A. A. Rawshdeh, H. Al-jarrah, T. M. Al-shami, Soft expandable spaces, Filomat, 37 (2023), 2845–2858. https://doi.org/10.2298/FIL2309845R
    [37] M. Riaz, M. R. Hashmi, Fuzzy parameterized fuzzy soft topology with applications, Ann. Fuzzy Math. Inf., 13 (2017), 593–613. https://doi.org/10.30948/afmi.2017.13.5.593 doi: 10.30948/afmi.2017.13.5.593
    [38] M. Riaz, M. R. Hashmi, $m$-polar neutrosophic soft mapping with application to multiple personality disorder and its associated mental disorders, Artif. Intell. Rev., 54 (2021), 2717–2763. https://doi.org/10.1007/s10462-020-09912-8 doi: 10.1007/s10462-020-09912-8
    [39] S. Saleh, T. M. Al-shami, A. Mhemdi, On some new types of fuzzy soft compact spaces, J. Math., 2023 (2023), 5065592. https://doi.org/10.1155/2023/5065592 doi: 10.1155/2023/5065592
    [40] J. Sanabria, K. Rojo, F. Abad, A new approach of soft rough sets and a medical application for the diagnosis of coronavirus disease, AIMS Math., 8 (2023), 2686–2707. https://doi.org/10.3934/math.2023141 doi: 10.3934/math.2023141
    [41] M. Saqlain, M. Riaz, R. Imran, F. Jarad, Distance and similarity measures of intuitionistic fuzzy hypersoft sets with application: evaluation of air pollution in cities based on air quality, AIMS Math., 8 (2023), 6880–6899. https://doi.org/10.3934/math.2023348 doi: 10.3934/math.2023348
    [42] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006
    [43] A. Singh, N. S. Noorie, Remarks on soft axioms, Ann. Fuzzy Math. Inf., 14 (2017), 503–513. https://doi.org/10.30948/AFMI.2017.14.5.503
    [44] I. Zorlutuna, H. Çakir, On continuity of soft mappings, Appl. Math. Inf. Sci., 9 (2015), 403–409. https://doi.org/10.12785/amis/090147 doi: 10.12785/amis/090147
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1199) PDF downloads(70) Cited by(20)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog