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Abstract: The dynamic behavior of a discrete-time two-patch model with the Allee effect and nonlinear
dispersal is studied in this paper. The model consists of two patches connected by the dispersal of
individuals. Each patch has its own carrying capacity and intraspecific competition, and the growth rate
of one patch exhibits the Allee effect. The existence and stability of the fixed points for the model are
explored. Then, utilizing the central manifold theorem and bifurcation theory, fold and flip bifurcations
are investigated. Finally, numerical simulations are conducted to explore how the Allee effect and
nonlinear dispersal affect the dynamics of the system.

Keywords: flip bifurcation; fold bifurcation; Allee effect; nonlinear dispersal

1. Introduction

The Allee effect [1] refers to a phenomenon in population biology where the fitness and survival
rates of individuals decrease when the population size becomes smaller. It suggests that certain species
require a minimal population size to effectively find mates, protect against predation, or efficiently
gather resources such as food. When the density of a population falls below this critical threshold,
reproductive success and overall survival can be hindered (see [2–4] and the references cited therein).

In recent years, there has been increasing interest in studying the dynamics of patchy populations,
where habitats are separated by unsuitable areas. The movement of individuals between patches, known
as dispersal, is an important factor in determining the persistence and stability of such populations.
Researchers have begun to study the dynamics of two-patch models with strong Allee effect [5]. These
studies have revealed some interesting behaviors that were not previously understood [6–8]. Recently,
Kang et al. [9] studied the following two-patch model with strong Allee effect:

du
dt = ru(1 − u)(u − θ) + D(v − u),
dv
dt = rv(1 − v)(v − θ) + D(u − v),
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where D ∈ [0, 1] is the dispersal parameter, representing the fraction of population migration from one
patch to the other per unit of time.

In [10], the authors proposed the following one species model with additive Allee effect and dispersal:

du
dt
= −u + D2v − D1u,

dv
dt
= v(1 − v −

m
v + a

) + D1u − D2v.

The results indicate that when the Allee effect constant a increases or m decreases, the total population
abundance increases. In addition, when the dispersal rate D1 increases or D2 decreases, the total
population density increases. An additive Allee effect can deduce complex dynamics such as saddle-
nodes and transcritical bifurcations.

In [11], the author proposed the following model with linear dispersal:

du j

dt
= u j(a j − b ju) +

m∑
k=1

D(uk − u j), j = 1, ...,m,

where D is the dispersal constant. Later, Allen [11] pointed out that the diffusion rate may be influenced
by population density and proposed a patchy model with biased (nonlinear) diffusion as follows:

du j

dt
= u j(a j − b ju) +

m∑
k=1

Du j(uk − u j), j = 1, ...,m.

As is also shown in [12, 13], populations might disperse non-linearly in complex real-life environments.
Recently, Xia et al. [14] studied the following two-patch model with Allee effect and nonlinear dispersal: du

dt = u( ru
A+u − d − bu) + Du(v − u),

dv
dt = v(a − cv) + Dv(u − v),

(1.1)

where u, v are the densities of the population in the first patch and the second patch, respectively. A is
the Allee effect constant. r, d, and b are the birth rate, natural mortality, and death rate due to intra-prey
competition in the first patch, respectively. a and c are the intrinsic growth rate and the death rate due to
intra-prey competition of population in the second patch, respectively. D is the dispersal coefficient.

It is well known that discrete models defined by difference equations are preferable to continuous-time
ones when a species has non-overlapping generations or a limited population size. Recently, in [15, 16],
the authors studied discrete-time systems with Allee effects. In [17, 18], the authors investigated the
effect of dispersal on asymptotic total population size in the discrete two-patch model. However, to the
best of the authors’ knowledge, up to now a discrete two-patch model incorporating the Allee effect
and nonlinear dispersal has never been put forth. Motivated by the above and with the assistance of the
piecewise constant parameter method introduced by Jiang and Rogers [19], we convert model (1.1) into
a discrete one as follows: du

u(t)dt =
ru([t])

A+u([t]) − d − bu([t]) + D
(
v([t]) − u([t])

)
,

dv
v(t)dt = a − cv([t]) + D

(
u([t]) − v([t])

)
,

(1.2)
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where 0 ≤ n ≤ t < n + 1 and [t] is the greatest integer less than or equal to t. Since the right hand side of
system (1.2) is constant over the interval [n, n + 1), integrating over [n, t) and letting t → n + 1, it yieldsln u(n+1)

u(n) =
ru(n)

A+u(n) − d − bu(n) + D
(
v(n) − u(n)

)
,

ln v(n+1)
v(n) = a − cv(n) + D

(
u(n) − v(n)

)
.

(1.3)

Denoting u(n) by un and v(n) by vn, we thus obtain the following discrete-time model:un+1 = unexp
( run

A+un
− d − bun + D(vn − un)

)
,

vn+1 = vnexp
(
a − cvn + D(un − vn)

)
.

(1.4)

Different from the continuous two-patch model (1.1) in Xia et al. [14], this is the first time that
the discrete two-patch model with nonlinear dispersal and the Allee effect has been proposed. The
corresponding dynamic behaviors will be investigated in detail. We will also conclude that immediate
nonlinear dispersal other than large nonlinear dispersal in [14] will be more conducive to the survival of
the species.

The rest of the paper is organized as follows. In Section 2, we discuss the existence and stability of
fixed points of system (1.4). In Section 3, we present the complete analysis of bifurcation. The influence
of the Allee effect and nonlinear dispersal is presented in Section 4. A brief summary and discussion is
in Section 5.

2. Existence and stability of fixed points of (1.4)

To obtain the fixed point of (1.4), we need to solve the following equation:u = u exp
( ru

A+u − d − bu + D(v − u)
)
,

v = v exp
(
a − cv + D(u − v)

)
.

(2.1)

Clearly, (1.4) always has the boundary fixed points E0(0, 0), E01(0, a
c+D). Moreover, the fixed point

E(u∗, 0) on the u coordinate axis exists where u∗ satisfies the following equation:

F(u) := (b + D)u2 + (d + bA + DA − r)u + dA = 0.

If d + bA + DA − r ≥ 0, then system (1.4) has no other equilibrium on the coordinate axis. In the
following we investigate the case d + bA + DA − r < 0, that is, r > d + bA + DA. Notice that the
discriminant of F(u) is ∆ = (b+D)2A2 − 2(d + r)(b+D)A+ (d− r)2. If ∆ > 0, then system (1.4) has two
boundary fixed points E10(u∗1, 0) and E20(u∗2, 0), where u∗1 and u∗2 are the positive roots of the equation
F(u) = 0. If ∆ = 0, then system (1.4) has a boundary fixed point E30(u∗3, 0). In order to simplify the
analysis, let

A1 =
d+r−2

√
dr

b+D , A∗ = r−d
b+D .

Also, we have

∆


> 0 if 0 < A < A1,
= 0 if A = A1,
< 0 if A1 < A < A∗.
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Theorem 2.1 System (1.4) always has two boundary fixed points, i.e., E0(0, 0) and E01(0, a
c+D).

Moreover,
(1) if r ≤ d + bA + DA, then system (1.4) has no other boundary fixed point.
(2) if r > d + bA + DA, then

(i) system (1.4) also has two boundary fixed points E10(u∗1, 0) and E20(u∗2, 0) if 0 < A < A1, where
u∗1 =

−(b+D)A−d+r−
√
∆

2(b+D) , u∗2 =
−(b+D)A−d+r+

√
∆

2(b+D) ;

(ii) system (1.4) also has a boundary fixed point E30(u∗3, 0) if A = A1, where u∗3 =
−d+
√

dr
b+D ;

(iii) system (1.4) has no other boundary fixed point if A > A1.

A positive fixed point (u, v) of system (1.4) satisfies ru
A+u − d − bu + D(v − u) = 0,
a − cv + D(u − v) = 0,

(2.2)

that is, (
b +

cD
c + D

)
u2 +

(
Ab +

cDA
c + D

+ d −
aD

c + D
− r

)
u +

(
d −

aD
c + D

)
A = 0. (2.3)

To simplify the analysis, let

m := b + cD
c+D , n := d − d∗∗, d∗∗ := aD

c+D ,

Equation (2.3) becomes
mu2 + (Am + n − r)u + nA = 0. (2.4)

Notice that the discriminant of (2.4) is ∆1(m) = (Am + n − r)2 − 4mnA = (Am − n − r)2 − 4nr.
If d = d∗∗, Equation (2.4) becomes

mu2 + (Am − r)u = 0. (2.5)

Therefore, if r ≤ mA, there is no positive equilibrium; if r > mA, Equation (2.5) has a unique positive
real root.

If 0 < d < d∗∗, Equation (2.4) has a unique positive real root.
If d ≥ d∗∗ + r, i.e., n ≥ r, Equation (2.4) has no positive real root.
In the following, we investigate the case d∗∗ < d < d∗∗ + r. If m ≥ r−n

A , Equation (2.4) has no positive
real root. Next, we consider the case m < r−n

A . The discriminant of ∆1(m) is ∆2 = 16nrA2 > 0. Thus,
∆1(m) = 0 has two positive real roots, i.e.,

m1 =
(
√

n−
√

r)2

A , m2 =
(
√

n+
√

r)2

A .

We get m1 <
r−n
A <

r+n
A < m2. Therefore, if m = m1, Equation (2.4) has a unique positive real root. If

m < m1, Equation (2.4) has two positive real roots. If m > m1, it follows that ∆1(m) < 0 and then Eq
(2.4) has no positive real root. Thus, we have the existence of a positive fixed point as follows:

Theorem 2.2
(1) If 0 < d < d∗∗, then system (1.4) has a positive fixed point E∗1(u1, v1).
(2) If d = d∗∗, then
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(i) system (1.4) has a positive fixed point E∗1(u1, v1) when r > mA;
(ii) system (1.4) has no positive fixed point when r ≤ mA.

(3) If d∗∗ < d < d∗∗ + r, then
(i) system (1.4) has two positive fixed points E∗1(u1, v1) and E∗2(u2, v2) when m < m1;
(ii) system (1.4) has a positive fixed point E∗3(u3, v3) when m = m1;
(iii) system (1.4) has no positive fixed point when m > m1.

(4) If d ≥ d∗∗ + r, then system (1.4) has no positive fixed point.
And,

u1 =
−Am−n+r+

√
∆1(m)

2m , v1 =
Du1+a
c+D =

2am+D(r−Am−n)+D
√
∆1(m)

2m(c+D) ,

u2 =
−Am−n+r−

√
∆1(m)

2m , v2 =
Du2+a
c+D =

2am+D(r−Am−n)−D
√
∆1(m)

2m(c+D) ,
u3 =

−Am−n+r
2m , v3 =

Du1+a
c+D =

2am+D(r−Am−n)+D
2m(c+D) .

Next, we will consider the local stability of the fixed point. The Jacobian matrix of system (1.4) at
the equilibrium E(u, v) is

J(E) =


(
1 + u( r

A+u −
ru

(A+u)2 − b − D)
)
N uDN

vDG G − v(c + D)G

 ,
where N = exp

( ru
A+u − d − bu + D(v − u)

)
and G = exp

(
a − cv + D(u − v)

)
. Let λ1 and λ2 be the two

eigenvalues of J(E). To study the local stability of these fixed points, we will use the classification
definition of fixed points in [20] and obtain the following results:

Theorem 2.3 E0(0, 0) is always a saddle.

Proof. At the trivial fixed point E0(0, 0), the Jacobian matrix is

J(E0) =
(

e−d 0
0 ea

)
with eigenvalues λ1 = e−d ∈ (0, 1) and λ2 = ea > 1. Hence, E0(0, 0) is always a saddle.

Theorem 2.4 For E01(0, a
c+D ),

(1) it is a sink if and only if 0 < a < min
{
2, d(c+D)

D

}
;

(2) it is a source if and only if a > max
{
2, d(c+D)

D

}
;

(3) it is non-hyperbolic if either a = 2 or a = d(c+D)
D ;

(4) it is a saddle, except for in cases (1)–(3).

Proof. At the boundary fixed point E01(0, a
c+D ), the Jacobian matrix is

J(E01) =
(

e
aD

c+D−d 0
aD

c+D 1 − a

)
with eigenvalues λ1 = e

aD
c+D−d and λ2 = 1 − a. It is easy to see that
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1 − a


< −1 if a > 2,
= −1 if a = 2,
∈ (−1, 1) if 0 < a < 2

and

e
aD

c+D−d


> 1 if a > d(c+D)

D ,
= 1 if a = d(c+D)

D ,
∈ (−1, 1) if 0 < a < d(c+D)

D .

Hence, the result is proved.

Theorem 2.5 The boundary fixed point E30(u∗3, 0) is a non-hyperbolic.

Proof. At the boundary fixed point E30(u∗3, 0), the Jacobian matrix is

J(E30) =

 1 (
√

dr−d)D
b+D

0 ea+ (
√

dr−d)D
b+D

 ,
with eigenvalues λ1 = 1 and λ2 = ea+ (

√
dr−d)D
b+D > 1. Hence, the proof is complete.

Theorem 2.6 For the equilibrium Ei0(u∗i , 0)(i = 1, 2),
(1) it is a source if and only if rA

(A+u∗i )2 > b + D;

(2) it is non-hyperbolic if and only if rA
(A+u∗i )2 = b + D;

(3) it is a saddle if and only if b + D − 2 < rA
(A+u∗i )2 < b + D.

Proof. At the boundary fixed point Ei0(u∗i , 0), (i = 1, 2), the Jacobian matrix is

J(Ei0(u∗i , 0)) =

 1 + u∗i ( r
A+u∗i
−

ru∗i
(A+u∗i )2 − M) u∗i D

0 ea+u∗i D

 .
The corresponding eigenvalues are λ1 = 1 + u∗i (

r
A+u∗i
−

ru∗i
(A+u∗i )2 − b − D) and λ2 = ea+u∗i D > 1. When

b + D > 2, it is easy to see that

|λ1|


> 1 if rA

(A+u∗i )2 > b + D,

= 1 if rA
(A+u∗i )2 = b + D,

< 1 if b + D − 2 < rA
(A+u∗i )2 < b + D.

Hence, the proof is complete.

Theorem 2.7 If r
A < b, then the positive fixed point E∗(u∗, v∗) is

(1) a sink if and only if P < 1 + Q and Q < 1;
(2) a source if and only if P < 1 + Q and Q > 1;
(3) non-hyperbolic if and only if P = 1 + Q;
(4) a saddle if and only if P > 1 + Q, where
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Table 1. Feasibility and local stability criteria of the fixed points of system (1.4).

Fixed point Feasibility conditions Stability criteria
E0(0, 0) always feasible saddle
E01(0, a

c+D ) always feasible 0 < a < min
{
2, d(c+D)

D

}
, sink

a > max
{
2, d(c+D)

D

}
, source

a = 2 or a = d(c+D)
D , non-hyperbolic

others, saddle
E10(u∗1, 0), E20(u∗2, 0) r > d + bA + DA, 0 < A < A1

rA
(A+u∗i )2 > b + D, source

rA
(A+u∗i )2 = b + D, non-hyperbolic
b + D − 2 < rA

(A+u∗i )2 < b + D, saddle

E30(u∗3, 0) r > d + bA + DA, A = A1 non-hyperbolic
E∗1(u1, v1) 0 < d < d∗∗ or d = d∗∗, r > mA P < 1 + Q and Q < 1, sink

or d∗∗ < d < d∗∗ + r, m < m1 P < 1 + Q and Q > 1, source
E∗2(u2, v2) d∗∗ < d < d∗∗ + r, m < m1 P = 1 + Q, non-hyperbolic
E∗3(u3, v3) d∗∗ < d < d∗∗ + r, m = m1 P > 1 + Q, saddle

P = −2 − u∗
( rA
(A + u∗)2 − b − D

)
+ a + Du∗,

Q =
(
1 + u∗

( rA
(A + u∗)2 − b − D

))
(1 − a − Du∗) − u∗v∗D2.

Proof. At the positive fixed point E∗(u∗, v∗), the Jacobian matrix is

J(E∗) =
(

1 + u∗( rA
(A+u∗)2 − b − D) u∗D

v∗D 1 − (c + D)v∗

)
.

The characteristic equation for J(E∗) is F(λ) = λ2 + Pλ + Q = 0.
Thus,

F(1) = 1 + P + Q

= −u∗
(( rA

(A + u∗)2 − b − D
)
(a + Du∗) + v∗D2

)
,

F(−1) = 1 − P + Q.

If r
A < b holds, then

rA
(A + u∗)2 <

r
A < b and v∗D2

a+Du∗
= D2

c+D < D, implying that F(1) > 0. If the conditions

P < 1 + Q and Q < 1 hold, then F(−1) > 0,Q < 1. Hence, according to Lemmas 1 and 2 in [21], we
obtain that E∗(u∗, v∗) is a sink, which is stable. Cases (2)–(4) can be proved in the same way. Hence,
Theorem 2.7 is obtained.

The feasibility and local stability criteria of the fixed points of system (1.4) are given in Table 1.
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3. Bifurcation analysis

In the following, we will use the central manifold and bifurcation theories [22, 23] to discuss
bifurcation in system (1.4). In detail, we will analyze the existence of a flip bifurcation at the fixed point
E01(0, a

c+D ) and a fold bifurcation at the fixed points E30(u∗3, 0) and E∗3(u3, v3).

Theorem 3.1 System (1.4) undergoes a flip bifurcation at E01(0, a
c+D ) when the parameters are varied in

a small range of FA =
{
(a, r, d,D, c) : a = 2, a , d(c+D)

D , r > 0, d > 0,D > 0, c > 0
}
.

Proof. Theorem 2.4(3) shows that if a = 2 and a , d(c+D)
D , then one of the eigenvalues of the fixed point

E01(0, a
c+D ) is −1, and the other eigenvalue is neither 1 nor −1. Regarding a as the bifurcation parameter

and perturbing a by ζ, system (1.4) can be seen as the two-dimensional map below: u

v

→
 u exp(

ru
A + u

− d − bu + D
(
v − u)

)
v exp

(
a + ζ − cv + D(u − v)

)
 , (3.1)

where |ζ | ≪ 1. By allowing x1 = u, y1 = v − a
c+D , we then transform the fixed point E01(0, a

c+D) of the
system (1.4) into the origin and shift model (3.1) into


x1

ζ

y1

→


e
2D

c+D−d 0 0

0 1 0

2D
c + D

2
c + D

−1




x1

ζ

y1

 +


f1(x1, ζ, y1)

0

g1(x1, ζ, y1)

 . (3.2)

Here,

f1(x1, ζ, y1) =a200x2
1 + a101x1y1 + a300x3

1 + a201x2
1y1 + a102x1y2

1

+ O
(
(|x1| + |ζ | + |y1|)4),

g1(x1, ζ, y1) = j200x2
1 + j101x1y1 + j110x1ζ + j011ζy1 + j020ζ

2

+ j300x3
1 + j201x2

1y1 + j210x2
1ζ + j111x1ζy1 + j120x1ζ

2

+ j j003y3
1 + j021ζ

2y1 + j030ζ
3 + O

(
(|x1| + |ζ | + |y1|)4)

and

a200 = −
e

2D
c+D−d(AD + Ab − r)

A
, a101 = De

2D
c+D−d,

a300 =

(
(b + D)2A2 − 2(b + D)rA + r2 − 2r

)
e

2D
c+D−d

2A2

a201 =
De

2D
c+D−d((b + D)A − r

)
A

, a102 =
D2e

2D
c+D−d

2

j200 =
D2

c + D
, j101 = −D, j110 =

2D
c + D

, j011 = −1, j020 =
1

c + D
,
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j300 =
D3

3(c + D)
, j201 = −

D2

2
, j210 =

D2

c + D
, j111 = −D,

j120 =
D

c + D
, j003 =

(c + D)2

6
, j021 = −

1
2
, j030 =

1
3(c + D)

.

Next, we use the following transformation:


x1

ζ

y1

 =


(c + D)(e
2D

c+D−d + 1)
2D

0 0

0 −c − D 0

1 −1 1




x2

ζ̃

y2

 , (3.3)

and then get the normal form of (3.1) as follows:
x2

ζ̃

y2

→


e
2D

c+D−d 0 0

0 1 0

0 0 −1




x2

ζ̃

y2

 +


f2(x2, ζ̃, y2)

0

g2(x2, ζ̃, y2, )

 , (3.4)

where

f2(x2, ζ̃, y2) =e200x2
2 + e101x2y2 + e300x3

2 + e201x2
2y2 + e102x2y2

2

+ O
(
(|x2| + |ζ̃ | + |y2|)4),

g2(x2, ζ̃, y2) =w200x2
2 + w101x2y2 + w110x2ζ̃ + w011ζ̃y2 + w020ζ̃

2 + w300x3
2

+ w201x2
2y2 + w210x2

2ζ̃ + w102x2y2
2 + w111x2ζ̃y2 + w120x2ζ̃

2

+ w003y3
2 + w021ζ̃

2y2 + w030ζ̃
3 + O

(
(|x2| + |ζ̃ | + |y2|)4)

and

e200 = −
2De

2D
c+D−d(AD + Ab − r)

A(e
2D

c+D−d + 1)(c + D)
,

e101 =
2D2e

2D
c+D−d

(e
2D

c+D−d + 1)(c + D)
,

e300 = −
D
(
(b + D)2A2 − 2(b + D)rA + r2 − 2r

)
e

2D
c+D−d

(e
2D

c+D−d + 1)(c + D)A2
,

e201 = −
2D2((b + D)A − r

)
e

2D
c+D−d

(e
2D

c+D−d + 1)(c + D)A
,

e102 = −
D3e

2D
c+D−d

(e
2D

c+D−d + 1)(c + D)
,

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5499–5520.



5508

w200 =
2De

2D
c+D−d(AD + Ab − r)

A(e
2D

c+D−d + 1)(c + D)
+

D2

c + D
,

w101 = −
2D2e

2D
c+D−d

(e
2D

c+D−d + 1)(c + D)
− D,

w110 = −2D,w011 = c + D,w020 = c + D,

w300 =
D
(
2r − (bA + DA − r)2)e 2D

c+D−d

(e
2D

c+D−d + 1)(c + D)A2
+

D3

3(c + D)
,

w201 =
2D2e

2D
c+D−d(bA + DA − r)

A(e
2D

c+D−d + 1)(c + D)
−

D2

2
,

w210 = −D2,w102 = −
D3e

2D
c+D−d

(e
2D

c+D−d + 1)(c + D)
,

w111 = −D,w120 = D(c + D),w003 = −
(c + D)2

6
,

w021 = −
1
2
,w030 =

1
3

(c + D)2.

By the center manifold theory, the stability of (x2, y2) = (0, 0) near ζ̃ = 0 can be determined by
studying a one-parameter family of reduced equations on a center manifold, which can be represented
as follows:

Wc
1(0, 0, 0) =

{
(x2, ζ̃, y2) ∈ R3|x2 = h(ζ̃,y2), h(0, 0) = 0,Dh(0, 0) = 0

}
.

Here, y2 and ζ̃ are sufficiently small. We assume that

h(ζ̃,y2) = h1y2
2 + h2y2ζ̃ + h3ζ̃

2 + O
(
(|ζ̃ | + |y2|)3). (3.5)

Then, h(ζ̃,y2) satisfies

h
(
ζ̃,−y2 + g2(h(ζ̃, y2), ζ̃, y2)

)
− e

2D
c+D−dh(ζ̃, y2) − f2(h(ζ̃, y2), ζ̃, y2

)
= 0. (3.6)

Substituting (3.5) into (3.6), we obtain

h1 = h2 = h3 = 0.

Thus, the map on the center manifold is

G∗1 : y2 → −y2 + w011ζ̃y2 + w020ζ̃
2 + w003y3

2 + w012ζ̃y2
2 + w030ζ̃

3 + O
(
(|ζ̃ | + |y2|)4).

A straightforward calculation gives
∂G∗1
∂y2

(0, 0) = −1, ∂G
∗
1
∂ζ̃

(0, 0) = 0, ∂
2G∗1
∂ζ̃∂y2

(0, 0) = w011 , 0,

−3
(∂2G∗1
∂y2

2
(0, 0)

)2
− 2∂

3G∗1
∂y3

2
(0, 0) = −2w003 , 0.
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Therefore, by [24], we can get a flip bifurcation at E01.

In Figure 1(a), we can see that the fixed point E01(0, a
c+D) is stable if 0 < a < 2, and it is unstable if

a > 2. The maximum Lyapunov exponent is shown in Figure 1(b).

(a)

0 0.5 1 1.5 2 2.5 3

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

M
L

E

(b)

Figure 1. (a) Bifurcation diagram of E01(0, a
c+D), (b) Maximum Lyapunov exponent. We

take the parameter values as a ∈ [1, 4],D = 0.01, A = 0.01, c = 0.2 with initial value
(u0, v0) = (0.15, 0.2).

Theorem 3.2 System (1.4) undergoes a fold bifurcation at E30(u∗3, 0) if the parameters vary in the small
neighborhood of FB =

{
(r, d,D, A) : r > d > 0,D > 0, A = A1

}
.

Proof. From Theorem 2.5, one can have that the eigenvalues of J(E30) are λ1 = 1 and λ2 , 1,−1. We
choose A as the bifurcation parameter to study fold bifurcation. Let A = A1 + ξ, where ξ is a small
perturbation and will be treated as a new variable. System (1.4) is then rewritten as u

v

→
 u exp

( ru
(A1 + ξ) + u

− d − bu + D
(
v − u)

)
v exp

(
a − cv + D(u − v)

)
 . (3.7)

We first use the change of variables x3 = u − u∗3, y3 = v to translate the fixed point E30(u∗3, 0) to the
origin, and then transform system (3.7) into

x3

ξ

y3

→


1 a1 b1

0 1 0

0 0 ea+ D(
√

dr−d)
b+D




x3

ξ

y3

 +


f3(x3, ξ, y3)

0

g3(x3, ξ, y3)

 . (3.8)

Here,

f3(x3, ξ, y3) =b200x2
3 + b110x3ξ + b101x3y3 + b020ξ

2 + b011ξy3

+ b002y2
3 + O

(
(|x3| + |ξ| + |y3|)3),

g3(x3, ξ, y3) =z002y2
3 + z101x3y3 + O

(
(|x3| + |ξ| + |y3|)3)
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and

a1 = −
r(d −

√
dr)2

(r −
√

dr)2
, b1 =

rD(
√

dr − d)(d + r − 2
√

dr)

(D + b)(r −
√

dr)2
,

b200 =
(D + b)r(d

√
dr + 3r

√
dr − 3dr − r2)(−d +

√
dr)

(r −
√

dr)4
,

b110 =
8(D + b)r((−1

4d2 − 3
2dr − 1

4r2)
√

dr + dr(d + r))

(r −
√

dr)4
,

b101 =

(
(−4d − 4r)

√
dr + d2 + 6dr + r2)Dr2

(r −
√

dr)4
,

b020 =
(D + b)r(d −

√
dr)

((
(−2d + 2)r + 2d

)√
dr + dr(d + r − 4)

)
2(r −

√
dr)4

,

b011 =
Dr2((−3d − r)

√
dr + d(d + 3r)

)
(
√

dr − d)

(r −
√

dr)4
,

b002 =
D2r2(

√
dr − d)

(
(−4d − 4r)

√
dr + d2 + 6dr + r2)

2(D + b)(r −
√

dr)4
,

z002 = −(c + D)ea+ D(
√

dr−d)
b+D , z101 = Dea+ D(

√
dr−d)

b+D .

Then, with the transformation,


x3

ξ

y3

 =


1 0 1

0 −
1
a1

0

0 0
ea+ D(

√
dr−d)

b+D − 1
b1




x4

ξ̃

y4

 , (3.9)

system (3.8) becomes
x4

ξ̃

y4

→


1 1 0

0 1 0

0 0 ea+ D(
√

dr−d)
b+D




x4

ξ̃

y4

 +


f4(x4, ξ̃, y4)

0

g4(x4, ξ̃, y4)

 , (3.10)

where

f4(x4, ξ̃, y4) =c200x2
4 + c110x4ξ̃ + c101x4y4 + c020ξ̃

2 + c011ξ̃y4

+ c002y2
4 + O

(
(|x4| + |ξ̃| + |y4|)3),

g4(x4, ξ̃, y4) =s002y2
4 + O

(
(|x4| + |ξ̃| + |y4|)3)
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and

c200 =
(d
√

dr + 3r
√

dr − 3dr − r2)(
√

dr − d)(D + b)r

(r −
√

dr)4
,

c110 =

(
(2r2 + 12dr + 2d2)

√
dr + dr(r + d)

)
(D + b)r

(r −
√

dr)4
,

c101 =
Dr2((−4d − 4r)

√
dr + d2 + 6dr + r2)(1 + (b1 − 1)s)

(r −
√

dr)4(s − 1)
,

c020 =

((
(2 − 2d)r + 2d

)√
dr + dr(d + r − 4)

)
r(d −

√
dr)(D + b)

2(r −
√

dr)4
,

c011 =

(
(−3d − r)

√
dr + d(d + 3r)

)
(d −

√
dr)Dr2

(r −
√

dr)4
,

c002 =

(
(−4d − 4r)

√
dr + d2 + 6dr + r2)(d − √dr)D2r2

2(D + b)(r −
√

dr)4
−

b1s(D + c)
s − 1

,

s002 = −
b1s(D + c)

s − 1
, s101 =

b1sD
s − 1

, s = ea+ D(
√

dr−d)
b+D .

According to the central manifold theorem, suppose that an approximate representation of the central
manifold Wc

2(0, 0, 0) is as follows:

Wc
2(0, 0, 0) =

{
(x4, ξ̃, y4) : y4 = k1x2

4 + k2x4ξ̃ + k3ξ̃
2 + O

(
(|x4| + |ξ̃| + |y4|)3)},

where x4 and ξ̃ are sufficiently small.
By a simple comparison, k1 = k2 = k3 = 0 can be obtained. Therefore, the following expression can

be easily evaluated:

G∗2 : x4 → x4 + ξ̃ + c200x2
4 + c110x4ξ̃ + c020ξ̃

2 + O
(
(|x4| + |ξ̃|)3).

A straightforward calculation gives

G∗2(0, 0) = 0, ∂G
∗
2

∂x4
(0, 0) = 1, ∂G

∗
2
∂ξ̃

(0, 0) = 1, ∂
2G∗2
∂x2

4
(0, 0) = 2c200 , 0,

which leads to the existence of a fold bifurcation.

In Figure 2, the fixed points E10(u∗1, 0) and E20(u∗2, 0) bifurcate from E30(u∗3, 0) when 0 < A < A1,
coalesce at E30(u∗3, 0) when A = A1, and disappear when A > A1.

In addition, the fixed points E∗1(u3, v3) and E∗2(u3, v3) bifurcate from E∗3(u3, v3) when m < m1, merge
at E∗3(u3, v3) when m = m1, and vanish when m > m1. Thus, we can have the existence of a fold
bifurcation as follows:

Theorem 3.3 When d∗∗ < d < d∗∗ + r and m = m1, system (1.4) undergoes a fold bifurcation at
E∗3(u3, v3).
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Figure 2. Fold bifurcation diagram of E30(u∗3, 0). We take the parameter values as d = 0.3, b =
0.3,D = 0.6, r = 1.2, and with initial value (u0, v0) = (0.5, 0.6).

Proof. Denote

FC =
{
(r, d,m) : r > 0, d∗∗ < d < d∗∗ + r,m = m1

}
.

Since m = b+ cD
c+D , we choose b as a bifurcation parameter for studying the fold bifurcation of E∗3(u3, v3).

Let b = b∗ + δ, where b∗ = m − cD
c+D . δ is a small perturbation and will be treated as a new variable.

System (1.4) is then rewritten as u

v

→
 u exp(

ru
A + u

− d − (b∗ + δ)u + D
(
v − u)

)
v exp

(
a − cv + D(u − v)

)
 . (3.11)

The eigenvalues of JE∗3
are λ1 = 1, λ2 , 1 by Theorem 2.7. We first use the change of variables

x5 = u − u3, y5 = v − v3 to translate the positive fixed point E∗3(u3, v3) to the origin and then transform
system (1.4) into  x5

y5

→
 p11 p12

p21 p22


 x5

y5

 +
 f5(x5, δ, y5)

g5(x5, δ, y5)

 . (3.12)

Here,

f5(x5, δ, y5) =p200x2
5 + p110x5δ + p101x5y5 + p020δ

2 + p011δy5

+ p002y2
5 − u2

3δ + O
(
(|x5| + |δ| + |y5|)3),

g5(x5, δ, y5) =q200x2
5 + q002y2

5 + q101x5y5 + O
(
(|x5| + |δ| + |y5|)3)

and

p11 =
1

(A + u3)2

(
(Dv3 − d + r − 1)u2

3 + 2A(Dv3 − d − 1)u3
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+ (Dv3 − d − 1)A2),
p12 =u3D, p21 = v3D, p22 = Dv3 − cv3 − 2,

p200 =
1

2u3(A + u3)4

(
(Dv3 − d + r − 2)(Dv3 − d + r)u4

3

+ 4A(D2v2
3 − 2(d −

r
2
+ 1)Dv3 + d2 + (2 − r)d −

3r
2

u3
3

+ 6(Dv3 − d +
r
3

)A2(Dv3 − d − 2)u2
3 + 4A3(Dv3 − d − 2)(Dv3 − d)u3

+ A4(Dv3 − d − 2)(Dv3 − d)
)
,

p110 =
u3

(A + u3)2

(
(Dv3 − d + r − 2)u2

3 + 2A(Dv3 − d − 2)u3 + (Dv3 − d − 2)A2),
p101 = −

D
(
(D + b∗)u3

3 + (2DA + 2bA − 1)u2
3 + (DA + b∗A − r − 2)Au3 − A2)

(A + u3)2 ,

p020 =
u3

3

2
, p011 = −u2

3D, p002 =
u3D2

2
,

q200 =
v3D2

2
, q101 = D(1 − Dv3 + cv3), q002 =

(c + D)(Dv3 + cv3 − 2)
2

.

We construct an invertible matrix

T=

 p12 p12

1 − p11 λ2 − p11


and use the translation  x5

y5

=T

 x6

y6

 ,
and then the map (3.12) becomes

 x6

y6

 =


1 0

0 λ2


 x6

y6

 +
 f6(x6, δ̃, y6)

g6(x6, δ̃, y6)

 , (3.13)

where

f6(x6, δ̃, y6) =
(λ2 − p11)p200 − u3Dq200

u3D(λ2 − 1)
x2

5 +
(λ2 − p11)q101

u3D(λ2 − 1)
x5δ̃

+
(λ2 − p11)p101 − u3Dq101

u3D(λ2 − 1)
x5y5 +

(λ2 − p11)p020

u3D(λ2 − 1)
δ̃2

+
(λ2 − p11)p011

u3D(λ2 − 1)
δ̃y5 +

(λ2 − p11)p002 − u3Dq002

u3D(λ2 − 1)
y2

5

−
(λ2 − p11)u2

3δ

u3D(λ2 − 1)
+ O

(
(|x5| + |δ̃| + |y5|)3),
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g6(x6, δ̃, y6) =
(1 − p11)p200 + u3Dq200

u3D(λ2 − 1)
x2

5 +
(1 − p11)p002 + u3Dq002

u3D(λ2 − 1)
y2

5

+
(1 − p11)p101 + u3Dq101

u3D(λ2 − 1)
x5y5 +

(1 − p11)p110

u3D(λ2 − 1)
x5δ

+
(1 − p11)p020

u3D(λ2 − 1)
δ2 +

(1 − p11)p011

u3D(λ2 − 1)
δy5

−
(1 − p11)u2

3

u3D(λ2 − 1)
δ + O

(
(|x5| + |δ̃| + |y5|)3)

and

x5 = u3Dx6 + u3Dy6,

y5 = (1 − p11)x6 + (λ2 − p11)y6,

x2
5 = u2

3D2(x2
6 + 2x6y6 + y2

6),

y2
5 = (1 − p11)2x2

6 + (λ2 − p11)2y2
6 + 2(1 − p11)(λ2 − p11)x6y6,

x5y5 = (1 − p11)u3Dx2
6 + u3D(1 − 2p11 + λ2)x6y6 + u3D(λ2 − p11)y2

6.

Next, an approximate representation of the central manifold Wc
3(0, 0, 0) is supposed as follows:

Wc
3(0, 0, 0) =

{
(x6, δ̃, y6) : y6 = t1x2

6 + t2x6δ̃ + t3δ̃
2 + O

(
(|x6| + |δ̃| + |y6|)3)},

where

t1 =
p11 − 1

(1 − λ2)2

[
(1 − p11)(p101 + q002) + u3D(p200 + q101)

+
D(1 − p11)

2
]
−

u3
3D2q200

(1 − λ2)2 ,

t2 =
Dp110(p11 − 1)

u3(1 − λ2)(λ2 − p11)
+

D(1 − p11)2

(1 − λ2)(λ2 − p11)
,

t3 =
D(p11 − 1)

2(p11 − λ2)2 .

Therefore, we consider the map restricted to the center manifold Wc
3(0, 0, 0):

G∗3 : x6 → x6 + δ̃ + n1x2
6 + n2x6δ̃ + n3δ̃

2 + n4x3
6 + n5x2

6δ̃ + O
(
(|x6| + |δ̃|)4).

Here,

n1 =
1
λ2 − 1

{
(λ2 − p11)[p200 + p101(1 − p11) +

D(1 − p11)2

2
]

+ (p11 − 1)(u3Dq101 − q002 p11 + q002) − u3Dq200
}
,

n2 =D − Dp11 −
Dq101

u3
, n3 =

D(λ2 − 1)p020

u2
3(λ2 − p11)

,
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n4 =
t1

λ2 − 1
[
2u3Dp200(λ2 − p11) − 2u2

3D2q200

+ (λ2 p101 − p11 p101 − u3Dq101)(1 − 2p11 + λ2)
+ D(λ2 − p11)2(1 − p11) − 2q002(1 − p11)(λ2 − p11)

]
,

n5 =
t2

λ2 − 1
[
2u3Dp200(λ2 − p11) − 2u2

3D2q200

+ (λ2 p101 − p11 p101 − u3Dq101)(1 − 2p11 + λ2) + D(λ2 − p11)2(1 − p11)

− 2q002(1 − p11)(λ2 − p11)
]
+ (λ2D − p11D −

Dq101

u3
)t1,

n6 =
t3

λ2 − 1
[
2u3Dp200(λ2 − p11) − 2u2

3D2q200

+ (λ2 p101 − p11 p101 − u3Dq101)(1 − 2p11 + λ2) + D(λ2 − p11)2(1 − p11)

− 2q002(1 − p11)(λ2 − p11)
]
+ (λ2D − p11D −

Dq101

u3
)t2,

n7 =(λ2D − p11D −
Dq101

u3
)t3.

A straightforward calculation gives

G∗3(0, 0) = 0, ∂G
∗
3

∂x6
(0, 0) = 1, ∂G

∗
3
∂δ̃

(0, 0) = 1, ∂
2G∗3
∂x2

6
(0, 0) = 2n1,

which leads to the existence of a fold bifurcation.

Figure 3. Fold bifurcation diagram of E∗3(u3, v3) with respect to the parameter b when
d = 0.7, A = 1,D = 0.6, r = 1.2, a = 0.8, c = 0.2, b ∈ (0.35, 0.6), and the initial point is
(0.7, 0.6).
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In Figure 3, the parameter values are d = 0.7, A = 1,D = 0.6, r = 1.2, a = 0.8, c = 0.2, and
the initial value is (u0, v0) = (0.7, 0.6). We have b = 0.456 and calculate u3 = 0.436 from Theorem
2.2. In other words, the positive fixed points E∗1(u1, v1) and E∗2(u2, v2) bifurcate from E∗3(u3, v3) when
0.38 < b < 0.456, merge at E∗3(u3, v3) when b = 0.456, and vanish when b > 0.456.

4. Effect of the Allee effect and nonlinear dispersal

In this section, we will explore the impact of the Allee effect and nonlinear dispersal on population
survival through numerical simulations. As is well known, when population density is low, the Allee
effect can lead to a decrease in cooperation and mutual assistance among individuals, thereby reducing
the growth rate of the population. We choose

(a, r, c,D, b, d) = (1.5, 1.2, 0.2, 0.1, 0.3, 0.4)

and the initial values of the system (1.4) are (0.7, 0.2) and (0.5, 0.4). As is shown in Figure 4, when the
Allee constant A = 0, the population density u is relatively high and oscillates greatly. When the Allee
constant A = 0.5 or A = 1.5, the population density decreases and oscillations become less frequent.
Increasing Allee effect can effectively reduce the oscillation amplitude of the solution. In this sense, the
Allee effect has a stabilizing ability.

0 20 40 60 80 100

Time

0

1

2

3

4

5

6

u

A=0

A=0.5

A=1.5

(a) The initial value is (0.7, 0.2).

0 20 40 60 80 100

Time

0

1

2

3

4

5

6

u

A=0

A=0.5

A=1.5

(b) The initial value is (0.5, 0.4).

Figure 4. The oscillation of system (1.4) when a = 1.5, r = 1.2, c = 0.2,D = 0.1, b = 0.3, d =
0.4, and the initial points are (0.7, 0.2), (0.5, 0.4).

In Figure 5, we take (a, r, c, A, b, d) = (1.5, 1.2, 0.2, 3, 0.3, 0.4) and initial values (0.7, 0.2) and
(0.5, 0.4). It follows that when the dispersal coefficient D = 0, population u goes extinct while
population v is permanent. When D = 0.1, both populations coexist. As the dispersal coefficient keeps
increasing, the fluctuations of both populations become significant. Figure 5 shows that when there is
no nonlinear dispersal, the population will tend to be extinct due to the Allee effect. Moreover, large
nonlinear dispersal will also lead to fluctuations of the population. That is to say, proper proliferation is
conducive to population survival.
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(a) The initial value is (0.7, 0.2).

(b) The initial value is (0.5, 0.4).

Figure 5. Time series of system (1.4) under different dispersal when a = 1.5, r = 1.2, c =
0.2, A = 3, b = 0.3, d = 0.4, and the initial points are (0.7, 0.2), (0.5, 0.4).

5. Summary

In this paper, we have considered a discrete two-patch model with Allee effect and nonlinear dispersal
based on Xia et al. [14]. The dynamic behaviors have been analyzed in detail. We discuss the existence
of fixed points, the flip bifurcation at the boundary fixed point E01(0, a

c+D), the fold bifurcation at the
boundary fixed point E30(u∗3, 0), and the positive fixed point E∗3(u3, v3), respectively. The impact of the
Allee effect and nonlinear dispersal on population survival is also presented through numerical simulation.
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The topological types of the fixed points are substantially different from those in Xia et al. [14] and
Grumbach et al. [17]. In detail, the model in this manuscript has a maximum of two positive fixed
points, whereas the similar discrete model in [17] has a unique positive fixed point. Moreover, the
discrete model can experience a flip bifurcation at the boundary fixed point E01 when the conditions
a = 2, a , d(c+D)

D hold, while the corresponding boundary equilibrium Ev in the continuous model [14]
is globally asymptotically stable under certain conditions. In addition, the results in Xia et al. [14]
show that for the continuous case, large nonlinear dispersal may prevent the extinction of species due
to the Allee effect. But in this paper, we obtain that small or high nonlinear dispersal will lead to
extinction or fluctuations, and only moderate and appropriate nonlinear dispersal can make the species
become permanent. In other words, suitable and modest dispersal is advantageous to the survival of the
species. The aforementioned point is due to the fact that modest dispersal minimizes intense rivalry
with others for resources like food, habitat, and breeding space. But, when the dispersal coefficient is
large, the species will go extinct because dispersal increases the complexity of the system, and makes it
more susceptible to external influence. Therefore, the conclusion of this article is a complement and
promotion of [14] and [17].
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