Research article Special Issues

Analysis of modified Holling-Tanner model with strong Allee effect


  • Received: 13 May 2023 Revised: 20 July 2023 Accepted: 20 July 2023 Published: 26 July 2023
  • In this paper, we study a predator-prey system, the modified Holling-Tanner model with strong Allee effect. The existence and stability of the non-negative equilibria are discussed first. Several kinds of bifurcation phenomena, which the model may undergo, such as saddle-node bifurcation, Hopf bifurcation, and Bogdanov-Takens bifurcation, are studied second. Bifurcation diagram for Bogdanov-Takens bifurcation of codimension 2 is given. Then, possible dynamical behaviors of this model are illustrated by numerical simulations. This paper appears to be the first study of the modified Holling-Tanner model that includes the influence of a strong Allee effect.

    Citation: Kunlun Huang, Xintian Jia, Cuiping Li. Analysis of modified Holling-Tanner model with strong Allee effect[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 15524-15543. doi: 10.3934/mbe.2023693

    Related Papers:

  • In this paper, we study a predator-prey system, the modified Holling-Tanner model with strong Allee effect. The existence and stability of the non-negative equilibria are discussed first. Several kinds of bifurcation phenomena, which the model may undergo, such as saddle-node bifurcation, Hopf bifurcation, and Bogdanov-Takens bifurcation, are studied second. Bifurcation diagram for Bogdanov-Takens bifurcation of codimension 2 is given. Then, possible dynamical behaviors of this model are illustrated by numerical simulations. This paper appears to be the first study of the modified Holling-Tanner model that includes the influence of a strong Allee effect.



    加载中


    [1] P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, 35 (1948), 213–245. https://doi.org/10.2307/2332342 doi: 10.2307/2332342
    [2] J. T. Tanner, The stability and the intrinsic growth rates of prey and predator populations, Ecology, 56 (1975), 855–867. https://doi.org/10.2307/1936296 doi: 10.2307/1936296
    [3] Y. Kuang, Global stability of Gause-type predator-prey systems, J. Math. Biol., 28 (1990), 463–474. https://doi.org/10.1007/BF00178329 doi: 10.1007/BF00178329
    [4] G. J. Butler, S. B. Hsu, P. Waltman, Coexistence of competing predators in a chemostat, J. Math. Biol., 17 (1983), 133–151. https://doi.org/10.1007/BF00305755 doi: 10.1007/BF00305755
    [5] K. S. Cheng, S. B. Hsu, S. S. Lin, Some results on global stability of a predator-prey system, J. Math. Biol., 12 (1982), 115–126. https://doi.org/10.1007/BF00275207 doi: 10.1007/BF00275207
    [6] S. B. Hsu, T. W. Hwang, Hopf bifurcation analysis for a predator-prey system of Holling and Leslie type, Taiwan. J. Math., 3 (1999), 35–53. https://doi.org/10.11650/twjm/1500407053 doi: 10.11650/twjm/1500407053
    [7] S. B. Hsu, T. W. Huang, Global stability for a class of predator-prey systems, SIAM. J. Appl. Math., 55 (1995), 763–783. https://doi.org/10.1137/S0036139993253201 doi: 10.1137/S0036139993253201
    [8] M. A. Aziz-Alaoui, M. D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Appl. Math. Lett., 16 (2013), 1069–1075. https://doi.org/10.1016/S0893-9659(03)90096-6 doi: 10.1016/S0893-9659(03)90096-6
    [9] C. Xiang, J. C. Huang, H. Wang, Linking bifurcation analysis of Holling-Tanner model with generalist predator to a changing environment, Stud. Appl. Math., 149 (2022), 124–163. https://doi.org/10.1111/sapm.12492 doi: 10.1111/sapm.12492
    [10] Y. H. Du, R. Peng, M. X. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differ. Equations, 246 (2009), 3932–3956. https://doi.org/10.1016/j.jde.2008.11.007 doi: 10.1016/j.jde.2008.11.007
    [11] R. P. Gupta, P. Chandra, Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, J. Math. Anal. Appl., 398 (2013), 278–295. https://doi.org/10.1016/j.jmaa.2012.08.057 doi: 10.1016/j.jmaa.2012.08.057
    [12] Y. L. Zhu, W. Kai, Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Leslie-Gower Holling-type Ⅱ schemes, J. Math. Anal. Appl., 384 (2011), 400–408. https://doi.org/10.1016/j.jmaa.2011.05.081 doi: 10.1016/j.jmaa.2011.05.081
    [13] C. Ji, D. Jiang, N. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with stochastic perturbation, J. Math. Anal. Appl., 359 (2009), 482–498. https://doi.org/10.1016/j.jmaa.2009.05.039 doi: 10.1016/j.jmaa.2009.05.039
    [14] J. Xie, H. Liu, D. Luo, The Effects of harvesting on the dynamics of a Leslie-Gower model, Discrete Dyn. Nat. Soc., 2 (2021), 1–11. https://doi.org/10.1155/2021/5520758 doi: 10.1155/2021/5520758
    [15] Z. Shang, Y. Qiao, Bifurcation analysis of a Leslie-type predator-prey system with simplified Holling type Ⅳ functional response and strong Allee effect on prey, Nonlinear Anal.: Real World Appl., 64 (2022), 103–453. https://doi.org/10.1016/j.nonrwa.2021.103453 doi: 10.1016/j.nonrwa.2021.103453
    [16] Y. Huang, Z. Zhu, Z. Li, Modeling the Allee effect and fear effect in predator-prey system incorporating a prey refuge, Adv. Differ. Equations, 321 (2020), 1–13. https://doi.org/10.1186/s13662-020-02727-5 doi: 10.1186/s13662-020-02727-5
    [17] D. Sen, S. Ghorai, S. Sharma, M. Banerjee, Allee effect in prey's growth reduces the dynamical complexity in prey-predator model with generalist predator, Appl. Math. Modell., 91 (2021), 768–790. https://doi.org/10.1016/j.apm.2020.09.046 doi: 10.1016/j.apm.2020.09.046
    [18] A. Kumar, B. Dubey, Dynamics of prey-predator model with strong and weak Allee effect in the prey with gestation delay, Nonlinear Anal.-Model. Control, 25 (2020), 417–442. https://doi.org/10.15388/namc.2020.25.16663 doi: 10.15388/namc.2020.25.16663
    [19] V. Méndez, C. Sans, I. Lopis, D. Campos, Extinction conditions for isolated populations with Allee effect, Math. Biosci., 232 (2011), 78–86. https://doi.org/10.1103/PhysRevE.99.022101 doi: 10.1103/PhysRevE.99.022101
    [20] J. Ye, Y. Wang, Z. Jin, C. J. Dai, M. Zhao, Dynamics of a predator-prey model with strong allee effect and nonconstant mortality rate, Math. Biosci. Eng., 19 (2022), 3402–3426. https://doi.org/10.3934/mbe.2022157 doi: 10.3934/mbe.2022157
    [21] D. Hu, H. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal.: Real World Appl., 33 (2017), 58–82. https://doi.org/10.1016/j.nonrwa.2016.05.010 doi: 10.1016/j.nonrwa.2016.05.010
    [22] C. Xiang, J. C. Huang, M. Lu, Degenerate Bogdanov-Takens bifurcation of codimension 4 in Holling-Tanner model with harvesting, J. Differ. Equations, 314 (2022), 370–417. https://doi.org/10.1016/j.jde.2022.01.016 doi: 10.1016/j.jde.2022.01.016
    [23] C. Xiang, J. C. Huang, H. Wang, Bifurcations in Holling-Tanner model with generalist predator and prey refuge, J. Differ. Equations, 343 (2023), 495–529. https://doi.org/10.1016/j.jde.2022.10.018 doi: 10.1016/j.jde.2022.10.018
    [24] C. Arancibia-Ibarra, J. D. Flores, G. Pettet, P. V. Heijster, A Holling-Tanner predator-prey model with strong Allee effect, Int. J. Bifurcation Chaos, 29 (2019), 1–16. https://doi.org/10.1142/S0218127419300325 doi: 10.1142/S0218127419300325
    [25] X. T. Jia, K. L. Huang, C. P. Li, Bifurcation analysis of a modified Leslie-Gower predator-prey System, Int. J. Bifurcat. Chaos, 33 (2023), 1–16. https://doi.org/10.1142/S0218127423500244 doi: 10.1142/S0218127423500244
    [26] J. J. Zhang, Y. H. Qiao, Bifurcation analysis of an SIR model considering hospital resources and vaccination, Math. Comput. Simul., 208 (2023), 157–185. https://doi.org/10.1016/j.matcom.2023.01.023 doi: 10.1016/j.matcom.2023.01.023
    [27] Z. F. Zhang, T. R. Ding, W. Z. Huang, Z. X. Dong, Qualitative Theory of Differential Equations, Amer. Math. Soc., 101 (1992). https://doi.org/10.1090/mmono/101 doi: 10.1090/mmono/101
    [28] L. Perko, Differential Equations and Dynamical Systems, 3$^{nd}$ edition, Springer-Verlag, New York, 2013. https://doi.org/10.1007/978-1-4613-0003-8
    [29] A. Gasull, Limit cycles in the Holling-Tanner model, Publ. Mat., 41 (1997), 149–167. http://doi.org/10.5565/PUBLMAT_41197_09 doi: 10.5565/PUBLMAT_41197_09
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1459) PDF downloads(121) Cited by(1)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog