Research article Special Issues

Dynamical analysis of a discrete two-patch model with the Allee effect and nonlinear dispersal


  • Received: 21 December 2023 Revised: 03 February 2024 Accepted: 19 February 2024 Published: 19 March 2024
  • The dynamic behavior of a discrete-time two-patch model with the Allee effect and nonlinear dispersal is studied in this paper. The model consists of two patches connected by the dispersal of individuals. Each patch has its own carrying capacity and intraspecific competition, and the growth rate of one patch exhibits the Allee effect. The existence and stability of the fixed points for the model are explored. Then, utilizing the central manifold theorem and bifurcation theory, fold and flip bifurcations are investigated. Finally, numerical simulations are conducted to explore how the Allee effect and nonlinear dispersal affect the dynamics of the system.

    Citation: Minjuan Gao, Lijuan Chen, Fengde Chen. Dynamical analysis of a discrete two-patch model with the Allee effect and nonlinear dispersal[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 5499-5520. doi: 10.3934/mbe.2024242

    Related Papers:

  • The dynamic behavior of a discrete-time two-patch model with the Allee effect and nonlinear dispersal is studied in this paper. The model consists of two patches connected by the dispersal of individuals. Each patch has its own carrying capacity and intraspecific competition, and the growth rate of one patch exhibits the Allee effect. The existence and stability of the fixed points for the model are explored. Then, utilizing the central manifold theorem and bifurcation theory, fold and flip bifurcations are investigated. Finally, numerical simulations are conducted to explore how the Allee effect and nonlinear dispersal affect the dynamics of the system.



    加载中


    [1] W. Allee, Animal Aggregations: A Study in General Sociology, University of Chicago Press, 1931.
    [2] T. Liu, L. Chen, F. Chen, Z. Li, Stability analysis of a Leslie–Gower model with strong Allee effect on prey and fear effect on predator, Int. J. Bifurcation Chaos, 32 (2022), 2250082. https://doi.org/10.1142/S0218127422500821 doi: 10.1142/S0218127422500821
    [3] T. Liu, L. Chen, F. Chen, Z. Li, Dynamics of a Leslie–Gower model with weak Allee effect on prey and fear effect on predator, Int. J. Bifurcation Chaos, 33 (2023), 2350008. https://doi.org/10.1142/S0218127423500086 doi: 10.1142/S0218127423500086
    [4] C. Çelik, O. Duman, Allee effect in a discrete-time predator–prey system, Chaos, Solitons Fractals, 40 (2009), 1956–1962. https://doi.org/10.1016/j.chaos.2007.09.077 doi: 10.1016/j.chaos.2007.09.077
    [5] S. Saha, G. Samanta, Influence of dispersal and strong Allee effect on a two-patch predator–prey model, Int. J. Dyn. Control, 7 (2019), 1321–1349. http://doi.org/10.1007/s40435-018-0490-3 doi: 10.1007/s40435-018-0490-3
    [6] Y. Kang, S. Kumar Sasmal, K. Messan, A two-patch prey-predator model with predator dispersal driven by the predation strength, Math. Biosci. Eng., 14 (2017), 843–880. http://doi.org/10.3934/mbe.2017046 doi: 10.3934/mbe.2017046
    [7] W. Wang, Population dispersal and Allee effect, Ric. Mat., 65 (2016), 535–548. https://doi.org/10.1007/s11587-016-0273-0 doi: 10.1007/s11587-016-0273-0
    [8] D. Pal, G. Samanta, Effects of dispersal speed and strong Allee effect on stability of a two-patch predator–prey model, Int. J. Dyn. Control, 6 (2018), 1484–1495. https://doi.org/10.1007/s40435-018-0407-1 doi: 10.1007/s40435-018-0407-1
    [9] Y. Kang, N. Lanchier, Expansion or extinction: deterministic and stochastic two-patch models with Allee effects, J. Math. Biol., 62 (2011), 925–973. https://doi.org/10.1007/s00285-010-0359-3 doi: 10.1007/s00285-010-0359-3
    [10] L. Chen, T. Liu, F. Chen, Stability and bifurcation in a two-patch model with additive Allee effect, AIMS Math., 7 (2022), 536–551. http://doi.org/10.3934/math.2022034 doi: 10.3934/math.2022034
    [11] L. Allen, Persistence and extinction in single-species reaction-diffusion models, Bull. Math. Biol., 45 (1983), 209–227. https://doi.org/10.1016/S0092-8240(83)80052-4 doi: 10.1016/S0092-8240(83)80052-4
    [12] X. Zhang, L. Chen, The linear and nonlinear diffusion of the competitive Lotka–Volterra model, Nonlinear Anal. Theory Methods Appl., 66 (2007), 2767–2776. https://doi.org/10.1016/j.na.2006.04.0068 doi: 10.1016/j.na.2006.04.0068
    [13] X. Zhou, X. Shi, X. Song, Analysis of nonautonomous predator-prey model with nonlinear diffusion and time delay, Appl. Math. Comput., 196 (2008), 129–136. https://doi.org/10.1016/j.amc.2007.05.041 doi: 10.1016/j.amc.2007.05.041
    [14] Y. Xia, L. Chen, V. Srivastava, R. Parshad, Stability and bifurcation analysis of a two-patch model with Allee effect and nonlinear dispersal, Math. Biosci. Eng., 20 (2023), 19781–19807. https://doi.org/10.48550/arXiv.2310.10558 doi: 10.48550/arXiv.2310.10558
    [15] J. Chen, Y. Chen, Z. Zhu, F. Chen, Stability and bifurcation of a discrete predator-prey system with Allee effect and other food resource for the predators, J. Appl. Math. Comput., 69 (2023), 529–548. https://doi.org/10.1007/s12190-022-01764-5 doi: 10.1007/s12190-022-01764-5
    [16] Q. Zhou, Y. Chen, S. Chen, F. Chen, Dynamic analysis of a discrete amensalism model with Allee effect, J. Appl. Anal. Comput., 13 (2023), 2416–2432. https://doi.org/10.11948/20220332 doi: 10.11948/20220332
    [17] C. Grumbach, F. Reurik, J. Segura, F. Hilker, The effect of dispersal on asymptotic total population size in discrete-and continuous-time two-patch models, J. Math. Biol., 87 (2023), 60. https://doi.org/10.1007/s00285-023-01984-8 doi: 10.1007/s00285-023-01984-8
    [18] C. Guiver, D. Packman, S. Townley, A necessary condition for dispersal driven growth of populations with discrete patch dynamics, J. Theor. Biol., 424 (2017), 11–25. https://doi.org/10.1016/j.jtbi.2017.03.030 doi: 10.1016/j.jtbi.2017.03.030
    [19] H. Jiang, T. Rogers, The discrete dynamics of symmetric competition in the plane, J. Math. Biol., 25 (1987), 573–596. https://doi.org/10.1007/BF00275495 doi: 10.1007/BF00275495
    [20] X. Liu, D. Xiao, Complex dynamic behaviors of a discrete-time predator-prey system, Chaos, Solitons Fractals, 32 (2007), 80–94. https://doi.org/10.1016/j.chaos.2005.10.081 doi: 10.1016/j.chaos.2005.10.081
    [21] J. Chen, X. He, F. Chen, The influence of fear effect to a discrete-time predator-prey system with predator has other food resource, Mathematics, 9 (2021), 865. https://doi.org/10.3390/math9080865 doi: 10.3390/math9080865
    [22] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer Science & Business Media, 42 (2013).
    [23] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos, CRC Press, Boca Raton, 1998.
    [24] Y. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, 112 (1998). https://doi.org/10.1007/978-1-4757-3978-7
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(856) PDF downloads(123) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog