Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Review Topical Sections

Geodynamic factors in the formation of large gold-bearing provinces with Carlin-type deposits on continental margins in the North Pacific

  • Received: 25 June 2023 Revised: 25 October 2023 Accepted: 31 October 2023 Published: 08 November 2023
  • Several similar indicators in Nevada (USA) and South Yakutia (Russia) gold-bearing provinces have been identified based on modern tectonic, geophysical and seismic tomography observations, followed by the analysis of the main geodynamic factors of the formation and distribution of large gold-bearing provinces in the North Pacific. One of the significant metallogenic peculiarities is a wide variety of formational and mineral deposits concentrated in the areas. Both provinces are situated at active margins surrounded by fold-thrust belts. In South Yakutia, a combination of sublatitudinal Baikal-Elkon-Ulkan and submeridional Seligdar-Verkhnetimpon gravity field gradient zones is recorded. In contrast, significant positive gravity anomalies of the Northern Nevada Rift and higher-order gradient zones are presented in Nevada. Large pluton and transform fault zones in both provinces support a conclusion about the fundamental role of geodynamic factors in developing ore-magmatic systems in the regions. Significant differences in the scale of the gold mineralization in the considered provinces are explained by the existence under the North American continent not only of the Mendocino transform fault zone but also of the Juan de Fuca paleo-spreading center. In contrast, the Inagli-Konder-Feklistov magmatic-metallogenic belt alone controls mineralization under the Asian continent.

    Citation: Vadim Khomich, Svyatoslav Shcheka, Natalia Boriskina. Geodynamic factors in the formation of large gold-bearing provinces with Carlin-type deposits on continental margins in the North Pacific[J]. AIMS Geosciences, 2023, 9(4): 672-696. doi: 10.3934/geosci.2023036

    Related Papers:

    [1] Hüseyin Budak, Abd-Allah Hyder . Enhanced bounds for Riemann-Liouville fractional integrals: Novel variations of Milne inequalities. AIMS Mathematics, 2023, 8(12): 30760-30776. doi: 10.3934/math.20231572
    [2] Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan . Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232
    [3] Areej A. Almoneef, Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat . Fractional Milne-type inequalities for twice differentiable functions. AIMS Mathematics, 2024, 9(7): 19771-19785. doi: 10.3934/math.2024965
    [4] Hüseyin Budak, Ebru Pehlivan . Weighted Ostrowski, trapezoid and midpoint type inequalities for RiemannLiouville fractional integrals. AIMS Mathematics, 2020, 5(3): 1960-1984. doi: 10.3934/math.2020131
    [5] Iman Ben Othmane, Lamine Nisse, Thabet Abdeljawad . On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems. AIMS Mathematics, 2024, 9(6): 14106-14129. doi: 10.3934/math.2024686
    [6] Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661
    [7] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [8] Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217
    [9] Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094
    [10] Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat . Milne-Type inequalities via expanded fractional operators: A comparative study with different types of functions. AIMS Mathematics, 2024, 9(5): 11228-11246. doi: 10.3934/math.2024551
  • Several similar indicators in Nevada (USA) and South Yakutia (Russia) gold-bearing provinces have been identified based on modern tectonic, geophysical and seismic tomography observations, followed by the analysis of the main geodynamic factors of the formation and distribution of large gold-bearing provinces in the North Pacific. One of the significant metallogenic peculiarities is a wide variety of formational and mineral deposits concentrated in the areas. Both provinces are situated at active margins surrounded by fold-thrust belts. In South Yakutia, a combination of sublatitudinal Baikal-Elkon-Ulkan and submeridional Seligdar-Verkhnetimpon gravity field gradient zones is recorded. In contrast, significant positive gravity anomalies of the Northern Nevada Rift and higher-order gradient zones are presented in Nevada. Large pluton and transform fault zones in both provinces support a conclusion about the fundamental role of geodynamic factors in developing ore-magmatic systems in the regions. Significant differences in the scale of the gold mineralization in the considered provinces are explained by the existence under the North American continent not only of the Mendocino transform fault zone but also of the Juan de Fuca paleo-spreading center. In contrast, the Inagli-Konder-Feklistov magmatic-metallogenic belt alone controls mineralization under the Asian continent.



    In this paper, we consider the 3D nonlinear damped micropolar equation

    {ut+(u)u(ν+κ)Δu+σ|u|β1u+p=2κ×ω+f1(x,t),ωt+(u)ω+4κωγΔωμω=2κ×u+f2(x,t),u=0,u(x,t)|t=τ=uτ(x),   ω(x,t)|t=τ=ωτ(x), (1.1)

    where (x,t)Ω×[τ,+), τR, ΩR3 is a bounded domain, u=u(x,t) is the fluid velocity, ω=ω(x,t) is the angular velocity, σ is the damping coefficient, which is a positive constant, f1=f1(x,t) and f2=f2(x,t) represent external forces, ν, κ, γ, μ are all positive constants, γ and μ represent the angular viscosities.

    Micropolar flow can describe a fluid with microstructure, that is, a fluid composed of randomly oriented particles suspended in a viscous medium without considering the deformation of fluid particles. Since Eringen first published his paper on the model equation of micropolar fluids in 1966 [5], the formation of modern theory of micropolar fluid dynamics has experienced more than 40 years of development. For the 2D case, many researchers have discussed the long time behavior of micropolar equations (such as [2,4,10,24]). It should be mentioned that some conclusions in the 2D case no longer hold for the 3D case due to different structures of the system. In the 3D case, the work of micropolar equations (1.1) with σ=0, f1=0, and f2=0 has attracted a lot of attention (see [6,14,19]). Galdi and Rionero [6] proved the existence and uniqueness of solutions of 3D incompressible micropolar equations. In a 3D bounded domain, for small initial data Yamaguchi [19] investigated the existence of a global solution to the initial boundary problem for the micropolar system. In [14], Silva and Cruz et al. studied the L2-decay of weak solutions for 3D micropolar equations in the whole space R3. When f1=f2=0, for the Cauchy problem of the 3D incompressible nonlinear damped micropolar equations, Ye [22] discussed the existence and uniqueness of global strong solutions when β=3 and 4σ(ν+κ)>1 or β>3. In [18], Wang and Long showed that strong solutions exist globally for any 1β3 when initial data satisfies some certain conditions. Based on [22], Yang and Liu [20] obtained uniform estimates of the solutions for 3D incompressible micropolar equations with damping, and then they proved the existence of global attractors for 3<β<5. In [7], Li and Xiao investigated the large time decay of the L2-norm of weak solutions when β>145, and considered the upper bounds of the derivatives of the strong solution when β>3. In [21], for 1β<73, Yang, Liu, and Sun proved the existence of trajectory attractors for 3D nonlinear damped micropolar fluids.

    To the best of our knowledge, there are few results on uniform attractors for the three-dimensional micropolar equation with nonlinear damping term. The purpose of this paper is to consider the existence of uniform attractors of system (1.1). When ω=0,κ=0, system (1.1) is reduced to the Navier-Stokes equations with damping. In recent years, some scholars have studied the three-dimensional nonlinear damped Navier-Stokes equations (see [1,13,15,16,23,25]). In order to obtain the desired conclusion, we will use some proof techniques which have been used in the 3D nonlinear damped Navier Stokes equations. Note that, in [20], for the convenience of discussion the authors choose κ,μ=12,γ=1, and ν=32. In this work, we do not specify these parameters, but only require them to be positive real numbers. More importantly, we obtain the existence of uniform attractors in the case of β>3, which undoubtedly expands the range of β when the global attractor exists in [20], i.e., 3<β<5. For the convenience of discussion, similar to [3,8,9,11,16], we make some translational compactness assumption on the external forces term in this paper.

    The organizational structure of this article is as follows: In Section 2, we give some basic definitions and properties of function spaces and process theory which will be used in this paper. In Section 3, using various Sobolev inequalities and Gronwall inequalities, we make some uniform estimates from the space with low regularity to high regularity on the solution of the equation. Based on these uniform estimates, in Section 4 we prove that the family of processes {U(f1,f2)(t,τ)}tτ corresponding to (1.1) has uniform attractors A1 in V1×V2 and A2 in H2(Ω)×H2(Ω), respectively. Furthermore, we prove A1=A2.

    We define the usual functional spaces as follows:

    V1={u(C0(Ω))3:divu=0,Ωudx=0},V2={ω(C0(Ω))3:Ωωdx=0},H1=the closure of V1 in (L2(Ω))3,H2=the closure of V2 in (L2(Ω))3,V1=the closure of V1 in (H1(Ω))3,V2=the closure of V2 in (H1(Ω))3.

    For H1 and H2 we have the inner product

    (u,υ)=Ωuυdx,   u,vH1,or u,vH2,

    and norm 2=22=(,). In this paper, Lp(Ω)=(Lp(Ω))3, and p represents the norm in Lp(Ω).

    We define operators

    Au=PΔu=Δu,   Aω=Δω,  (u,ω)H2×H2,B(u)=B(u,u)=P((u)u),   B(u,ω)=(u)ω,  (u,ω)V1×V2,b(u,υ,ω)=B(u,υ),ω=3i,j=1Ωui(Diυj)ωjdx,  uV1,υ,ωV2,

    where P is the orthogonal projection from L2(Ω) onto H1. Hs(Ω)=(Hs(Ω))3 is the usual Sobolev space, and its norm is defined by Hs=∥As2; as s=2, H2=∥A.

    Let us rewrite system (1.1) as

    {ut+B(u)+(ν+κ)Au+G(u)=2κ×ω+f1(x,t),ωt+B(u,ω)+4κω+γAωμω=2κ×u+f2(x,t),u=0,u(x,t)|t=τ=uτ(x),  ω(x,t)|t=τ=ωτ(x), (2.1)

    where we let G(u)=P(σ|u|β1u).

    The Poincarˊe inequality [17] gives

    λ1uu,λ2ωω,(u,ω)V1×V2, (2.2)
    λ1u∥≤∥Au, λ2ω∥≤∥Aω,(u,ω)H2(Ω)×H2(Ω), (2.3)

    where λ1 is the first eigenvalue of Au, and λ2 is the first eigenvalue of Aω. Let λ=min. Then, we have

    \begin{align*} \lambda(\|u\|^2+\|\omega\|^2)&\leq\|\nabla u\|^2+\|\nabla\omega\|^2,\ \forall(u,\omega)\in V_{1}\times V_{2},\\ \lambda(\|\nabla u\|^2+\|\nabla \omega\|^2)&\leq \| Au\|^2+\|A\omega\|^2, \forall (u,\omega)\in \mathbf{H}^2(\Omega)\times \mathbf{H}^2(\Omega). \end{align*}

    Agmon's inequality [17] gives

    \begin{equation*} \parallel u\parallel_\infty\leq d_1\parallel\nabla u\parallel^{\frac{1}{2}}\parallel\Delta u\parallel^{\frac{1}{2}},\ \forall u\in \mathbf{H}^2(\Omega). \end{equation*}

    The trilinear inequalities [12] give

    \begin{equation} |b(u,v,w)|\leq \parallel u\parallel_\infty\parallel\nabla v\parallel\parallel w\parallel, \forall u\in L^\infty(\Omega), v\in V_1\ \text{or}\ V_2, w\in H_1\ \text{or}\ H_2, \end{equation} (2.4)
    \begin{equation} |b(u,v,w)|\leq k \parallel u\parallel^{\frac{1}{4}}\parallel\nabla u\parallel^{\frac{3}{4}}\parallel\nabla v\parallel\parallel w\parallel^{\frac{1}{4}}\parallel\nabla w\parallel^{\frac{3}{4}}, \forall u,v,w\in V_1\ \text{or}\ V_2, \end{equation} (2.5)
    \begin{equation} |b(u,v,w)|\leq k\parallel\nabla u\parallel\parallel\nabla v\parallel^{\frac{1}{2}}\parallel Av\parallel^{\frac{1}{2}}\parallel w\parallel, \forall u\in V_1\ \text{or}\ V_2, v\in \mathbf{H}^2, w\in H_1\ \text{or}\ H_2. \end{equation} (2.6)

    Recall that a function f(t) is translation bounded (tr.b.) in L_{\mathrm{loc}}^2(\mathbb{R}; \mathbf{L}^2(\Omega)) if

    \parallel f\parallel_{L_b^2}^2 = \parallel f\parallel_{L_b^2(\mathbb{R};\mathbf{L}^2(\Omega))}^2 = \sup\limits_{t\in\mathbb{R}}\int_t^{t+1}\parallel f(t)\parallel^2dt < \infty,

    where L_b^2(\mathbb{R}; \mathbf{L}^2(\Omega)) represents the collection of functions that are tr.b. in L_{\mathrm{loc}}^2(\mathbb{R}; \mathbf{L}^2(\Omega)) . We say that \mathcal{H}(f_0) = \overline{\{f_0(\cdot+t):t\in\mathbb{R}\}} is the shell of f_0 in L_{\mathrm{loc}}^2(\mathbb{R}; \mathbf{L}^2(\Omega)) . If \mathcal{H}(f_0) is compact in L_{\mathrm{loc}}^2(\mathbb{R}; \mathbf{L}^2(\Omega)) , then we say that f_0(x, t)\in L_{\mathrm{loc}}^2(\mathbb{R}; \mathbf{L}^2(\Omega)) is translation compact (tr.c.). We use L_c^2(\mathbb{R}; \mathbf{L}^2(\Omega)) to express the collection of all translation compact functions in L_{\mathrm{loc}}^2(\mathbb{R}; \mathbf{L}^2(\Omega)) .

    Next, we will provide the existence and uniqueness theorems of the solution of Eq (2.1).

    Definition 2.1. A function pair (u, \omega) is said to be a global strong solution to system (2.1) if it satisfies

    (u,\omega)\in L^\infty(\tau,T;V_1\times V_2)\cap L^2(\tau,T; \mathbf{H}^2(\Omega)\times \mathbf{H}^2(\Omega)),
    |u|^{\frac{\beta-1}{2}}\nabla u\in L^2(\tau,T;\mathbf{L}^2(\Omega)),\ \nabla |u|^{\frac{\beta+1}{2}}\in L^2(\tau,T;\mathbf{L}^2(\Omega)),

    for any given T > \tau .

    Theorem 2.1. Suppose (u_\tau, \omega_\tau)\in V_1\times V_2 with \nabla\cdot u_\tau = 0, f_1, f_2\in L_b^2(\mathbb{R}; \mathbf{L}^2(\Omega)) . If \beta = 3 and 4\sigma(\nu+\kappa) > 1 or \beta > 3 , then there exists a unique global strong solution of (2.1).

    Proof. Since the proof method is similar to that of Theorem 1.2 in [22], we omit it here.

    Let \Sigma be a metric space. X , Y are two Banach spaces, and Y\subset X is continuous. \{U_{\sigma}(t, \tau)\}_{t\geq\tau} , \sigma\in\Sigma is a family of processes in Banach space X , i.e., u(t) = U_\sigma(t, \tau)u_\tau, U_\sigma(t, s)U_\sigma(s, \tau) = U_\sigma(t, \tau), \forall t\geq s\geq\tau, \tau\in\mathbb{R}, U_\sigma(\tau, \tau) = I , where \sigma\in\Sigma is a time symbol space. \mathcal{B}(X) is the set of all bounded subsets of X . \mathbb{R}^{\tau} = [\tau, +\infty) .

    For the basic concepts of bi-space uniform absorbing set, uniform attracting set, uniform attractor, uniform compact, and uniform asymptotically compact of the family of processed \{U_\sigma(t, \tau)\}_{t\geq\tau}, \sigma\in\Sigma , one can refer to [9,16].

    Let T(h) be a family of operators acting on \Sigma , satisfying: T(h)\sigma(s) = \sigma(s+h), \forall s\in\mathbb{R} . In this paper, we assume that \Sigma satisfies

    (C1) T(h)\Sigma = \Sigma , \forall h\in\mathbb{R}^{+} ;

    (C2) translation identity:

    \begin{equation*} U_{\sigma}(t+h,\tau+h) = U_{T(h)\sigma}(t,\tau),\ \ \ \forall\sigma\in\Sigma, t\geq\tau, \tau\in\mathbb{R}, h\geq0. \end{equation*}

    Theorem 2.2. [3] If the family of processes \{U_\sigma(t, \tau)\}_{t\geq\tau}, \sigma\in\Sigma is (X, Y) -uniformly (w.r.t. \sigma\in\Sigma ) asymptotically compact, then it has a (X, Y) -uniform (w.r.t. \sigma\in\Sigma ) attractor \mathcal{A}_\Sigma , \mathcal{A}_\Sigma is compact in Y , and it attracts all bounded subsets of X in the topology of Y .

    In this paper, the letter C represents a positive constant. It may represent different values in different lines, or even in the same line.

    In this paper, we chose \mathcal{H}(f_{1}^{0})\times \mathcal{H}(f_{2}^{0}) as the symbol space. Obviously, T(t)(\mathcal{H}((f_{1}^{0})\times \mathcal{H}(f_{2}^{0})) = \mathcal{H}(f_{1}^{0})\times \mathcal{H}(f_{2}^{0}) , for all t\geq 0 . \{T(t)\}_{t\geq0} is defined by

    \begin{eqnarray*} T(h)(f_1(\cdot),f_2(\cdot)) = (f_1(\cdot+h),f_2(\cdot+h)),\ \ \ \forall h\geq 0,(f_1,f_2)\in\mathcal{H}(f_{1}^{0})\times \mathcal{H}(f_{2}^{0}), \end{eqnarray*}

    which is a translation semigroup and is continuous on \mathcal{H}(f_{1}^{0})\times \mathcal{H}(f_{2}^{0}) .

    Thanks to Theorem 2.1, when (u_\tau, \omega_\tau)\in V_1\times V_2 , f_1, f_2\in L_{\mathrm{loc}}^2(\mathbb{R}; \mathbf{L}^2(\Omega)) , and \beta > 3 , we can define a process \{U_{(f_1, f_2)}(t, \tau)\}_{t\geq\tau} in V_1\times V_2 by

    U_{(f_1,f_2)}(t,\tau)(u_\tau,\omega_\tau) = (u(t),\omega(t)),\ t\geq\tau,

    where (u(t), \omega(t)) is the solution of Eq (1.1) with external forces f_1, f_2 and initial data (u_\tau, \omega_\tau) .

    Next, let us assume that the external forces f_1^0(x, t), f_2^0(x, t) are tr.c. in L_{\mathrm{loc}}^2(\mathbb{R}; \mathbf{L}^2(\Omega)) . Then, f_1^0, f_2^0 are tr.b. in L_{\mathrm{loc}}^2(\mathbb{R}; \mathbf{L}^2(\Omega)) , and

    \parallel f_1\parallel_{L_b^2}^2 = \parallel f_1\parallel_{L_b^2(\mathbb{R};\mathbf{L}^2(\Omega))}^2 = \sup\limits_{t\in\mathbb{R}}\int_t^{t+1}\parallel f_1(s)\parallel^2ds\leq\parallel f_1^0\parallel_{L_b^2}^2 < +\infty, \forall f_1\in \mathcal{H}(f_1^0),
    \parallel f_2\parallel_{L_b^2}^2 = \parallel f_2\parallel_{L_b^2(\mathbb{R};\mathbf{L}^2(\Omega))}^2 = \sup\limits_{t\in\mathbb{R}}\int_t^{t+1}\parallel f_2(s)\parallel^2ds\leq\parallel f_2^0\parallel_{L_b^2}^2 < +\infty, \forall f_2\in \mathcal{H}(f_2^0).

    Furthermore, we assume f_1^0, f_2^0 are uniformly bounded in \mathbf{L}^2(\Omega) , i.e., there exists a positive constant K , which satisfies

    \sup\limits_{t\in\mathbb{R}}\parallel f_1^0(x,t)\parallel\leq K,\ \sup\limits_{t\in\mathbb{R}}\parallel f_2^0(x,t)\parallel\leq K.

    Meanwhile, we suppose the derivatives \frac{\mathrm{d}f_1^0}{\mathrm{d}t}, \ \frac{\mathrm{d}f_2^0}{\mathrm{d}t} , labeled as h_1, h_2 , also belong to L_{c}^2(\mathbb{R}; \mathbf{L}^2(\Omega)) .

    Lemma 3.1. Suppose (u_{\tau}, \omega_{\tau})\in V_{1}\times V_{2} and (f_{1}, f_{2})\in \mathcal{H}(f_{1}^{0})\times \mathcal{H}(f_{2}^{0}) . If \beta > 3 then there exists a time t_{0} and constants \rho_1, I_1 such that, for any t\geq t_{0} ,

    \begin{equation} \|u(t)\|^{2}+\|\omega(t)\|^{2}\leq \rho_{1}, \end{equation} (3.1)
    \begin{equation} \int^{t+1}_{t}[\|\nabla u(s)\|^{2}+\|\nabla \omega(s)\|^{2}+\|u(s)\|^{\beta+1}_{\beta+1}+\|\nabla\cdot\omega(s)\|^{2}]ds\leq I_{1} . \end{equation} (3.2)

    Proof. Multiplying (1.1)_{1} and (1.1)_{2} with external forces f_{1}\in\mathcal{H}(f^{0}_{1}) , f_{2}\in\mathcal{H}(f^{0}_{2}) by u and \omega , respectively, and integrating the results equations on \Omega , using H \ddot{o} lder's inequality, Young's inequality, and Poincar \acute{e} 's inequality, it yields

    \begin{eqnarray} &&\quad\frac{1}{2}\frac{d}{dt}(\|u(t)\|^{2}+\|\omega(t)\|^{2})+(\nu+\kappa)\|\nabla u\|^{2}+\gamma\|\nabla \omega\|^{2}+4\kappa\|\omega(t)\|^{2}+\sigma\|u(t)\|^{\beta+1}_{\beta+1}+ \mu\|\nabla\cdot\omega\|^{2}\\ && = 4\kappa\int_{\Omega}\nabla\times u\cdot\omega dx+(f_{1},u(t))+(f_{2},\omega(t))\\ &&\leq \kappa\parallel\nabla u\parallel^2+4\kappa\parallel \omega\parallel^2+\frac{\nu\lambda}{2}\parallel u\parallel^2+\frac{\gamma\lambda}{2}\parallel\omega\parallel^2+\frac{1}{2\nu\lambda}\parallel f_1\parallel^2+\frac{1}{2\gamma\lambda}\parallel f_2\parallel^2\\ &&\leq(\frac{\nu}{2}+\kappa)\|\nabla u\|^{2}+\frac{\gamma}{2}\|\nabla\omega\|^{2}+4\kappa\|\omega(t)\|^{2}+\frac{1}{2\nu\lambda}\parallel f_1\parallel^2+\frac{1}{2\gamma\lambda}\parallel f_2\parallel^2. \end{eqnarray} (3.3)

    So, we can obtain that

    \begin{eqnarray} \frac{d}{dt}(\|u(t)\|^{2}+\|\omega(t)\|^{2})+\nu\|\nabla u\|^{2}+\gamma\|\nabla \omega\|^{2}+2\sigma\|u(t)\|^{\beta+1}_{\beta+1}+2\mu\|\nabla\cdot\omega\|^{2}\leq\frac{1}{\nu\lambda}\|f_{1}(t)\|^{2}+\frac{1}{\gamma\lambda}\|f_{2}(t)\|^{2}, \end{eqnarray} (3.4)

    and by Poincar \acute{e} 's inequality, it yields

    \begin{equation} \frac{d}{dt}(\|u(t)\|^{2}+\|\omega(t)\|^{2})+\lambda\alpha(\|u(t)\|^{2}+\|\omega(t)\|^{2})\leq\frac{1}{\lambda\alpha}(\|f_{1}(t)\|^{2}+\|f_{2}(t)\|^{2}), \end{equation} (3.5)

    where \alpha = \min\{\nu, \gamma\} . So, by Gronwall's inequality, we get

    \begin{align*} \|u(t)\|^{2}+\|\omega(t)\|^{2}&\leq(\|u_{\tau}\|^{2}+\|\omega_{\tau}\|^{2})e^{-\lambda\alpha(t-\tau)}+\frac{1}{\lambda\alpha}\int^{t}_{\tau}e^{-\lambda\alpha(t-s)}(\|f_{1}(s)\|^{2}+\|f_{2}(s)\|^{2})ds\nonumber\\ &\leq(\|u_{\tau}\|^{2}+\|\omega_{\tau}\|^{2})e^{-\lambda\alpha(t-\tau)}+\frac{1}{\lambda\alpha}[\int^{t}_{t-1}e^{-\lambda\alpha(t-s)}(\|f_{1}(s)\|^{2}+\|f_{2}(s)\|^{2})ds\nonumber\\ &\quad+\int^{t-1}_{t-2}e^{-\lambda\alpha(t-s)}(\|f_{1}(s)\|^{2}+\|f_{2}(s)\|^{2})ds+...]\nonumber\\ &\leq(\|u_{\tau}\|^{2}+\|\omega_{\tau}\|^{2})e^{-\lambda\alpha(t-\tau)}+\frac{1}{\lambda\alpha}[1+e^{-\lambda\alpha}+e^{-2\lambda\alpha}+...](\|f_{1}\|^{2}_{L^{2}_{b}}+\|f_{2}\|^{2}_{L^{2}_{b}})\nonumber\\ &\leq(\|u_{\tau}\|^{2}+\|\omega_{\tau}\|^{2})e^{-\lambda\alpha(t-\tau)}+\frac{1}{\lambda\alpha}(1-e^{-\lambda\alpha})^{-1}(\|f_{1}\|^{2}_{L^{2}_{b}}+\|f_{2}\|^{2}_{L^{2}_{b}})\nonumber\\ &\leq(\|u_{\tau}\|^{2}+\|\omega_{\tau}\|^{2})e^{-\lambda\alpha(t-\tau)}+\frac{1}{\lambda\alpha}(1+\frac{1}{\lambda\alpha})(\|f_{1}\|^{2}_{L^{2}_{b}}+\|f_{2}\|^{2}_{L^{2}_{b}}),\ \ \ \forall t\geq\tau. \end{align*}

    Therefore, there must exists a time t_{0}\geq\tau+\frac{1}{\lambda\alpha}\ln\frac{\lambda^{2}\alpha^{2}(\|u_{\tau}\|^{2}+\|\omega_{\tau}\|^{2})}{(1+\lambda\alpha)(\|f_{1}\|^{2}_{L^{2}_{b}}+\|f_{2}\|^{2}_{L^{2}_{b}})}, such that, \forall t\geq t_{0} ,

    \begin{equation} \|u(t)\|^{2}+\|\omega(t)\|^{2}\leq\frac{2}{\lambda\alpha}(1+\frac{1}{\lambda\alpha})(\|f_{1}\|^{2}_{L^{2}_{b}}+\|f_{2}\|^{2}_{L^{2}_{b}})\equiv\rho_{1}. \end{equation} (3.6)

    Taking t\geq t_{0} , integrating (3.4) from t to t+1 , and noticing (3.6), we get

    \begin{eqnarray} &&\quad\int^{t+1}_{t}[\nu\|\nabla u(s)\|^{2}+\gamma\|\nabla \omega(s)\|^{2}+2\sigma\|u(s)\|^{\beta+1}_{\beta+1}+2\mu\|\nabla\cdot\omega(s)\|^{2}]ds\\ &&\leq(\|u(t)\|^{2}+\|\omega(t)\|^{2})+\frac{1}{\nu\lambda}\int^{t+1}_{t}\|f_{1}(s)\|^{2}ds+\frac{1}{\gamma\lambda}\int_t^{t+1}\|f_{2}(s)\|^{2}ds\\ &&\leq\rho_{1}+\frac{1}{\lambda\alpha}(\|f_{1}\|^{2}_{L^{2}_{b}}+\|f_{2}\|^{2}_{L^{2}_{b}}),\ \ \ \forall t\geq t_{0}. \end{eqnarray} (3.7)

    Letting \delta_{1} = \mathrm{min}\{\nu, \gamma, 2\sigma, 2\mu\} , we have

    \begin{eqnarray*} \delta_{1}\int^{t+1}_{t}[\|\nabla u(s)\|^{2}+\|\nabla \omega(s)\|^{2}+\|u(s)\|^{\beta+1}_{\beta+1}+\|\nabla\cdot\omega(s)\|^{2}]ds\leq\rho_{1}+\frac{1}{\lambda\alpha}(\|f_{1}\|^{2}_{L^{2}_{b}}+\|f_{2}\|^{2}_{L^{2}_{b}}),\ \ \ \forall t\geq t_{0}. \end{eqnarray*}

    Letting I_{1} = \frac{1}{\delta_{1}}(\rho_{1}+\frac{1}{\lambda\alpha}(\|f_{1}\|^{2}_{L^{2}_{b}}+\|f_{2}\|^{2}_{L^{2}_{b}})) , we have

    \begin{eqnarray*} \int^{t+1}_{t}[\|\nabla u(s)\|^{2}+\|\nabla \omega(s)\|^{2}+\|u(s)\|^{\beta+1}_{\beta+1}+\|\nabla\cdot\omega(s)\|^{2}]ds\leq I_{1},\ \ \ \forall t\geq t_{0}. \end{eqnarray*}

    This completes the proof of Lemma 3.1.

    Lemma 3.2. Assume \beta > 3 , (u_{\tau}, \omega_{\tau})\in V_{1}\times V_{2} and (f_{1}, f_{2})\in \mathcal{H}(f_{1}^{0})\times \mathcal{H}(f_{2}^{0}) . Then, there exists a time t_{2} and a constant \rho_2 such that

    \begin{eqnarray} \|\nabla u(t)\|^{2}+\|\nabla \omega(t)\|^{2} +\int^{t+1}_{t}(\|Au(s)\|^{2}+\|A\omega(s)\|^{2}+\||u|^{\frac{\beta-1}{2}}\nabla u\|^{2}+\|\nabla |u|^{\frac{\beta+1}{2}}\|^{2})ds\leq \rho_2, \end{eqnarray} (3.8)

    for any t\geq t_{2} .

    Proof. Taking the inner product of -\Delta u in H_1 with the first equation of (1.1), we obtain

    \begin{eqnarray} &&\quad\frac{1}{2}\frac{d}{dt}\|\nabla u\|^{2}+(\nu+\kappa)\|Au\|^{2}+\sigma\||u|^{\frac{\beta-1}{2}}\nabla u\|^{2}+\frac{4\sigma(\beta-1)}{(\beta+1)^{2}}\|\nabla|u|^{\frac{\beta+1}{2}}\|^{2}\\ && = -b(u,u,Au)+2\kappa\int_{\Omega}\nabla\times\omega\cdot Audx+(f_{1}(t),Au). \end{eqnarray} (3.9)

    In [18], we find that, when \beta > 3 ,

    \begin{equation} \int_\Omega (u\cdot\nabla u)\cdot\Delta udx\leq\frac{\nu+\kappa}{4}\parallel \Delta u\parallel^2+\frac{\sigma}{2}\parallel |u|^{\frac{\beta-1}{2}}\nabla u\parallel^2+C_1\parallel\nabla u\parallel^2, \end{equation} (3.10)

    where C_1 = \frac{N^2}{\nu+\kappa}+\frac{N^2}{(\nu+\kappa)(N^{\beta-1}+1)} , and N is sufficiently large such that

    \begin{equation*} N\geq(\frac{2}{\beta-3})^{\frac{1}{\beta-1}}\ \text{and}\ \ \frac{N^2}{(\nu+\kappa)(N^{\beta-1}+1)}\leq\frac{\sigma}{2}. \end{equation*}

    And, because

    \begin{equation} |2\kappa\int_\Omega \nabla\times \omega\cdot Audx|\leq\frac{\nu+\kappa}{4}\parallel\Delta u\parallel^2+\frac{4\kappa^2}{\nu+\kappa}\parallel\nabla \omega\parallel^2, \end{equation} (3.11)
    \begin{equation} |(f_1(t),Au)|\leq\frac{\nu+\kappa}{4}\parallel\Delta u\parallel^2+\frac{\parallel f_1(t)\parallel^2}{\nu+\kappa}, \end{equation} (3.12)

    so combining (3.10)–(3.12) with (3.9), we have

    \begin{align} &\quad\frac{d}{dt}\|\nabla u\|^{2}+\frac{\nu+\kappa}{2}\|Au\|^{2}+\sigma\||u|^{\frac{\beta-1}{2}}\nabla u\|^{2}+\frac{8\sigma(\beta-1)}{(\beta+1)^{2}}\|\nabla|u|^{\frac{\beta+1}{2}}\|^{2}\\ &\leq 2C_1\|\nabla u\|^{2}+\frac{8\kappa^2}{\nu+\kappa}\parallel\nabla \omega\parallel^2+\frac{2\parallel f_1(t)\parallel^2}{\nu+\kappa}\\ &\leq C_2(\|\nabla u\|^{2}+\|\nabla\omega\|^{2}+\|f_{1}(t)\|^{2}), \end{align} (3.13)

    where C_2 = \max\{2C_1, \frac{8\kappa^2}{\nu+\kappa}, \frac{2}{\nu+\kappa}\} .

    Applying uniform Gronwall's inequality to (3.13), we obtaint, \forall t\geq t_{0}+1\equiv t_{1} ,

    \begin{eqnarray} \|\nabla u(t)\|^{2}+\int^{t+1}_{t}\Big(\frac{\nu+\kappa}{2}\|Au(s)\|^{2}+\sigma\||u(s)|^{\frac{\beta-1}{2}}\nabla u(s)\|^{2}+\frac{8\sigma(\beta-1)}{(\beta+1)^{2}}\|\nabla|u(s)|^{\frac{\beta+1}{2}}\|^{2}\Big)ds\leq C_3, \end{eqnarray} (3.14)

    where C_3 is a positive constant dependent on C_2 , I_1 , and \parallel f_1^0\parallel_{L_b^2}^2 .

    Taking the inner product of -\Delta \omega in H_2 with the second equation of (1.1), we get

    \begin{eqnarray} &&\quad\frac{1}{2}\frac{d}{dt}\|\nabla \omega\|^{2}+4\kappa\|\nabla\omega\|^{2}+\gamma\|A\omega\|^{2}+\mu\|\nabla\nabla\cdot\omega\|^{2}\\ && = -b(u,\omega,A\omega)+2\kappa\int_{\Omega}\nabla\times u\cdot A\omega dx+(f_{2}(t),A\omega)\\ &&\leq\frac{3\gamma}{4}\|A\omega\|^{2}+\frac{d_1^2}{\gamma}\|\nabla u\|\|Au\|\|\nabla \omega\|^{2}+\frac{4\kappa^2}{\gamma}\| \nabla u\|^{2}+\frac{1}{\gamma}\|f_{2}(t)\|^{2}. \end{eqnarray} (3.15)

    In the last inequality of (3.15), we used Agmon's inequality and the trilinear inequality. Then,

    \begin{eqnarray} \frac{d}{dt}\|\nabla\omega\|^{2}+\frac{\gamma}{2}\|A\omega\|^{2}+2\mu\|\nabla\nabla\cdot\omega\|^{2}\leq C_4(\|\nabla u\|\|Au\|\|\nabla \omega\|^{2}+\|\nabla u\|^{2}+\|f_{2}(t)\|^{2}), \end{eqnarray} (3.16)

    where C_4 = \max\{\frac{2d_1^2}{\gamma}, \frac{8\kappa^2}{\gamma}, \frac{2}{\gamma}\} .

    By the uniform Gronwall's inequality, we easily obtain that, for t\geq t_{1}+1\equiv t_{2} ,

    \begin{eqnarray} \|\nabla\omega(t)\|^{2}+\int^{t+1}_{t}(\frac{\gamma}{2}\|A\omega(s)\|^{2}+2\mu\|\nabla\nabla\cdot\omega(s)\|^{2})ds\leq C_5,\ \text{for}\ t\geq t_{1}+1\equiv t_{2}, \end{eqnarray} (3.17)

    where C_5 is a positive constant dependent on C_3, C_4 , and \parallel f_2^0\parallel_{L_b^2}^2 .

    Adding (3.14) with (3.17) yields

    \begin{align*} \label{3.14} \|\nabla u(s)\|^{2}+\|\nabla\omega(s)\|^{2}+\int^{t+1}_{t}(\|Au(s)\|^{2}+\|A\omega(s)\|^{2}+\||u(s)|^{\frac{\beta-1}{2}}\nabla u(s)\|^{2}+\|\nabla |u(s)|^{\frac{\beta+1}{2}}\|^{2})ds\leq C, \end{align*}

    for t\geq t_2 . Hence, Lemma 3.2 is proved.

    Lemma 3.3. Suppose that (u_{\tau}, \omega_{\tau})\in V_{1}\times V_{2} and (f_{1}, f_{2})\in \mathcal{H}(f_{1}^{0})\times \mathcal{H}(f_{2}^{0}) . Then, for \beta > 3 , there exists a time t_{3} and a constant \rho_3 such that

    \begin{eqnarray} \|u(t)\|_{\beta+1}+\|\nabla\cdot\omega(t)\|^{2}\leq \rho_{3}, \end{eqnarray} (3.18)

    for any t\geq t_{3} .

    Proof. Multiplying (1.1)_{1} by u_{t} , then integrating the equation over \Omega , we have

    \begin{eqnarray} &&\quad\|u_{t}\|^{2}+\frac{\nu+\kappa}{2}\frac{d}{dt}\|\nabla u\|^{2}+\frac{\sigma}{\beta+1}\frac{d}{dt}\|u(t)\|^{\beta+1}_{\beta+1}\\ && = -b(u,u,u_{t})+2\kappa\int_{\Omega}\nabla\times\omega\cdot u_{t}dx+(f_{1}(t),u_{t})\\ &&\leq\frac{1}{2}\|u_{t}\|^{2}+\frac{3d_1^2}{2\sqrt{\lambda_1}}\parallel\nabla u\parallel^2\parallel Au\parallel^2+6\kappa^2\|\nabla \omega\|^{2}+\frac{3}{2}\|f_{1}(t)\|^{2}. \end{eqnarray} (3.19)

    The trilinear inequality (2.4), Agmon's inequality, and Poincar \acute{e} 's inequality are used in the last inequality of (3.19).

    Hence,

    \begin{eqnarray} (\nu+\kappa)\frac{d}{dt}\|\nabla u\|^{2}+\frac{2\sigma}{\beta+1}\frac{d}{dt}\|u(t)\|^{\beta+1}_{\beta+1}\leq C_6(\parallel\nabla u\parallel^2\parallel Au\parallel^2+\|\nabla \omega\|^{2}+\|f_{1}(t)\|^{2}), \end{eqnarray} (3.20)

    where C_6 = \max\{\frac{3d_1^2}{\sqrt{\lambda_1}}, 12\kappa^2, 3\} .

    By (3.20), using Lemmas 3.1 and 3.2 and the uniform Gronwall's inequality, we have

    \begin{equation} \|u(t)\|_{\beta+1}\leq C,\ \ \forall t\geq t_{2}+1\equiv t_{3}. \end{equation} (3.21)

    Similar to (3.19), multiplying (1.1)_{2} by \omega_{t} and integrating it over \Omega , we get

    \begin{align} &\quad\|\omega_{t}\|^{2}+2\kappa\frac{d}{dt}\|\omega\|^{2}+\frac{\gamma}{2}\frac{d}{dt}\|\nabla \omega\|^{2}+\frac{\mu}{2}\frac{d}{dt}\|\nabla\cdot\omega\|^{2} = -b(u,\omega,\omega_{t})+2\kappa\int_{\Omega}\nabla\times u\cdot\omega_{t}dx+(f_{2}(t),\omega_{t})\\ &\leq\frac{1}{2}\|\omega_{t}\|^{2}+\frac{3d_1^2}{2\sqrt{\lambda_1}}\parallel Au\parallel^{2}\parallel\nabla\omega\parallel^2+6\kappa^2\|\nabla u\|^{2}+\frac{3}{2}\|f_{2}(t)\|^{2}. \end{align} (3.22)

    Hence,

    \begin{align} 4\kappa\frac{d}{dt}\parallel \omega\parallel^2+\gamma\frac{d}{dt}\parallel \nabla\omega\parallel^2+\mu\frac{d}{dt}\parallel\nabla\cdot\omega\parallel^2\leq C_6(\parallel Au\parallel^2\parallel\nabla\omega\parallel^2+\parallel\nabla u\parallel^2+\parallel f_2(t)\parallel^2). \end{align} (3.23)

    By (3.23), using Lemma 3.2 and the uniform Gronwall's inequality, we infer that

    \begin{eqnarray} \|\nabla\cdot\omega(t)\|^{2}\leq C,\ \ \forall t\geq t_{3}. \end{eqnarray} (3.24)

    The proof of Lemma 3.3 is finished.

    Lemma 3.4. Suppose (u_{\tau}, \omega_{\tau})\in V_{1}\times V_{2} and (f_{1}, f_{2})\in \mathcal{H}(f_{1}^{0})\times \mathcal{H}(f_{2}^{0}) . If \beta > 3 , then there exists a time t_{4} and a constant \rho_5 , such that

    \begin{eqnarray} \|u_{t}(s)\|^{2}+\|\omega_{t}(s)\|^{2}\leq \rho_5, \end{eqnarray} (3.25)

    for any s\geq t_{4} .

    Proof. Taking the inner products of u_{t} and \omega_{t} with the first and second equations of (1.1), respectively, and using (3.19) and (3.22), we find

    \begin{align} &\quad\|u_{t}\|^{2}+\|\omega_{t}\|^{2}+\frac{\nu+\kappa}{2}\frac{d}{dt}\|\nabla u\|^{2}+\frac{\gamma}{2}\frac{d}{dt}\|\nabla\omega\|^{2}+2\kappa\frac{d}{dt}\|\omega(t)\|^{2}+\frac{\sigma}{\beta+1}\frac{d}{dt}\|u(t)\|^{\beta+1}_{\beta+1}+\frac{\mu}{2}\frac{d}{dt}\|\nabla\cdot\omega\|^{2}\\ & = -b(u,u,u_{t})-b(u,\omega,\omega_{t})+2\kappa\int_{\Omega}\nabla\times\omega\cdot u_{t}dx+2\kappa\int_{\Omega}\nabla\times u\cdot\omega_{t}dx+(f_{1}(t),u_{t})+(f_{2}(t),\omega_{t})\\ &\leq \frac{1}{2}(\|u_{t}\|^{2}+\|\omega_{t}\|^{2})+C_7(\|f_{1}(t)\|^{2}+\|f_{2}(t)\|^{2}+\|\nabla u\|^{2}\\&\quad+\|\nabla\omega\|^{2}+\parallel\nabla u\parallel^2\parallel Au\parallel^2+\parallel\nabla\omega\parallel^2\parallel Au\parallel^2), \end{align} (3.26)

    where C_7 = \max\{\frac{3d_1^2}{2\sqrt{\lambda_1}}, 6\kappa^2, \frac{3}{2}\} . The trilinear inequality (2.4), Agmon's inequality, and Poincar \acute{e} 's inequality are used in the last inequality of (3.26).

    Integrating (3.26) over [t, t+1] and using Lemmas 3.1–3.3, we get

    \begin{eqnarray} \int^{t+1}_{t}(\|u_{t}(s)\|^{2}+\|\omega_{t}(s)\|^{2})ds\leq \rho_4,\ \forall t\geq t_3, \end{eqnarray} (3.27)

    where \rho_4 is a positive constant dependent on C_7, \rho_2, \rho_3 , \parallel f_1^0\parallel_{L_b^2}^2 , and \parallel f_2^0\parallel_{L_b^2}^2 .

    We now differentiate (2.1)_1 with respect to t , then take the inner product of u_t with the resulting equation to obtain

    \begin{align} &\quad\frac{1}{2}\frac{d}{dt}\parallel u_t\parallel^2+(\nu+\kappa)\parallel\nabla u_t\parallel^2\\ & = -b(u_t,u,u_t)-\int_\Omega G'(u)u_t\cdot u_tdx+2\kappa\int_\Omega\nabla\times \omega_t\cdot u_tdx+(f_{1t},u_t). \end{align} (3.28)

    Then, we differentiate (2.1)_2 with respect to t and take the inner product with \omega_t to obtain

    \begin{align} &\quad\frac{1}{2}\frac{d}{dt}\parallel\omega_t\parallel^2+4\kappa\parallel \omega_t\parallel^2+\gamma\parallel\nabla\omega_t\parallel^2+\mu\parallel\nabla\cdot\omega_t\parallel^2\\ & = -b(u_t,\omega,\omega_t)+2\kappa\int_\Omega \nabla\times u_t\cdot\omega_tdx+(f_{2t},\omega_t). \end{align} (3.29)

    Adding (3.28) with (3.29), we have

    \begin{eqnarray} &&\quad\frac{1}{2}\frac{d}{dt}(\|u_{t}\|^{2}+\|\omega_{t}\|^{2})+(\nu+\kappa)\|\nabla u_{t}\|^{2}+\gamma\|\nabla\omega_{t}\|^{2}+4\kappa\|\omega_{t}\|^{2}+\mu\|\nabla\cdot\omega_{t}\|^{2}\\ &&\leq|b(u_{t},u,u_{t})|+|b(u_{t},\omega,\omega_{t})|+2\kappa\int_{\Omega}\nabla\times\omega_{t}\cdot u_{t}dx+2\kappa\int_{\Omega}\nabla\times u_{t}\cdot\omega_{t}dx\\ &&\quad+(f_{1t},u_{t})+(f_{2t},\omega_{t})-\int_{\Omega}G^{'}(u)u_{t}\cdot u_{t}dx\\ &&: = \sum\limits_{i = 1}^{7} L_{i}. \end{eqnarray} (3.30)

    From Lemma 2.4 in [15], we know that G'(u) is positive definite, so

    \begin{equation} L_7 = -\int_\Omega G'(u)u_t\cdot u_tdx\leq 0. \end{equation} (3.31)

    For L_{1} , using the trilinear inequality (2.5) and Lemma 3.2, we have

    \begin{align} L_{1}&\leq k\|u_{t}\|^{\frac{1}{2}}\|\nabla u_{t}\|^{\frac{3}{2}}\|\nabla u\|\\ &\leq \frac{\nu+\kappa}{4}\|\nabla u_{t}\|^{2}+C\|u_{t}\|^{2}\|\nabla u\|^{4}\\ &\leq\frac{\nu+\kappa}{4}\|\nabla u_{t}\|^{2}+C\|u_{t}\|^{2},\ \text{for}\ t\geq t_2. \end{align} (3.32)

    For L_2 , by H \ddot{o} lder's inequality, Gagliardo-Nirenberg's inequality, and Young's inequality, we have

    \begin{align} L_{2}&\leq C\|u_{t}\|_{4}\|\omega_t\|_{4}\|\nabla\omega\|\\ &\leq C\|u_{t}\|^{\frac{1}{4}}\|\nabla u_{t}\|^{\frac{3}{4}}\|\omega_{t}\|^{\frac{1}{4}}\|\nabla\omega_{t}\|^{\frac{3}{4}}\|\nabla\omega\|\\ &\leq\frac{\nu+\kappa}{4}\|\nabla u_{t}\|^{2}+\frac{\gamma}{4}\|\nabla\omega_{t}\|^{2}+C(\|u_{t}\|^{2}+\|\omega_{t}\|^{2}),\ \text{for}\ t\geq t_2. \end{align} (3.33)
    \begin{align} L_{3}+L_{4}&\leq\frac{\nu+\kappa}{4}\|\nabla u_{t}\|^{2}+\frac{\gamma}{2}\|\nabla \omega_{t}\|^{2}+C(\|u_{t}\|^{2}+\|\omega_{t}\|^{2}). \end{align} (3.34)

    By (3.30)–(3.34), we get

    \begin{align} \frac{d}{dt}(\|u_{t}\|^{2}+\|\omega_{t}\|^{2})&\leq C(\|u_{t}\|^{2}+\|\omega_{t}\|^{2})+(f_{1t},u_{t})+(f_{2t},\omega_{t})\\ &\leq C(\|u_{t}\|^{2}+\|\omega_{t}\|^{2})+\|f_{1t}\|^{2}+\|f_{2t}\|^{2}. \end{align} (3.35)

    Thanks to

    \int_t^{t+1}\parallel f_{1t}(s)\parallel^2ds\leq\parallel f_{1t}\parallel_{L_b^2}^2\leq\parallel h_1\parallel_{L_b^2}^2, \int_t^{t+1}\parallel f_{2t}(s)\parallel^2ds\leq\parallel f_{2t}\parallel_{L_b^2}^2\leq\parallel h_2\parallel_{L_b^2}^2,

    and applying uniform Gronwall's inequality to (3.35), we have for any s\geq t_{3}+1\equiv t_{4} ,

    \begin{eqnarray} \|u_{t}(s)\|^{2}+\|\omega_{t}(s)\|^{2}\leq C. \end{eqnarray} (3.36)

    Thus, Lemma 3.4 is proved.

    Lemma 3.5. Suppose (u_{\tau}, \omega_{\tau})\in V_{1}\times V_{2} and (f_{1}, f_{2})\in \mathcal{H}(f_{1}^{0})\times \mathcal{H}(f_{2}^{0}) . Then, for \beta > 3 , there exists a constant \rho_6 such that

    \begin{eqnarray} \|Au(t)\|^{2}+\|A\omega(t)\|^{2}\leq \rho_6, \end{eqnarray} (3.37)

    for any t\geq t_{4} .

    Proof. Taking the inner product of -\Delta u in H_1 with the first equation of (1.1), we have

    \begin{align} &\quad(\nu+\kappa)\parallel Au\parallel^2+\sigma\parallel|u|^{\frac{\beta-1}{2}}\nabla u\parallel^2+\frac{4\sigma(\beta-1)}{(\beta+1)^2}\parallel\nabla|u|^{\frac{\beta+1}{2}}\parallel^2\\ & = -(u_t,Au)-(B(u),Au)+2\kappa\int_\Omega \nabla\times\omega\cdot Audx+(f_1(t),Au)\\ &\leq\frac{4(\nu+\kappa)}{6}\parallel Au\parallel^2+\frac{3}{2(\nu+\kappa)}\parallel u_t\parallel^2+\frac{3}{2(\nu+\kappa)}\parallel B(u)\parallel^2\\ &\quad+\frac{6\kappa^2}{\nu+\kappa}\parallel\nabla\omega\parallel^2+\frac{3}{2(\nu+\kappa)}\parallel f_1(t)\parallel^2. \end{align} (3.38)

    Because

    \begin{align} \frac{3}{2(\nu+\kappa)}\parallel B(u)\parallel^2&\leq\frac{3}{2(\nu+\kappa)}\parallel u\parallel_\infty^2\parallel\nabla u\parallel^2\\ &\leq \frac{3d_1^2}{2(\nu+\kappa)}\parallel\nabla u\parallel^3\parallel\Delta u\parallel\\ &\leq\frac{\nu+\kappa}{6}\parallel Au\parallel^2+C\parallel\nabla u\parallel^6, \end{align} (3.39)

    combining (3.39) with (3.38), we obtain

    \begin{equation} \frac{\nu+\kappa}{6}\parallel Au\parallel^2\leq \frac{3}{2(\nu+\kappa)}\parallel u_t\parallel^2+C\parallel\nabla u\parallel^6+\frac{6\kappa^2}{\nu+\kappa}\parallel\nabla\omega\parallel^2+\frac{3}{2(\nu+\kappa)}\parallel f_1(t)\parallel^2. \end{equation} (3.40)

    From the assumption of f_1^0(t) , we can easily get

    \begin{equation} \sup\limits_{t\in\mathbb{R}}\parallel f_1(t)\parallel\leq\sup\limits_{t\in\mathbb{R}}\parallel f_{1}^0(t)\parallel\leq K, \forall f_1\in\mathcal{H}(f_1^0). \end{equation} (3.41)

    By Lemmas 3.2 and 3.4, we obtain

    \begin{eqnarray} \|Au(t)\|\leq C,\ \text{for any}\ t\geq t_4. \end{eqnarray} (3.42)

    Taking the inner product of A\omega with (2.1)_{2} , we get

    \begin{align} &\quad\gamma\|A\omega\|^{2}+4\kappa\parallel\nabla \omega\parallel^2+\mu\parallel\nabla\nabla\cdot\omega\parallel^2\\ & = -(\omega_t,A\omega)-(B(u,\omega),A\omega)+2\kappa(\nabla\times u,A\omega)+(f_2(t),A\omega)\\ &\leq\frac{\gamma}{2}\parallel A\omega\parallel^2+C(\parallel \omega_t\parallel^2+\parallel B(u,\omega)\parallel^2+\parallel\nabla u\parallel^2+\parallel f_2(t)\parallel^2). \end{align} (3.43)

    And, by Agmon's inequality,

    \begin{align} \|B(u,\omega)\|^2&\leq C\|u\|_{\infty}^2\|\nabla \omega\|^2\\ &\leq C\|\nabla u\|\|\Delta u\|\|\nabla\omega\|^2\\ &\leq\|Au\|^2+C\parallel\nabla u\parallel^2\parallel\nabla\omega\parallel^4. \end{align} (3.44)

    From the assumption on f_2^0(t) , we can easily obtain

    \begin{equation} \sup\limits_{t\in\mathbb{R}}\parallel f_2(t)\parallel\leq\sup\limits_{t\in\mathbb{R}}\parallel f_{2}^0(t)\parallel\leq K, \forall f_2\in\mathcal{H}(f_2^0). \end{equation} (3.45)

    By Lemma 3.2, Lemma 3.4, (3.42), (3.43), (3.44), and (3.45), we get

    \begin{eqnarray} \|A\omega(t)\|\leq C,\ \text{for any }t\geq t_{4}. \end{eqnarray} (3.46)

    By (3.42) and (3.46), Lemma 3.5 is proved for all t\geq t_{4} .

    Lemma 3.6. Suppose (u_{\tau}, \omega_{\tau})\in V_{1}\times V_{2} and (f_{1}, f_{2})\in \mathcal{H}(f_{1}^{0})\times \mathcal{H}(f_{2}^{0}) . Then, for \beta > 3 , there exists a time t_5 and a constant \rho_{7} satisfying

    \begin{eqnarray} \|\nabla u_{t}(t)\|^{2}+\|\nabla\omega_{t}(t)\|^{2}\leq \rho_7, \forall t\geq t_{5}. \end{eqnarray} (3.47)

    Proof. In the proof of Lemma 3.4, from (3.30)–(3.34) we can also get

    \begin{align} &\quad\frac{d}{dt}(\parallel u_t\parallel^2+\parallel\omega_t\parallel^2)+\frac{\nu+\kappa}{2}\parallel\nabla u_t\parallel^2+\frac{\gamma}{2}\parallel\nabla\omega_t\parallel^2+2\mu\parallel \nabla\cdot\omega_t\parallel^2\\ &\leq C(\parallel u_t\parallel^2+\parallel\omega_t\parallel^2)+\parallel f_1(t)\parallel^2+\parallel f_2(t)\parallel^2. \end{align} (3.48)

    Integrating (3.48) from t to t+1 , and according to Lemma 3.4, we have

    \begin{align} &\quad\int^{t+1}_{t}(\|\nabla u_{t}(s)\|^{2}+\|\nabla\omega_{t}(s)\|^{2}+\|\nabla\cdot\omega_{t}(s)\|^{2})ds\\ &\leq C(\|u_{t}(t)\|^{2}+\|\omega_{t}(t)\|^{2}+\int^{t+1}_{t}(\|u_{t}(s)\|^{2}+\|\omega_{t}(s)\|^{2})ds+\int^{t+1}_{t}\|f_{1t}(s)\|^{2}ds+\int^{t+1}_{t}\|f_{2t}(s)\|^{2}ds)\\ &\leq C+\|h_{1}\|^{2}_{L^{2}_{b}}+\|h_{2}\|^{2}_{L^{2}_{b}}\\ &\leq C,\ \forall t\geq t_4. \end{align} (3.49)

    By Lemma 3.5, we get

    \begin{eqnarray} \|u(t)\|_{H^{2}}+\|\omega(t)\|_{H^{2}}\leq C, \forall t\geq t_4. \end{eqnarray} (3.50)

    So, by Lemma 3.2, applying Agmon's inequality, we get

    \begin{eqnarray} \|u(t)\|_{\infty}+\|\omega(t)\|_{\infty}\leq C, \forall t\geq t_4. \end{eqnarray} (3.51)

    Taking the derivative of (2.1)_{1} and (2.1)_{2} with respect to t , then multiplying by Au_{t} and A\omega_{t} , respectively, and integrating the resulting equations over \Omega , we then have

    \begin{align} &\quad\frac{1}{2}\frac{d}{dt}(\|\nabla u_{t}\|^{2}+\|\nabla\omega_{t}\|^{2})+(\nu+\kappa)\|Au_{t}\|^{2}+\gamma\|A\omega_{t}\|^{2}+4\kappa\|\nabla\omega_{t}\|^{2}+\mu\parallel\nabla\nabla\cdot\omega_t\parallel^2\\ &\leq|b(u_t,u,Au_t)|+|b(u,u_{t},Au_{t})|+|b(u,\omega_{t},A\omega_{t})|+|b(u_{t},\omega,A\omega_{t})|\\ &\ \ \ \ +2\kappa\int_{\Omega}|\nabla\times\omega_{t}\cdot Au_{t}|dx+2\kappa\int_{\Omega}|\nabla\times u_{t}\cdot A\omega_{t}|dx+|\int_{\Omega}G'(u)u_{t}\cdot Au_{t}dx|\\ &\ \ \ \ +(f_{1t},Au_{t})+(f_{2t},A\omega_{t})\\ &: = \sum^{9}_{i = 1}J_{i}. \end{align} (3.52)

    For J_{1} , J_2 , using (2.6) and Lemmas 3.2 and 3.5, we have

    \begin{align} J_{1}&\leq k\|\nabla u_{t}\|\|\nabla u\|^{\frac{1}{2}}\|Au\|^{\frac{1}{2}}\|Au_{t}\|\\ &\leq\frac{\nu+\kappa}{5}\|Au_{t}\|^{2}+C\|\nabla u_{t}\|^{2},\ \forall t\geq t_4, \end{align} (3.53)

    and

    \begin{align} J_{2}&\leq k\|\nabla u\|\|\nabla u_{t}\|^{\frac{1}{2}}\|A u_{t}\|^{\frac{1}{2}}\|Au_{t}\|\\ &\leq k\|\nabla u\|\|\nabla u_{t}\|^{\frac{1}{2}}\|Au_{t}\|^{\frac{3}{2}}\\ &\leq \frac{\nu+\kappa}{5}\|Au_{t}\|^{2}+C\|\nabla u_{t}\|^{2},\ \forall t\geq t_4. \end{align} (3.54)

    For J_{3} and J_{4} , similar to (3.53) and (3.54), we get

    \begin{align} J_{3}&\leq k\|\nabla u\|\|\nabla\omega_t\|^{\frac{1}{2}}\|A\omega_{t}\|^{\frac{1}{2}}\|A\omega_{t}\|\\ &\leq \frac{\gamma}{4}\|A\omega_{t}\|^{2}+C\|\nabla \omega_{t}\|^{2},\ \forall t\geq t_4, \end{align} (3.55)
    \begin{align} J_{4}&\leq k\|\nabla u_{t}\|\|\nabla\omega\|^{\frac{1}{2}}\|A\omega\|^{\frac{1}{2}}\|A\omega_{t}\|\\ &\leq\frac{\gamma}{4}\|A\omega_{t}\|^{2}+C\|\nabla u_{t}\|^{2},\ \forall t\geq t_4. \end{align} (3.56)

    For J_{5} , J_6 , and J_{7} , applying Hölder's inequality and Young's inequality, we have

    \begin{align} J_{5}+J_{6}\leq\frac{\nu+\kappa}{5}\|Au_{t}\|^{2}+\frac{\gamma}{4}\|A\omega_{t}\|^{2}+C(\|\nabla u_{t}\|^{2}+\|\nabla\omega_{t}\|^{2}), \end{align} (3.57)

    and thanks to (3.51),

    \begin{align} J_{7}&\leq C\|u\| ^{\beta-1}_{\infty}\|u_{t}\|\|Au_{t}\|\\ &\leq\frac{\nu+\kappa}{5}\|Au_{t}\|^{2}+C\|u_{t}\|^{2},\ \forall t\geq t_4. \end{align} (3.58)

    For J_8 and J_9 , we have

    \begin{align} J_{8}&\leq\frac{\nu+\kappa}{5}\|Au_{t}\|^{2}+C\|f_{1t}\|^{2}, \end{align} (3.59)
    \begin{align} J_{9}&\leq\frac{\gamma}{4}\|A\omega_{t}\|^{2}+C\|f_{2t}\|^{2}. \end{align} (3.60)

    By (3.52)–(3.60), we obtain

    \begin{eqnarray} \frac{d}{dt}(\|\nabla u_{t}\|^{2}+\|\nabla\omega_{t}\|^{2})\leq C(\|\nabla u_{t}\|^{2}+\|\nabla\omega_{t}\|^{2})+C\|u_{t}\|^{2}+C(\|f_{1t}\|^{2}+\|f_{2t}\|^{2}). \end{eqnarray} (3.61)

    Then, by (3.27), (3.49), and using the uniform Gronwall's lemma, we get

    \begin{eqnarray} \|\nabla u_{t}(s)\|^{2}+\|\nabla\omega_{t}(s)\|^{2}\leq C,\ \forall s\geq t_{4}+1\equiv t_{5}. \end{eqnarray} (3.62)

    Thus, Lemma 3.6 is proved.

    In this section, we consider the existence of the (V_1\times V_2, V_1\times V_2) -uniform (w.r.t. (f_1, f_2)\in \mathcal{H}(f_1^0)\times\mathcal{H}(f_2^0) ) attractor and the (V_1\times V_2, \mathbf{H}^2(\Omega)\times \mathbf{H}^2(\Omega)) -uniform attractor for \{U_{(f_1, f_2)}(t, \tau)\}_{t\geq\tau}, f_1\times f_2\in \mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) .

    Lemma 4.1. Suppose \beta > 3 . The family of processes \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) , corresponding to (2.1) is ((V_{1}\times V_{2})\times(\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2})), V_{1}\times V_{2}) -continuous for \tau\geq t_5.

    Proof. Let \tau_n\subset [\tau, +\infty) be a time sequence, U_{(f_{1}^{(n)}, f_{2}^{(n)})}(t, \tau)(u_{\tau_n}, \omega_{\tau_n}) = (u^{(n)}(t), \omega^{(n)}(t)) , U_{(f_{1}, f_{2})}(t, \tau)(u_{\tau}, \omega_{\tau}) = (u(t), \omega(t)) and

    \begin{align*} (\bar{u}^{(n)}(t),\bar{\omega}^{(n)}(t))& = (u(t)-u^{(n)}(t),\omega(t)-\omega^{(n)}(t))\\ & = U_{(f_{1},f_{2})}(t,\tau)(u_{\tau},\omega_{\tau})-U_{(f_{1}^{(n)},f_{2}^{(n)})}(t,\tau)(u_{\tau_n},\omega_{\tau_n}). \end{align*}

    It is evident that \bar{u}^{(n)}(t) is the solution of

    \begin{align} \frac{\partial\bar{u}^{(n)}(t)}{\partial t}+B(u)-B(u^{(n)}(t))+(\nu+\kappa)A\bar{u}^{(n)}+G(u)-G(u^{(n)}) = 2\kappa\nabla\times\bar{\omega}^{(n)}+(f_{1}-f_{1}^{(n)}), \end{align} (4.1)

    and \bar{\omega}^{(n)}(t) is the solution of the following system

    \begin{align} \frac{\partial\bar{\omega}^{(n)}(t)}{\partial t}&+B(u,\omega)-B(u^{(n)},\omega^{(n)})+4\kappa\bar{\omega}^{(n)}+\gamma A\bar{\omega}^{(n)}-\mu\nabla\nabla\cdot\bar{\omega}^{(n)} = 2\kappa\nabla\times\bar{u}^{(n)}+(f_{2}-f_{2}^{(n)}), \end{align} (4.2)

    for each n .

    Taking the inner product of (4.1) with A\bar{u}^{(n)} in H_1 , we get

    \begin{align} &\quad\frac{1}{2}\frac{d}{dt}\|\nabla\bar{u}^{(n)}\|^{2}+b(u,u,A\bar{u}^{(n)})-b(u^{(n)},u^{(n)},A\bar{u}^{(n)}) +(\nu+\kappa)\parallel A\bar{u}^{(n)}\parallel^2+(G(u)-G(u^{(n)}),A\bar{u}^{(n)})\\& = 2\kappa(\nabla\times\bar{\omega}^{(n)},A\bar{u}^{(n)})+(f_{1}-f_{1}^{(n)},A\bar{u}^{(n)}). \end{align} (4.3)

    Taking the inner product of (4.2) with A\bar{\omega}^{(n)} in H_2 , we have

    \begin{align} &\quad\frac{1}{2}\frac{d}{dt}\|\nabla\bar{\omega}^{(n)}\|^{2}+b(u,\omega,A\bar{\omega}^{(n)})-b(u^{(n)},\omega^{(n)},A\bar{\omega}^{(n)}) +4\kappa\|\nabla\bar{\omega}^{(n)}\|^2+\gamma\parallel A\bar{\omega}^{(n)}\parallel^2+\mu\parallel\nabla\nabla\cdot\bar{\omega}^{(n)}\parallel^2\\ & = 2\kappa(\nabla\times\bar{u}^{(n)},A\bar{\omega}^{(n)})+(f_{2}-f_{2}^{(n)},A\bar{\omega}^{(n)}). \end{align} (4.4)

    Combining (4.3) with (4.4), we get

    \begin{align} &\quad\frac{1}{2}\frac{d}{dt}(\|\nabla\bar{u}^{(n)}\|^{2}+\|\nabla\bar{\omega}^{(n)}\|^{2})+b(u,u,A\bar{u}^{(n)})-b(u^{(n)},u^{(n)},A\bar{u}^{(n)})+(\nu+\kappa)\|A\bar{u}^{(n)}\|^{2}\\ &\quad+(G(u)-G(u^{(n)}),A\bar{u}^{(n)})+b(u,\omega,A\bar{\omega}^{(n)})-b(u^{(n)},\omega^{(n)},A\bar{\omega}^{(n)})\\ &\quad+4\kappa\parallel\nabla\bar{\omega}^{(n)}\parallel^2+\gamma\parallel A\bar{\omega}^{(n)}\parallel^2+\mu\parallel\nabla\nabla\cdot\bar{\omega}^{(n)}\parallel^2\\ & = 2\kappa(\nabla\times\bar{\omega}^{(n)},A\bar{u}^{(n)})+2\kappa(\nabla\times\bar{u}^{(n)},A\bar{\omega}^{(n)})+(f_{1}-f_{1}^{(n)},A\bar{u}^{(n)}) +(f_{2}-f_{2}^{(n)},A\bar{\omega}^{(n)}). \end{align} (4.5)

    Due to

    \begin{align} b(u,u,A\bar{u}^{(n)})-b(u^{(n)},u^{(n)},A\bar{u}^{(n)})& = b(\bar{u}^{(n)},u,A\bar{u}^{(n)})+b({u}^{(n)},\bar{u}^{(n)},A\bar{u}^{(n)}), \end{align} (4.6)
    \begin{align} b(u,\omega,A\bar{\omega}^{(n)})-b(u^{(n)},\omega^{(n)},A\bar{\omega}^{(n)})& = b(\bar{u}^{(n)},\omega,A\bar{\omega}^{(n)})+b(u^{(n)},\bar{\omega}^{(n)},A\bar{\omega}^{(n)}), \end{align} (4.7)

    and

    \begin{align} |b(\bar{u}^{(n)},u,A\bar{u}^{(n)})|&\leq k\|\nabla\bar{u}^{(n)}\|\|\nabla u\|^{\frac{1}{2}}\|Au\|^{\frac{1}{2}}\|A\bar{u}^{(n)}\|\\&\leq\frac{\nu+k}{5}\|A\bar{u}^{(n)}\|^{2}+C\|\nabla\bar{u}^{(n)}\|^{2}\|\nabla u\|\|Au\|, \end{align} (4.8)
    \begin{align} |b({u}^{(n)},\bar{u}^{(n)},A\bar{u}^{(n)})|&\leq k\|\nabla{u}^{(n)}\|\|\nabla\bar{u}^{(n)}\|^{\frac{1}{2}}\|A\bar{u}^{(n)}\|^{\frac{1}{2}}\|A\bar{u}^{(n)}\|\\ &\leq\frac{\nu+k}{5}\|A\bar{u}^{(n)}\|^{2}+C\|\nabla{u}^{(n)}\|^{4}\|\nabla\bar{u}^{(n)}\|^{2}, \end{align} (4.9)
    \begin{align} b(\bar{u}^{(n)},\omega,A\bar{\omega}^{(n)})&\leq k\|\nabla\bar{u}^{(n)}\|\|\nabla\omega\|^{\frac{1}{2}}\|A\omega\parallel^{\frac{1}{2}}\|A\bar{\omega}^{(n)}\|\\ &\leq\frac{\gamma}{4}\|A\bar{\omega}^{(n)}\|^{2}+C\|\nabla\bar{u}^{(n)}\|^{2}\|\nabla\omega\|\|A\omega\|, \end{align} (4.10)
    \begin{align} b(u^{(n)},\bar{\omega}^{(n)},A\bar{\omega}^{(n)})&\leq k\|\nabla u^{(n)}\|\|\nabla\bar{\omega}^{(n)}\|^{\frac{1}{2}}\|A\bar{\omega}^{(n)}\|^{\frac{1}{2}}\|A\bar{\omega}^{(n)}\|\\ &\leq\frac{\gamma}{4}\|A\bar{\omega}^{(n)}\|^{2}+C\parallel\nabla u^{(n)}\parallel^4\parallel\nabla\bar{\omega}^{(n)}\parallel^2, \end{align} (4.11)
    \begin{align} 2\kappa|(\nabla\times\bar{\omega}^{(n)},A\bar{u}^{(n)})|&\leq 2\kappa\|A\bar{u}^{(n)}\|\|\nabla\bar{\omega}^{(n)}\|\\ &\leq\frac{\nu+k}{5}\|A\bar{u}^{(n)}\|^{2}+C\|\nabla\bar{\omega}^{(n)}\|^{2}, \end{align} (4.12)
    \begin{align} 2\kappa|(\nabla\times\bar{u}^{(n)},A\bar{\omega}^{(n)})\|&\leq 2\kappa\parallel A\bar{\omega}^{(n)}\|\|\nabla\bar{u}^{(n)}\|\\ &\leq\frac{\gamma}{4}\|A\bar{\omega}^{(n)}\|^{2}+C\|\nabla\bar{u}^{(n)}\|^{2}, \end{align} (4.13)
    \begin{align} |(f_{1}-f_{1}^{(n)},A\bar{u}^{(n)})|&\leq\frac{\nu+k}{5}\|A\bar{u}^{(n)}\|^{2}+\frac{5}{4(\nu+\kappa)}\|f_{1}-f_{1}^{(n)}\|^{2}, \end{align} (4.14)
    \begin{align} |(f_{2}-f_{2}^{(n)},A\bar{\omega}^{(n)})|&\leq\frac{\gamma}{4}\|A\bar{\omega}^{(n)}\|^{2}+\frac{1}{\gamma}\|f_{2}-f_{2}^{(n)}\|^{2}, \end{align} (4.15)
    \begin{align} \|G(u)-G(u^{(n)})\|^{2}& = \int_\Omega \big|\sigma|u|^{\beta-1}u-\sigma|u^{(n)}|^{\beta-1}u^{(n)}\big|^2dx\\ &\leq C\int_\Omega [|u|^{\beta-1}|\bar{u}^{(n)}|+\big||u|^{\beta-1}-|u^{(n)}|^{\beta-1}\big|\cdot|u^{(n)}|]^2dx\\ &\leq C\int_\Omega |u|^{2(\beta-1)}|\bar{u}^{(n)}|^2dx+C\int_\Omega[|u|^{\beta-2}+|u^{(n)}|^{\beta-2}]^2|u^{(n)}|^2|\bar{u}^{(n)}|^2dx\\ &\leq C[\parallel u\parallel_\infty^{2(\beta-1)}+(\parallel u\parallel_\infty^{2(\beta-2)}+\parallel u^{(n)}\parallel_{\infty}^{2(\beta-2)})\parallel u^{(n)}\parallel_\infty^2]\parallel\nabla \bar{u}^{(n)}\parallel^2, \end{align} (4.16)

    where \bar{u}^{(n)}(t) = u(t)-u^{n}(t) . In the above inequality, we used the fact that

    |x^p-y^p|\leq cp(|x|^{p-1}+|y|^{p-1})|x-y|

    for any x, y\geq 0 , where c is an absolute constant.

    Therefore,

    \begin{align} (G(u)-G(u^{(n)}),A\bar{u}^{(n)})&\leq\frac{\nu+\kappa}{5}\|A\bar{u}^{(n)}\|^{2}+\frac{5}{4(\nu+\kappa)}\|G(u)-G(u^{(n)})\|^{2}\\ &\leq C[\parallel u\parallel_\infty^{2(\beta-1)}+(\parallel u\parallel_\infty^{2(\beta-2)}+\parallel u^{(n)}\parallel_{\infty}^{2(\beta-2)})\parallel u^{(n)}\parallel_\infty^2]\parallel\nabla \bar{u}^{(n)}\parallel^2\\ &\quad+\frac{\nu+k}{5}\parallel A\bar{u}^{(n)}\parallel^2. \end{align} (4.17)

    By (4.5)–(4.15) and (4.17), we obtain

    \begin{align} \frac{d}{dt}(\|\nabla\bar{u}^{(n)}\|^{2}+\|\nabla\bar{\omega}^{(n)}\|^{2})&\leq C[\parallel u\parallel_\infty^{2(\beta-1)}+(\parallel u\parallel_\infty^{2(\beta-2)}+\parallel u^{(n)}\parallel_{\infty}^{2(\beta-2)})\parallel u^{(n)}\parallel_\infty^2\\ &\quad+\|\nabla u\|\|Au\|+\|\nabla u^{(n)}\|^{4}+\|\nabla\omega\|\|A\omega\|+1]\\ &\quad \cdot(\|\nabla\bar{u}^{(n)}\|^{2}+\|\nabla\bar{\omega}^{(n)}\|^{2})+\frac{5}{2(\nu+\kappa)}\|f_{1}-f_{1}^{(n)}\|^{2}\\ &\quad +\frac{2}{\gamma}\|f_{2}-f_{2}^{(n)}\|^{2}. \end{align} (4.18)

    Using Gronwall's inequality in (4.18) yields

    \begin{align} \|\nabla\bar{u}^{(n)}\|^{2}+\|\nabla\bar{\omega}^{(n)}\|^{2} &\leq\Big(\|\nabla\bar{u}_{\tau}^{(n)}\|^{2}+\|\nabla\bar{\omega}_{\tau}^{(n)}\|^{2}+\frac{5}{2(\nu+\kappa)}\int^{t}_{\tau}\|f_{1}-f_{1}^{(n)}\|^{2}ds\\ &\ \ \ \ +\frac{2}{\gamma}\int_\tau^t \|f_{2}-f_{2}^{(n)}\|^{2}ds\Big)\\ &\ \ \ \ \cdot\exp\Big\{C\int^{t}_{\tau}[\parallel u\parallel_\infty^{2(\beta-1)}+(\parallel u\parallel_\infty^{2(\beta-2)}+\parallel u^{(n)}\parallel_{\infty}^{2(\beta-2)})\parallel u^{(n)}\parallel_\infty^2\\ &\ \ \ \ +\|\nabla u\|\|Au\|+\|\nabla u^{(n)}\|^{4}+\|\nabla\omega\|\|A\omega\|+1]ds\Big\}. \end{align} (4.19)

    From Lemmas 3.2 and 3.5, and using Agmon's inequality, we know that

    \parallel u\parallel_\infty < C, \parallel u^{(n)}\parallel_\infty < C, \forall t\geq t_5.

    So, from Lemmas 3.2–3.5, we have

    \begin{align*} &\exp\Big\{C\int^{t}_{\tau}[\parallel u\parallel_\infty^{2(\beta-1)}+(\parallel u\parallel_\infty^{2(\beta-2)}+\parallel u^{(n)}\parallel_{\infty}^{2(\beta-2)})\parallel u^{(n)}\parallel_\infty^2+\|\nabla u\|\|Au\|\nonumber\\ &+\|\nabla u^{(n)}\|^{4}+\|\nabla\omega\|\|A\omega\|+1]ds\Big\} < +\infty, \end{align*}

    for any given t and \tau , t\geq\tau , \tau\geq t_5 .

    Thus, from (4.19), we have that \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) is ((V_{1}\times V_{2})\times(\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2})), V_{1}\times V_{2}) -continuous, for \tau\geq t_5 .

    By Lemma 3.5, the fact of compact imbedding \mathbf{H}^2\times \mathbf{H}^2\hookrightarrow V_{1}\times V_{2} , and Theorem 3.1 in [16], we have the following theorems.

    Theorem 4.1. Suppose \beta > 3 . The family of processes \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) with respect to problem (1.1) has a (V_1\times V_2, V_1\times V_2) uniform attractor \mathcal{A}_{1} . Moreover,

    \begin{eqnarray} \mathcal{A}_{1} = \bigcup\limits_{(f_{1},f_{2})\in \mathcal{H}(f_1^0)\times\mathcal{H}(f_2^0)}\mathcal{K}_{(f_1,f_2)}(0), \end{eqnarray} (4.20)

    where \mathcal{K}_{(f_{1}, f_{2})}(0) is the section at t = 0 of kernel \mathcal{K}_{(f_{1}, f_{2})} of the processes \{U_{(f_1, f_2)}(t, \tau)\}_{t\geq\tau} .

    Theorem 4.2. Suppose \beta > 3 . The family of processes \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) with respect to problem (1.1) has a (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform attractor \mathcal{A}_{2} . \mathcal{A}_{2} is compact in \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega) , and it attracts every bounded subset of V_{1}\times V_{2} in the topology of \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega) .

    Proof. By Theorem 2.2, we only need to prove that \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) acting on V_{1}\times V_{2} is (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform (w.r.t.\ \ f_{1}\times f_{2}\in \mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2})) asymptotically compact.

    Thanks to Lemma 3.5, we know that B = \{(u\times\omega)\in \mathbf{H}^2\times \mathbf{H}^2: \|Au\|^{2}+\|A\omega\|^{2}\leq C\} is a bounded (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform absorbing set of \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} . Then, we just need to prove that, for any \tau_{n}\in\mathbb{R} , any t\rightarrow +\infty , and (u_{\tau_{n}}, \omega_{\tau_n})\in B , \{(u_{n}(t), \omega_{n}(t))\}_{n = 0}^{\infty} is precompact in \textbf{H}^{2}(\Omega)\times\textbf{H}^{2}(\Omega) , where (u_{n}(t), \omega_{n}(t)) = U_{(f_{1}, f_{2})}(t, \tau_{n})(u_{\tau_{n}}, \omega_{\tau_{n}}) .

    Because V_1\hookrightarrow H_1, V_2\hookrightarrow H_2 are compact, from Lemma 3.6 we obtain that \{\frac{d}{dt}u_{n}(t)\}_{n = 0}^{\infty} , \{\frac{d}{dt}\omega_{n}(t)\}_{n = 0}^{\infty} are precompact in H_1 and H_2 , respectively.

    Next, we will prove \{u_{n}(t)\}_{n = 0}^{\infty} , \{\omega_{n}(t)\}_{n = 0}^{\infty} are Cauchy sequences in \mathbf{H}^{2}(\Omega) . From (2.1), we have

    \begin{align} &(\nu+\kappa)(Au_{n_k}(t)-Au_{n_j}(t)) = -\frac{d}{dt}u_{n_k}(t)+\frac{d}{dt}u_{n_j}(t)-B(u_{n_k}(t))+B(u_{n_j}(t))\\ &\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad-G(u_{n_k}(t))+G(u_{n_j}(t))+2\kappa\nabla\times\omega_{n_k}(t)-2\kappa\nabla\times\omega_{n_j}(t). \end{align} (4.21)
    \begin{align} &\gamma(A\omega_{n_k}(t)-A\omega_{n_j}(t))-\mu\nabla\nabla\cdot\omega_{n_k}(t)+\mu\nabla\nabla\cdot\omega_{n_j}(t) = -\frac{d}{dt}\omega_{n_k}(t)+\frac{d}{dt}\omega_{n_j}(t)-B(u_{n_k}(t),\omega_{n_k}(t))\\&\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad+B(u_{n_j}(t),\omega_{n_j}(t))-4\kappa\omega_{n_k}(t)\\ &\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad+4\kappa\omega_{n_j}(t)+2\kappa\nabla\times u_{n_k}(t)-2\kappa\nabla\times u_{n_j}(t). \end{align} (4.22)

    Multiplying (4.21) by Au_{n_k}(t)-Au_{n_j}(t) , we obtain

    \begin{align*} (\nu+\kappa)\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel^2&\leq\parallel\frac{d}{dt}u_{n_k}(t)-\frac{d}{dt}u_{n_j}(t)\parallel\cdot\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel+\parallel B(u_{n_k}(t))-B(u_{n_j}(t))\parallel\nonumber\\ & \cdot\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel+\parallel G(u_{n_k}(t))-G(u_{n_j}(t))\parallel\cdot\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel\nonumber\\ &\ \ \ +2\kappa\parallel\nabla\omega_{n_k}(t)-\nabla\omega_{n_j}(t)\parallel\cdot\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel\nonumber\\ &\leq\frac{4(\nu+\kappa)}{5}\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel^2+\frac{5}{4(\nu+\kappa)}\parallel\frac{d}{dt}u_{n_k}(t)-\frac{d}{dt}u_{n_j}(t)\parallel^2\nonumber\\ &\ \ \ +\frac{5}{4(\nu+\kappa)}\parallel B(u_{n_k}(t))-B(u_{n_j}(t))\parallel^2+\frac{5}{4(\nu+\kappa)}\parallel G(u_{n_k}(t))-G(u_{n_j}(t))\parallel^2\nonumber\\ &\ \ \ +\frac{5\kappa^2}{\nu+\kappa}\parallel\nabla\omega_{n_k}(t)-\nabla\omega_{n_j}(t)\parallel^2, \end{align*}

    so we have

    \begin{align} \frac{\nu+\kappa}{5}\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel^2 &\leq\frac{5}{4(\nu+\kappa)}\parallel\frac{d}{dt}u_{n_k}(t)-\frac{d}{dt}u_{n_j}(t)\parallel^2\\&\ \ \ +\frac{5}{4(\nu+\kappa)}\parallel B(u_{n_k}(t))-B(u_{n_j}(t))\parallel^2\\ &\ \ \ +\frac{5}{4(\nu+\kappa)}\parallel G(u_{n_k}(t))-G(u_{n_j}(t))\parallel^2\\&\ \ \ +\frac{5\kappa^2}{\nu+\kappa}\parallel\nabla\omega_{n_k}(t)-\nabla\omega_{n_j}(t)\parallel^2. \end{align} (4.23)

    Multiplying (4.22) by A\omega_{n_k}(t)-A\omega_{n_j}(t) we obtain

    \begin{align*} &\quad\gamma\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel^2+\mu\parallel\nabla\nabla\cdot(\omega_{n_k}(t)-\omega_{n_j}(t))\parallel^2\nonumber\\ &\leq \parallel\frac{d}{dt}\omega_{n_k}(t)-\frac{d}{dt}\omega_{n_j}(t)\parallel\cdot\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel+\parallel B(u_{n_k}(t),\omega_{n_k}(t))-B(u_{n_j}(t),\omega_{n_j}(t))\parallel\nonumber\\ &\ \ \ \cdot\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel+4\kappa\parallel\omega_{n_k}(t)-\omega_{n_j}(t)\parallel\cdot\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel\nonumber\\ &\ \ \ +2\kappa\parallel\nabla u_{n_k}(t)-\nabla u_{n_j}(t)\parallel\cdot\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel\nonumber\\ &\leq\frac{4\gamma}{5}\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel^2+\frac{5}{4\gamma}\parallel\frac{d}{dt}\omega_{n_k}(t)-\frac{d}{dt}\omega_{n_j}(t)\parallel^2\nonumber\\ &\ \ \ +\frac{5}{4\gamma}\parallel B(u_{n_k}(t),\omega_{n_k}(t))-B(u_{n_j}(t),\omega_{n_j}(t))\parallel^2+\frac{20\kappa^2}{\gamma}\parallel\omega_{n_k}(t)-\omega_{n_j}(t))\parallel^2\nonumber\\ &\ \ \ +\frac{5\kappa^2}{\gamma}\parallel\nabla u_{n_k}(t)-\nabla u_{n_j}(t)\parallel^2, \end{align*}

    so we get

    \begin{align} &\ \ \ \frac{\gamma}{5}\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel^2+\mu\parallel\nabla\nabla\cdot(\omega_{n_k}(t)-\omega_{n_j}(t))\parallel^2\\ &\leq\frac{5}{4\gamma}\parallel\frac{d}{dt}\omega_{n_k}(t)-\frac{d}{dt}\omega_{n_j}(t)\parallel^2+\frac{5}{4\gamma}\parallel B(u_{n_k}(t),\omega_{n_k}(t))-B(u_{n_j}(t),\omega_{n_j}(t))\parallel^2\\ &\ \ \ +\frac{20\kappa^2}{\gamma}\parallel\omega_{n_k}(t)-\omega_{n_j}(t)\parallel^2+\frac{5\kappa^2}{\gamma}\parallel\nabla u_{n_k}(t)-\nabla u_{n_j}(t)\parallel^2. \end{align} (4.24)

    Combining (4.23) with (4.24), we have

    \begin{align} &\ \ \ \frac{\nu+\kappa}{5}\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel^2+\frac{\gamma}{5}\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel^2\\ &\leq \frac{5}{4(\nu+\kappa)}\parallel\frac{d}{dt}u_{n_k}(t)-\frac{d}{dt}u_{n_j}(t)\parallel^2+\frac{5}{4(\nu+\kappa)}\parallel B(u_{n_k}(t))-B(u_{n_j}(t))\parallel^2\\ &\ \ \ +\frac{5}{4(\nu+\kappa)}\parallel G(u_{n_k}(t))-G(u_{n_j}(t))\parallel^2+\frac{5\kappa^2}{\nu+\kappa}\parallel\nabla\omega_{n_k}(t)-\nabla\omega_{n_j}(t)\parallel^2\\ &\ \ \ +\frac{5}{4\gamma}\parallel\frac{d}{dt}\omega_{n_k}(t)-\frac{d}{dt}\omega_{n_j}(t)\parallel^2+\frac{5}{4\gamma}\parallel B(u_{n_k}(t),\omega_{n_k}(t))-B(u_{n_j}(t),\omega_{n_j}(t))\parallel^2\\ &\ \ \ +\frac{20\kappa^2}{\gamma}\parallel\omega_{n_k}(t)-\omega_{n_j}(t)\parallel^2+\frac{5\kappa^2}{\gamma}\parallel\nabla u_{n_k}(t)-\nabla u_{n_j}(t)\parallel^2. \end{align} (4.25)

    Because V_2\hookrightarrow H_2 is compact, from Lemma 3.2 we know that \{\omega_n(t)\}_{n = 0}^\infty is precompact in H_2 . And, using the compactness of embedding \mathbf{H}^2(\Omega)\hookrightarrow V_1, \mathbf{H}^2(\Omega)\hookrightarrow V_2 and Lemma 3.5, we have that \{u_{n}(t)\}_{n = 0}^\infty, \{\omega_n(t)\}_{n = 0}^\infty are precompact in V_1 and V_2 , respectively. Considering V_1\hookrightarrow H_1, V_2\hookrightarrow H_2 are compact, from Lemma 3.6 we know that \{\frac{d}{dt}u_n(t)\}_{n = 0}^\infty , \{\frac{d}{dt}\omega_n(t)\}_{n = 0}^\infty are precompact in H_1 and H_2 , respectively.

    Using (2.6), we have

    \begin{align} &\ \ \ \parallel B(u_{n_k}(t))-B(u_{n_j}(t))\parallel^2\\ &\leq C(\parallel B(u_{n_k}(t),u_{n_k}(t)-u_{n_j}(t))\parallel^2+\parallel B(u_{n_k}(t)-u_{n_j}(t),u_{n_j}(t))\parallel^2)\\ &\leq C(\parallel\nabla u_{n_k}(t)\parallel^2\parallel\nabla(u_{n_k}(t)-u_{n_j}(t))\parallel\parallel A(u_{n_k}(t)-u_{n_j}(t))\parallel\\ &\ \ \ \ +\parallel\nabla(u_{n_k}(t)-u_{n_j}(t))\parallel^2\parallel\nabla u_{n_j}(t)\parallel\parallel Au_{n_j}(t)\parallel)\rightarrow 0, \text {as}\ k,j\rightarrow +\infty, \end{align} (4.26)

    and

    \begin{align} &\ \ \ \ \parallel B(u_{n_k}(t),\omega_{n_k}(t))-B(u_{n_j}(t),\omega_{n_j}(t))\parallel^2\\ &\leq C(\parallel B(u_{n_k}(t),\omega_{n_k}(t)-\omega_{n_j}(t))\parallel^2+\parallel B(u_{n_k}(t)-u_{n_j}(t),\omega_{n_j}(t))\parallel^2)\\ &\leq C(\parallel\nabla u_{n_k}(t)\parallel^2\parallel\nabla(\omega_{n_k}(t)-\omega_{n_j}(t))\parallel\parallel A(\omega_{n_k(t)}-\omega_{n_j}(t))\parallel\\ &\ \ \ \ +\parallel\nabla(u_{n_k}(t)-u_{n_j}(t))\parallel^2\parallel\nabla\omega_{n_j}(t)\parallel\parallel A\omega_{n_j}(t)\parallel)\rightarrow 0,\ \text{as}\ k,j\rightarrow +\infty. \end{align} (4.27)

    From the proof of Lemma 4.2 in [15], we have

    \begin{equation} \parallel G(u_{n_k}(t))-G(u_{n_j}(t))\parallel^2\leq C\parallel u_{n_k}(t)-u_{n_j}(t)\parallel^2\rightarrow 0,\ \text{as}\ k,j\rightarrow +\infty. \end{equation} (4.28)

    Taking into account (4.25)–(4.28), we have

    \begin{equation} \frac{\nu+\kappa}{5}\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel^2+\frac{\gamma}{5}\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel^2\rightarrow 0,\ \text{as}\ k,j\rightarrow +\infty. \end{equation} (4.29)

    (4.29) indicates that the processes \{U_{(f_1, f_2)}(t, \tau)\}_{t\geq\tau} are uniformly asymptotically compact in \mathbf{H}^2(\Omega)\times\mathbf{H}^2(\Omega) . So, by Theorem 2.2, it has a (V_1\times V_2, \mathbf{H}^2(\Omega)\times \mathbf{H}^2(\Omega)) -uniform attractor \mathcal{A}_2 .

    Theorem 4.3. Suppose \beta > 3 . The (V_{1}\times V_{2}, V_{1}\times V_{2}) -uniform attractor \mathcal{A}_{1} of the family of processes \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) is actually the (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform attractor \mathcal{A}_{2} , i.e., \mathcal{A}_{1} = \mathcal{A}_{2} .

    Proof. First, we will prove \mathcal{A}_{1}\subset\mathcal{A}_{2} . Because \mathcal{A}_{2} is bounded in \mathbf{H}^2(\Omega)\times \mathbf{\mathbf{H}}^2(\Omega) , and the embedding \mathbf{H}^2(\Omega)\times \mathbf{\mathbf{H}}^2(\Omega)\hookrightarrow V_{1}\times V_{2} is continuous, \mathcal{A}_{2} is bounded in V_{1}\times V_{2} . From Theorem 4.2, we know that \mathcal{A}_{2} attracts uniformly all bounded subsets of V_{1}\times V_{2} , so \mathcal{A}_{2} is a bounded uniform attracting set of \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) in V_{1}\times V_{2} . By the minimality of \mathcal{A}_{1} , we have \mathcal{A}_{1}\subset\mathcal{A}_{2} .

    Now, we will prove \mathcal{A}_{2}\subset\mathcal{A}_{1} . First, we will prove \mathcal{A}_{1} is a (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniformly attracting set of \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) . That is to say, we will prove

    \begin{equation} \lim\limits_{t\rightarrow +\infty}( \sup\limits_{(f_{1},f_{2})\in\mathcal{H}(f^{0}_{1})\times\mathcal{H}(f^{0}_{2})} \mathrm{dist}_{\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)}(U_{(f_{1},f_{2})}(t,\tau)B,\mathcal{A}_{1})) = 0, \end{equation} (4.30)

    for any \tau\in\mathbb{R} and B\in \mathcal{B}(V_{1}\times V_{2}) .

    If we suppose (4.30) is not valid, then there must exist some \tau\in\mathbb{R} , B\in \mathcal{B}(V_{1}\times V_{2}) , \varepsilon_{0} > 0 , (f_{1}^{(n)}, f_{2}^{(n)})\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) , and t_{n}\rightarrow +\infty , when n\rightarrow +\infty , such that, for all n\geq 1 ,

    \begin{equation} \mathrm{dis t}_{\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)}(U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)B,\mathcal{A}_{1})\geq 2\varepsilon_{0}. \end{equation} (4.31)

    This shows that there exists (u_{n}, \omega_{n})\in B such that

    \begin{eqnarray} \mathrm{dis t}_{\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)}(U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n}) ,\mathcal{A}_{1})\geq \varepsilon_{0}. \end{eqnarray} (4.32)

    In the light of Theorem 4.2, \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) has a (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform attractor \mathcal{A}_{2} which attracts any bounded subset of V_{1}\times V_{2} in the topology of \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega) . Therefore, there exists (\zeta, \eta)\in\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega) and a subsequence of U_{(f_{1}^{(n)}, f_{2}^{(n)})}(t_{n}, \tau)(u_{n}, \omega_{n}) such that

    \begin{eqnarray} U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n})\rightarrow (\zeta,\eta )\quad\text{strongly in}\ \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega). \end{eqnarray} (4.33)

    On the other side, the processes \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) have a (V_{1}\times V_{2}, V_1\times V_2) -uniform attractor \mathcal{A}_{1} , which attracts uniformly any bounded subsets of V_{1}\times V_{2} in the topology of V_{1}\times V_{2} . So, there exists (u, \omega)\in V_{1}\times V_{2} and a subsequence of U_{(f_{1}^{(n)}, f_{2}^{(n)})}(t_{n}, \tau)(u_n, \omega_n) such that

    \begin{eqnarray} U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n}) \rightarrow (u,\omega)\ \text{strongly in}\ V_{1}\times V_{2}. \end{eqnarray} (4.34)

    From (4.33) and (4.34), we have (u, \omega) = (\zeta, \eta) , so (4.33) can also be written as

    \begin{eqnarray} U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n})\rightarrow (u,\omega)\ \text{strongly in}\ \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega). \end{eqnarray} (4.35)

    And, from Theorem 4.1, we know that \mathcal{A}_{1} attracts B , so

    \begin{eqnarray} \lim\limits_{n\rightarrow +\infty}\mathrm{dist}_{V_{1}\times V_{2}}(U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n}) ,\mathcal{A}_{1}) = 0. \end{eqnarray} (4.36)

    By (4.34), (4.36), and the compactness of \mathcal{A}_{1} in V_{1}\times V_{2} , we have (u, \omega)\in\mathcal{A}_{1} . Considering (4.35), we have

    \begin{eqnarray*} &\quad \lim\limits_{n\rightarrow +\infty}\mathrm{dist}_{\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)}(U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n}), \mathcal{A}_{1})\nonumber\\ &\leq \lim\limits_{n\rightarrow +\infty}\mathrm{dist}_{\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)}(U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n}), (u,\omega))\nonumber\\ & = 0, \end{eqnarray*}

    which contradicts (4.32). Therefore, \mathcal{A}_{1} is a (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform attractor of \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) , and by the minimality of \mathcal{A}_{2} , we have \mathcal{A}_{2}\subset\mathcal{A}_{1} .

    In this paper, we discussed the existence of uniform attractors of strong solutions for 3D incompressible micropolar equations with nonlinear damping. Based on some translation-compactness assumption on the external forces, and when \beta > 3 , we made a series of uniform estimates on the solutions in various functional spaces. According to these uniform estimates, we proved the existence of uniform attractors for the process operators corresponding to the solution of the equation in V_1\times V_2 and \mathbf{H}^2\times\mathbf{H}^2 , and verified that the uniform attractors in V_1\times V_2 and \mathbf{H}^2\times\mathbf{H}^2 are actually the same.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are thankful to the editors and the anonymous reviewers for their valuable suggestions and comments on the manuscript. This work is supported by National Natural Science Foundation of China (Nos. 11601417, 12001420).

    The authors declare no conflict of interest in this paper.



    [1] Muntean JL (2018) Diversity in Carlin-Style Gold Deposits, Reviews in Economic Geology, SEG Inc, 1–363. https://doi.org/10.5382/rev.20
    [2] Muntean JL, Cline JS, Simon AC, et al. (2011) Magmatic–hydrothermal origin of Nevada's Carlin-type gold deposits. Nature Geosci 4: 122–127. https://doi.org/10.1038/ngeo1064 doi: 10.1038/ngeo1064
    [3] Cline JS, Hofstra AH, Muntean JL, et al. (2005) Carlin-Type Gold Deposits in Nevada: Critical Geologic Characteristics and Viable Models, 100th Anniversary Volume (1905–2005), SEG Inc Econ Geol, 451–484. https://doi.org/10.5382/AV100.15
    [4] Su WC, Dong WD, Zhang XC, et al. (2018) Carlin-Type Gold Deposits in the Dian-Qian-Gui "Golden Triangle" of Southwest China, In: Muntean JL, Author, Diversity in Carlin-Style Gold Deposits, 157–185. https://doi.org/10.5382/rev.20.05 doi: 10.5382/rev.20.05
    [5] Kim AA (2000) Gold-tellurium-selenium mineralization in Kuranakh Deposit (Central Aldan)[in Russian]. Miner Soc Bull 129: 51–57.
    [6] Bakulin YI, Buryak AE, Perestoronin AE (2001) Carlin type gold mineralization (location pattern, genesis, geological basis of forecasting and estimation [in Russian]. DVIMS NRD RF, Khabarovsk.
    [7] Vetluzhskikh VG, Kazansky VI, Kochetkov AY, et al. (2002) Central Aldan gold deposits. Geol Ore Deposits 44: 405–434. Available from: https://www.pleiades.online/cgi-perl/search.pl?type = abstract & name = geolore & number = 6 & year = 2 & page = 405.
    [8] Khomich VG, Boriskina NG (2011) Main Geologic-Genetic Types of Bedrock Gold Deposits of the Transbaikal Region and the Russian Far East. Russia. Russ J of Pac Geol 5: 64–84. https://doi.org/10.1134/S1819714011010040 doi: 10.1134/S1819714011010040
    [9] Khomich VG, Boriskina NG, Santosh M (2014) A geodynamic perspective of world-class gold deposits in East Asia. Gondwana Res 26: 816–833. https://doi.org/10.1016/j.gr.2014.05.007 doi: 10.1016/j.gr.2014.05.007
    [10] Molchanov AV, Terekhov AV, Shatov VV, et al. (2017) Gold ore districts and ore clusters of the Adanian metallogenic province. Reg Geol Metallog 71: 93–111.
    [11] Leontev VI, Bushuev YY, Chernigovcev KA (2018) Samolazovskoe gold deposit (Central Aldan ore district): geological structure and mineralization of deep horizons. Reg Geol Metallog 75: 90–103.
    [12] Petrov OV, Molchanov AV, Terekhov AV, et al. (2018) Morozkinskoe gold deposit (geological structure and short story of the exploration). Reg Geol Metallog 75: 112–116. Available from: https://elibrary.ru/download/elibrary_36457688_12396066.pdf.
    [13] Minina OV (2019) Paleokarst role in Lebedinsky ore cluster gold orebodies localization, Yakutia[in Russian]. Rudy i Metally 4: 58–74. https://doi.org/10.24411/0869-5997-2019-10032 doi: 10.24411/0869-5997-2019-10032
    [14] Arehart GB, Ressel M, Carne R, et al. (2013) A Comparison of Carlin-type Deposits in Nevada and Yukon. In: Colpron M, Bissig T, Rusk BG, et al., Tectonics, Metallogeny, and Discovery: The North American Cordillera and Similar Accretionary Settings, 389–401. Available from: https://www.segweb.org/store/SearchResults.aspx?Category = SP17-PDF
    [15] Khomich VG, Boriskina NG, Kasatkin SA (2019) Geology, magmatism, metallogeny, and geodynamics of the South Kuril Islands. Ore Geol Rev 105: 151–162. https://doi.org/10.1016/j.oregeorev.2018.12.015 doi: 10.1016/j.oregeorev.2018.12.015
    [16] Grebennikov AV, Khanchuk AI (2021) Geodynamics and magmatism of the pacific-type transform margins. aspects and discriminant diagrams[in Russian]. Tikhookeanskaya Geologiya 40: 3–24. Available from: http://itig.as.khb.ru/POG/2021/n_1/pdf/Grebennikov_RGB.pdf
    [17] Khomich VG, Boriskina NG (2021) Eventual solution to the problems of gold ore trends localization in the Carlin province (Nevada, USA). Int J Earth Sci (Geol Rundsch) 110: 2043–2055. https://doi.org/10.1007/s00531-021-02056-2 doi: 10.1007/s00531-021-02056-2
    [18] Khomich VG, Boriskina NG (2021) Petroleum potential of the Uchur zone of the Aldan anteclise (Siberian Platform). J Petrol Sci Eng 201: 108501. https://doi.org/10.1016/j.petrol.2021.108501 doi: 10.1016/j.petrol.2021.108501
    [19] Hronsky JMA, Groves DI, Loucks RR, et al. (2012) A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods. Miner Deposita 47: 339–358. https://doi.org/10.1007/s00126-012-0402-y doi: 10.1007/s00126-012-0402-y
    [20] Zhu J, Zhang ZC, Santosh M, et al. (2020) Carlin-style gold province linked to the extinct Emeishan plume. EPSL 530: 115940. https://doi.org/10.1016/j.epsl.2019.115940 doi: 10.1016/j.epsl.2019.115940
    [21] Khanchuk AI (2006) Geodynamics, magmatism, and metallogeny of the Russian East[in Russian]. Dalnauka, Vladivostok.
    [22] Hofstra AH, Cline JS (2000) Characteristics and models for Carlin-type gold deposits, In: Hagemann SG, Brow PE, (Eds.), Gold in 2000, 163–220. Available from: https://www.segweb.org/Store/detail.aspx?id = EDOCREV13CH05.
    [23] Cline JS (2018) Nevada's Carlin-Type Gold Deposits: What We've Learned During the Past 10 to 15 Years. In: Muntean JL, Diversity in Carlin-Style Gold Deposits, 20: 7–38. https://doi.org/10.5382/rev.20.01
    [24] Manning AH, Hofstra AH (2017) Noble gas data from Goldfield and Tonopah epithermal Au-Ag deposits, ancestral Cascades Arc, USA: Evidence for a primitive mantle volatile source. Ore Geol Rev 89: 683–700. http://dx.doi.org/10.1016/j.oregeorev.2017.06.023 doi: 10.1016/j.oregeorev.2017.06.023
    [25] Weil AB, Yonkee WA (2012) Layer-parallel shortening across the Sevier fold-thrust belt and Laramide foreland of Wyoming: spatial and temporal evolution of a complex geodynamic system. EPSL 357–358: 405–420. http://dx.doi.org/10.1016/j.epsl.2012.09.021 doi: 10.1016/j.epsl.2012.09.021
    [26] Wang J, Li CF (2015) Crustal magmatism and lithospheric geothermal state of western North America and their implications for a magnetic mantle. Tectonophysics 638: 112–125. http://dx.doi.org/10.1016/j.tecto.2014.11.002 doi: 10.1016/j.tecto.2014.11.002
    [27] Ressel MW, Henry CD (2006) Igneous geology of the Carlin trend, Nevada: development of the Eocene plutonic complex and significance for Carlin-type gold deposits. Econ Geol 101: 347–383. https://doi.org/10.2113/gsecongeo.101.2.347 doi: 10.2113/gsecongeo.101.2.347
    [28] Kuchai VK, Vesson RL (1980) Fixed hot zone, types of orogenesis and Cenozoic tectonics of the USA West. Geotectonics 2: 49–62
    [29] Berger VI, Mosier DL, Bliss JD, et al. (2014) Sediment-hosted gold deposits of the world—Database and grade and tonnage models, Open-File Report 2014–1074. Available from: http://dx.doi.org/10.3133/ofr20141074.
    [30] Bray du EA, John DA, Colgan JP, et al. (2019) Morgan, Petrology of Volcanic Rocks Associated with Silver-Gold (Ag-Au) Epithermal Deposits in the Tonopah, Divide, and Goldfield Mining Districts, Nevada. Available from: https://pubs.usgs.gov/sir/2019/5024/sir20195024.pdf.
    [31] Fithian MT, Holley EA, Kelly NM (2018) Geology of Gold Deposits at the Marigold Mine, Battle Mountain District, Nevada, In: Muntean JL, Diversity in Carlin-Style Gold Deposits, 121–156. https://doi.org/10.5382/rev.20.04
    [32] Boitsov VE, Pilipenko GN (1998) Gold and uranium in the Mesozoic hydrothermal deposits of the Central Aldan region (Russia)[in Russian]. Geol Ore Deposits 40: 354–369.
    [33] Shatova NV, Molchanov AV, Terekhov AV, et al. (2019) Ryabinovoe copper-gold-porphyry deposit (Southern Yakutia): geology, noble gases isotope systematics and isotopic (U-PB, RB-SR, RE-OS) dating of wallrock alteration and ore-forming processes. Regionalnaya Geologiya i Metallogeniya 77: 75–97. Available from: https://elibrary.ru/download/elibrary_37422881_84522683.pdf.
    [34] Van der Meer DG, van Hinsbergen DJJ, Spakmana W (2018) Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics 723: 309–448. https://doi.org/10.1016/j.tecto.2017.10.004 doi: 10.1016/j.tecto.2017.10.004
    [35] Gainanov AG, Krasny LI, Stroyev PA (1979) Explanatory note to gravimetric maps of the Pacific Ocean and the Pacific Ocean mobile belt [in Russian]. VSEGEI, Leningrad.
    [36] Chen CX, Zhao DP, Wu SG (2015) Tomographic imaging of the Cascadia subduction zone: Constraints on the Juan de Fuca slab. Tectonophysics 647–648: 73–88. http://dx.doi.org/10.1016/j.tecto.2015.02.012 doi: 10.1016/j.tecto.2015.02.012
    [37] Sigloch K, McQuarrie N, Nolet G (2008) Two-stage subduction history under North America inferred from finite-frequency tomography. Nature Geosci 1: 458–462. https://doi.org/10.1038/ngeo231 doi: 10.1038/ngeo231
    [38] Faccenna C, Becker W, Lallemand S, et al. (2010) Subduction-triggered magmatic pulses: A new class of plumes? EPSL 299: 54–68. https://doi.org/10.1016/j.epsl.2010.08.012 doi: 10.1016/j.epsl.2010.08.012
    [39] James DE, Fouch MJ, Carlson RW, et al. (2011) Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track. EPSL 311: 124–135. https://doi.org/10.1016/j.epsl.2011.09.007 doi: 10.1016/j.epsl.2011.09.007
    [40] Sigloch K (2011) Mantle provinces under North America from multifrequency P wave tomography. Geochem Geophys Geosyst 12: Q02W08. https://doi.org/10.1029/2010GC003421 doi: 10.1029/2010GC003421
    [41] Parfenov LM, Kuzmin MI (2001) Tectonics, geodynamics, and metallogeny of the area of republic of Sakha (Yakutiya)[in Russian]. Nauka, Moscow.
    [42] Khomich VG, Boriskina NG (2013) Large gold-ore districts of Southeast Russia: features of position and structure. Lithosphere (Russian). 1: 128–135. Available from: https://elibrary.ru/download/elibrary_19096337_71208627.pdf.
    [43] Kazansky VI (2004) The unique Central Aldan gold-uranium ore district (Russia). Geol Ore Deposits 46: 167–181.
    [44] Dick IP (1998) Gold placers-giants of Aldan[in Russian]. Otechestvennaya Geologiya 3: 47–49.
    [45] Maximov EP, Nikitin VM, Uyutov VI (2010) The Central Aldan gold-uranium ore magmatogenic system, Aldan-Stanovoy Shield, Russia. Russ J Pac Geol 4: 95–115. https://doi.org/10.1134/S1819714010020016 doi: 10.1134/S1819714010020016
    [46] El'yanov AA, Andreev GV (1991) Magmatism and metallogeny of multistagely activated cratonic areas[in Russian]. Nauka, Novosibirsk.
    [47] Polin VF, Mitsuk VV, Khanchuk AI, et al. (2012) Geochronological limits of subalkaline magmatism in the Ket-Kap-Yuna igneous province, Aldan Shield. Dokl Earth Sci 442: 17–23. https://doi.org/10.1134/S1028334X12010096 doi: 10.1134/S1028334X12010096
    [48] Shatov VV, Molchanov AV, Shatova NV, et al. (2012) Petrography, geochemistry and isotopic (U-Pb and Rb-Sr) dating of alkaline magmatic rocks of the Ryabinovy massif (South Yakutia)[In Russian]. Regionaya Geologiya i Metallogeniya 51: 62–78.
    [49] Samovich DA, Tsaruk II, Kokarev AA, et al. (2012) Uranium mineral-raw material base of East Siberia, Irkutsk: Glazkovskaya tipografiya.
    [50] Kononova VA, Pervov VA, Bogatikov OA, et al. (1995) Mesozoic potassic magmatism of Central Aldan: geodynamics and genesis[in Russian]. Geotektonika 3: 35–45
    [51] Kazansky VI, Maximov EP, (2000) Geological setting and development history of the El'kon uranium ore district (Aldan Shield, Russia). Geol Ore Deposits 42: 189–204.
    [52] Ponomarchuk AV, Prokop'ev IR, Svetlitskaya TV, et al. (2019) 40Ar/39Ar geochronology of alkaline rocks of the Inagli massif (Aldan Shield, Southern Yakutia). Russ Geol Geophys 60: 33–44. https://doi.org/10.15372/RGG2019003 doi: 10.15372/RGG2019003
    [53] Yanovsky VM, Chmyrev AV, Sorokin AB (1995) Geodynamic Models of Gold in the Regions of Tectono-Magmatic Activization[in Russian]. Rudy i Metally 6: 45–51.
    [54] Ibragimova EK, Radkov AV, Molchanov AV, et al. (2015) The results of U-Pb (SHRIMP â…¡) isotope dating of zircons from dunite from massif Inagli (Aldan Shield) and the problem of the genesis of concentrically-oned complexes. Regionalnaya Geologiya i Mmetallogeniya 62: 64–78. Available from: https://elibrary.ru/download/elibrary_24251614_51302773.pdf.
    [55] Okrugin AV, Yakubovich OV, Ernst R, et al. (2018) Geology and Mineral Resources of the North-East of Russia[in Russian]. NEFU, Yakutsk.
    [56] Khomich VG, Boriskina NG (2016) Essence of the late mesozoic ore-magmatic systems of Aldan Shield. Lithosphere (Russian) 2: 70–90. Available from: https://elibrary.ru/download/elibrary_26008762_33747994.pdf.
    [57] Ronkin YL, Efimov AA, Lepikhina GA, et al. (2013) U-Pb dating of the baddeleytte-zircon system from Pt-bearing dunite of the Konder massif, Aldan Shield: New data. Dokl Earth Sci 450: 607–612. https://doi.org/10.1134/S1028334X13060135 doi: 10.1134/S1028334X13060135
    [58] Kopulov MI (2010) Future views for the gold exploration in the Allakh-Yun metallogenic area, Russian Far East[in Russian]. Otechestvennaya Geologiya 3: 23–32. Available from: https://elibrary.ru/item.asp?id = 14672498.
    [59] Shatkov GA, Volsky AS (2004) Tectonics, Deep Structure, and Minerageny of the Amur River Region and Neighboring Areas. Izdatelstvo VSEGEI, St. Petersburg, 1–190.
    [60] Glebovitsky VA, Khil'tova VY, Kozakov IK (2008) tectonics of the Siberian Craton: interpretation of geological, geophysical, geochronological, and isotopic geochemical data. Geotectonics 42: 8–20. https://doi.org/10.1134/S0016852108010020 doi: 10.1134/S0016852108010020
    [61] Khomich VG, Boriskina NG (2010) Structural position of large gold ore districts in the Central Aldan (Yakutia) and Argun (Transbaikalia) superterranes. Russ Geol Geophys 51: 661–671. https://doi.org/10.1016/j.rgg.2010.05.007 doi: 10.1016/j.rgg.2010.05.007
    [62] Razin LV, Vasyukov VS, Izbekov ED, et al. (1994) Russian Platinum. Developmental problems of mineral and raw materials of platinum metals[in Russian]. Geoinformark, Moscow.
    [63] Abramov VA (1995) Deep structure of the Central Aldan region[in Russian]. Dalnauka, Vladivostok.
    [64] Maruyama S, Santosh M, Zhao D (2007) Superplume, supercontinent, and post-perovskite: Mantle dynamics and antiplate tectonics on the Core-Mantle Boundary. Gondwana Res 1: 7–37. http://dx.doi.org/10.1016/j.gr.2006.06.003 doi: 10.1016/j.gr.2006.06.003
    [65] Zhao D, Pirajno F, Dobretsov NL, et al. (2010) Mantle structure and dynamics under East Russia and adjacent regions. Russ Geol Geophys 51: 925–938. https://doi.org/10.1016/j.rgg.2010.08.003 doi: 10.1016/j.rgg.2010.08.003
    [66] Koulakov IY, Dobretsov NL, Bushenkova NA, et al (2011) Slab shape in subduction zones beneath the Kurile–Kamchatka and Aleutian arcs based on regional tomography results. Russ Geol Geophys 52: 650–667. https://doi.org/10.1016/j.rgg.2011.05.008 doi: 10.1016/j.rgg.2011.05.008
    [67] Norton IO (2007) Speculations on Cretaceous tectonic history of the northwest Pacific and a tectonic origin for the Hawaii hotspot. GSA Special Papers, The Geological Society of America, 451–470. https://doi.org/10.1130/2007.2430(22)
    [68] Richards JP (2009) Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 37: 247–250. https://doi.org/10.1130/G25451A.1 doi: 10.1130/G25451A.1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1698) PDF downloads(107) Cited by(1)

Figures and Tables

Figures(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog