The dynamic behavior of a discrete-time two-patch model with the Allee effect and nonlinear dispersal is studied in this paper. The model consists of two patches connected by the dispersal of individuals. Each patch has its own carrying capacity and intraspecific competition, and the growth rate of one patch exhibits the Allee effect. The existence and stability of the fixed points for the model are explored. Then, utilizing the central manifold theorem and bifurcation theory, fold and flip bifurcations are investigated. Finally, numerical simulations are conducted to explore how the Allee effect and nonlinear dispersal affect the dynamics of the system.
Citation: Minjuan Gao, Lijuan Chen, Fengde Chen. Dynamical analysis of a discrete two-patch model with the Allee effect and nonlinear dispersal[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 5499-5520. doi: 10.3934/mbe.2024242
The dynamic behavior of a discrete-time two-patch model with the Allee effect and nonlinear dispersal is studied in this paper. The model consists of two patches connected by the dispersal of individuals. Each patch has its own carrying capacity and intraspecific competition, and the growth rate of one patch exhibits the Allee effect. The existence and stability of the fixed points for the model are explored. Then, utilizing the central manifold theorem and bifurcation theory, fold and flip bifurcations are investigated. Finally, numerical simulations are conducted to explore how the Allee effect and nonlinear dispersal affect the dynamics of the system.
[1] | W. Allee, Animal Aggregations: A Study in General Sociology, University of Chicago Press, 1931. |
[2] | T. Liu, L. Chen, F. Chen, Z. Li, Stability analysis of a Leslie–Gower model with strong Allee effect on prey and fear effect on predator, Int. J. Bifurcation Chaos, 32 (2022), 2250082. https://doi.org/10.1142/S0218127422500821 doi: 10.1142/S0218127422500821 |
[3] | T. Liu, L. Chen, F. Chen, Z. Li, Dynamics of a Leslie–Gower model with weak Allee effect on prey and fear effect on predator, Int. J. Bifurcation Chaos, 33 (2023), 2350008. https://doi.org/10.1142/S0218127423500086 doi: 10.1142/S0218127423500086 |
[4] | C. Çelik, O. Duman, Allee effect in a discrete-time predator–prey system, Chaos, Solitons Fractals, 40 (2009), 1956–1962. https://doi.org/10.1016/j.chaos.2007.09.077 doi: 10.1016/j.chaos.2007.09.077 |
[5] | S. Saha, G. Samanta, Influence of dispersal and strong Allee effect on a two-patch predator–prey model, Int. J. Dyn. Control, 7 (2019), 1321–1349. http://doi.org/10.1007/s40435-018-0490-3 doi: 10.1007/s40435-018-0490-3 |
[6] | Y. Kang, S. Kumar Sasmal, K. Messan, A two-patch prey-predator model with predator dispersal driven by the predation strength, Math. Biosci. Eng., 14 (2017), 843–880. http://doi.org/10.3934/mbe.2017046 doi: 10.3934/mbe.2017046 |
[7] | W. Wang, Population dispersal and Allee effect, Ric. Mat., 65 (2016), 535–548. https://doi.org/10.1007/s11587-016-0273-0 doi: 10.1007/s11587-016-0273-0 |
[8] | D. Pal, G. Samanta, Effects of dispersal speed and strong Allee effect on stability of a two-patch predator–prey model, Int. J. Dyn. Control, 6 (2018), 1484–1495. https://doi.org/10.1007/s40435-018-0407-1 doi: 10.1007/s40435-018-0407-1 |
[9] | Y. Kang, N. Lanchier, Expansion or extinction: deterministic and stochastic two-patch models with Allee effects, J. Math. Biol., 62 (2011), 925–973. https://doi.org/10.1007/s00285-010-0359-3 doi: 10.1007/s00285-010-0359-3 |
[10] | L. Chen, T. Liu, F. Chen, Stability and bifurcation in a two-patch model with additive Allee effect, AIMS Math., 7 (2022), 536–551. http://doi.org/10.3934/math.2022034 doi: 10.3934/math.2022034 |
[11] | L. Allen, Persistence and extinction in single-species reaction-diffusion models, Bull. Math. Biol., 45 (1983), 209–227. https://doi.org/10.1016/S0092-8240(83)80052-4 doi: 10.1016/S0092-8240(83)80052-4 |
[12] | X. Zhang, L. Chen, The linear and nonlinear diffusion of the competitive Lotka–Volterra model, Nonlinear Anal. Theory Methods Appl., 66 (2007), 2767–2776. https://doi.org/10.1016/j.na.2006.04.0068 doi: 10.1016/j.na.2006.04.0068 |
[13] | X. Zhou, X. Shi, X. Song, Analysis of nonautonomous predator-prey model with nonlinear diffusion and time delay, Appl. Math. Comput., 196 (2008), 129–136. https://doi.org/10.1016/j.amc.2007.05.041 doi: 10.1016/j.amc.2007.05.041 |
[14] | Y. Xia, L. Chen, V. Srivastava, R. Parshad, Stability and bifurcation analysis of a two-patch model with Allee effect and nonlinear dispersal, Math. Biosci. Eng., 20 (2023), 19781–19807. https://doi.org/10.48550/arXiv.2310.10558 doi: 10.48550/arXiv.2310.10558 |
[15] | J. Chen, Y. Chen, Z. Zhu, F. Chen, Stability and bifurcation of a discrete predator-prey system with Allee effect and other food resource for the predators, J. Appl. Math. Comput., 69 (2023), 529–548. https://doi.org/10.1007/s12190-022-01764-5 doi: 10.1007/s12190-022-01764-5 |
[16] | Q. Zhou, Y. Chen, S. Chen, F. Chen, Dynamic analysis of a discrete amensalism model with Allee effect, J. Appl. Anal. Comput., 13 (2023), 2416–2432. https://doi.org/10.11948/20220332 doi: 10.11948/20220332 |
[17] | C. Grumbach, F. Reurik, J. Segura, F. Hilker, The effect of dispersal on asymptotic total population size in discrete-and continuous-time two-patch models, J. Math. Biol., 87 (2023), 60. https://doi.org/10.1007/s00285-023-01984-8 doi: 10.1007/s00285-023-01984-8 |
[18] | C. Guiver, D. Packman, S. Townley, A necessary condition for dispersal driven growth of populations with discrete patch dynamics, J. Theor. Biol., 424 (2017), 11–25. https://doi.org/10.1016/j.jtbi.2017.03.030 doi: 10.1016/j.jtbi.2017.03.030 |
[19] | H. Jiang, T. Rogers, The discrete dynamics of symmetric competition in the plane, J. Math. Biol., 25 (1987), 573–596. https://doi.org/10.1007/BF00275495 doi: 10.1007/BF00275495 |
[20] | X. Liu, D. Xiao, Complex dynamic behaviors of a discrete-time predator-prey system, Chaos, Solitons Fractals, 32 (2007), 80–94. https://doi.org/10.1016/j.chaos.2005.10.081 doi: 10.1016/j.chaos.2005.10.081 |
[21] | J. Chen, X. He, F. Chen, The influence of fear effect to a discrete-time predator-prey system with predator has other food resource, Mathematics, 9 (2021), 865. https://doi.org/10.3390/math9080865 doi: 10.3390/math9080865 |
[22] | J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer Science & Business Media, 42 (2013). |
[23] | C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos, CRC Press, Boca Raton, 1998. |
[24] | Y. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, 112 (1998). https://doi.org/10.1007/978-1-4757-3978-7 |