Citation: M. P. Lavin-Lopez, L. Sanchez-Silva, J. L. Valverde, A. Romero. CVD-graphene growth on different polycrystalline transition metals[J]. AIMS Materials Science, 2017, 4(1): 194-208. doi: 10.3934/matersci.2017.1.194
[1] | Geim A K, Novoselov K S (2007) The rise of graphene. Nat Mater 6: 183–191. doi: 10.1038/nmat1849 |
[2] | Chen X, Zhang L, Chen S (2015) Large area CVD growth of graphene. Synth Met 210: 95–108. doi: 10.1016/j.synthmet.2015.07.005 |
[3] | Bhuyan MSA, Uddin MN, Islam MM, et al. (2016) Synthesis of graphene. Int Nano Lett 6: 65. doi: 10.1007/s40089-015-0176-1 |
[4] | Wang Y, Chen X, Zhong Y, et al. (2009) Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett 95: 063302. doi: 10.1063/1.3204698 |
[5] | Dervishi E, Li Z, Watanabe F, et al. (2009) Large-scale graphene production by RF-cCVD method. Chem Commun, 4061–4063. |
[6] | Zhang Y, Zhang L, Zhou C (2013) Review of chemical vapor deposition of graphene and related applications. Acc Chem Res 46: 2329–2339. doi: 10.1021/ar300203n |
[7] | Cabrero-Vilatela A, Weatherup RS, Braeuninger-Weimer P, et al. (2016) Towards a general growth model for graphene CVD on transition metal catalysts. Nanoscale 8: 2149–2158. doi: 10.1039/C5NR06873H |
[8] | Zhang X, Li H, Ding F (2014) Self-Assembly of Carbon Atoms on Transition Metal Surfaces-Chemical Vapor Deposition Growth Mechanism of Graphene. Adv Mater 26: 5488–5495. doi: 10.1002/adma.201305922 |
[9] | Losurdo M, Giangregorio MM, Capezzuto P, et al. (2011) Graphene CVD growth on copper and nickel: Role of hydrogen in kinetics and structure. Phys Chem Chem Phys 13: 20836–20843. doi: 10.1039/c1cp22347j |
[10] | López GA, Mittemeijer EJ (2004) The solubility of C in solid Cu. Scripta Mater 51: 1–5. doi: 10.1016/j.scriptamat.2004.03.028 |
[11] | Xue Y, Wu B, Guo Y, et al. (2011) Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Res 4: 1208–1214. doi: 10.1007/s12274-011-0171-4 |
[12] | Chen X, Zhang L, Chen S (2015) Large area CVD growth of graphene. Synth Met 210: 95–108. doi: 10.1016/j.synthmet.2015.07.005 |
[13] | Zhao P, Kumamoto A, Kim S, et al. (2013) Self-Limiting Chemical Vapor Deposition Growth of Monolayer Graphene from Ethanol. J Phys Chem C 117: 10755–10763. doi: 10.1021/jp400996s |
[14] | Yu Q, Lian J, Siriponglert S, et al. (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93: 113103. doi: 10.1063/1.2982585 |
[15] | Lavin-Lopez MP, Valverde JL, Cuevas MC, et al. (2014) Synthesis and characterization of graphene: Influence of synthesis variables. Phys Chem Chem Phys 16: 2962–2970. doi: 10.1039/c3cp54832e |
[16] | Lavin-Lopez MP, Valverde JL, Ruiz-Enrique MI, et al. (2015) Thickness control of graphene deposited over polycrystalline nickel. New J Chem 39: 4414–4423. doi: 10.1039/C5NJ00073D |
[17] | Lavin-Lopez MP, Valverde JL, Sanchez-Silva L, et al. (2016) Influence of the Total Gas Flow at Different Reaction Times for CVD-Graphene Synthesis on Polycrystalline Nickel. J Nanomater 2016: 9. |
[18] | Wall M (2012) Raman spectroscopy optimizes graphene characterization. Adv Mater Processes 170: 35–38. |
[19] | Suk JW, Kitt A, Magnuson CW, et al. (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5: 6916–6924. doi: 10.1021/nn201207c |
[20] | Reina A, Jia X, Ho J, et al. (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9: 30–35. doi: 10.1021/nl801827v |
[21] | Lee S, Lee K, Zhong Z (2010) Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett 10: 4702–4707. doi: 10.1021/nl1029978 |
[22] | Lee D, Lee K, Jeong S, et al. (2012) Process optimization for synthesis of high-quality graphene films by low-pressure chemical vapor deposition. Jpn J Appl Phys 51. |
[23] | Chen S, Cai W, Piner RD, et al. (2011) Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils. Nano Lett 11: 3519–3525. doi: 10.1021/nl201699j |
[24] | Muñoz R, Gómez-Aleixandre C (2013) Review of CVD synthesis of graphene. Chem Vap Deposition 19: 297–322. doi: 10.1002/cvde.201300051 |
[25] | Seah CM, Chai SP, Mohamed AR (2014) Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 70: 1–21. doi: 10.1016/j.carbon.2013.12.073 |
[26] | Liu W, Li H, Xu C, et al. (2011) Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 49: 4122–4130. doi: 10.1016/j.carbon.2011.05.047 |
[27] | Li X, Magnuson CW, Venugopal A, et al. (2010) Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett 10: 4328–4334. doi: 10.1021/nl101629g |
[28] | Wang YM, Cheng S, Wei QM, et al. (2004) Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni. Scripta Mater 51: 1023–1028. doi: 10.1016/j.scriptamat.2004.08.015 |
[29] | Shen Y, Lua AC (2013) A facile method for the large-scale continuous synthesis of graphene sheets using a novel catalyst. Sci Rep 3: 3037–3042. |
[30] | Verguts K, Vermeulen B, Vrancken N, et al. (2016) Epitaxial Al2O3(0001)/Cu(111) Template Development for CVD Graphene Growth. J Phys Chem C 120: 297–304. doi: 10.1021/acs.jpcc.5b09461 |
[31] | Vlassiouk I, Smirnov S, Regmi M, et al. (2013) Graphene nucleation density on copper: Fundamental role of background pressure. J Phys Chem C 117: 18919–18926. doi: 10.1021/jp4047648 |
[32] | Liu W, Chung CH, Miao CQ, et al. (2010) Chemical vapor deposition of large area few layer graphene on Si catalyzed with nickel films. Thin Solid Films 518: S128–S132. doi: 10.1016/j.tsf.2009.10.070 |
[33] | Wan D, Lin T, Bi H, et al. (2012) Autonomously controlled homogenous growth of wafer-sized high-quality graphene via a smart Janus substrate. Adv Funct Mater 22: 1033–1039. doi: 10.1002/adfm.201102560 |
[34] | Mattevi C, Kim H, Chhowalla M (2011) A review of chemical vapour deposition of graphene on copper. J Mater Chem 21: 3324–3334. doi: 10.1039/C0JM02126A |
[35] | Vlassiouk I, Regmi M, Fulvio P, et al. (2011) Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5: 6069–6076. doi: 10.1021/nn201978y |
[36] | Zhang Y, Li Z, Kim P, et al. (2012) Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano 6: 126–132. doi: 10.1021/nn202996r |
[37] | Li X, Cai W, Colombo L, et al. (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9: 4268–4272. doi: 10.1021/nl902515k |
[38] | Takahashi K, Yamada K, Kato H, et al. (2012) In situ scanning electron microscopy of graphene growth on polycrystalline Ni substrate. Surf Sci 606: 728–732. doi: 10.1016/j.susc.2011.12.009 |
[39] | Genki O, Hiroki H, Nanao N, et al. (2012) Macroscopic Single-Domain Graphene Growth on Polycrystalline Nickel Surface. Appl Phys Express 5: 035501. doi: 10.1143/APEX.5.035501 |
[40] | Nakahara H, Fujita S, Minato T, et al. (2016) In-Situ RHEED Study on Graphene Growth During Chemical Vapor Deposition. e-J Surf Sci Nanotechnol 14: 39–42. doi: 10.1380/ejssnt.2016.39 |
[41] | Robertson AW, Warner JH (2011) Hexagonal Single Crystal Domains of Few-Layer Graphene on Copper Foils. Nano Lett 11: 1182–1189. doi: 10.1021/nl104142k |
[42] | Yao Y, Li Z, Lin Z, et al. (2011) Controlled Growth of Multilayer, Few-Layer, and Single-Layer Graphene on Metal Substrates. J Phys Chem C 115: 5232–5238. doi: 10.1021/jp109002p |
[43] | Kasap S, Khaksaran H, Celik S, et al. (2015) Controlled growth of large area multilayer graphene on copper by chemical vapour deposition. Phys Chem Chem Phys 17: 23081–23087. doi: 10.1039/C5CP01436K |
[44] | Van Tu N, Huu Doan L, Van Chuc N, et al. (2013) Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method. Adv Nat Sci Nanosci Nanotechnol 4: 035012. doi: 10.1088/2043-6262/4/3/035012 |
[45] | Shi Y, Wang D, Zhang J, et al. (2015) Synthesis of multilayer graphene films on copper by modified chemical vapor deposition. Mater Manuf Process 30: 711–716. doi: 10.1080/10426914.2014.984201 |
[46] | Wu W, Yu Q, Peng P, et al. (2012) Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Nanotechnology 23. |
[47] | Ferrari AC, Meyer JC, Scardaci V, et al. (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97: 187401. doi: 10.1103/PhysRevLett.97.187401 |
[48] | Li X, Cai W, An J, et al. (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324: 1312–1314. doi: 10.1126/science.1171245 |
[49] | Jeong-Yuan H, Chun-Chiang K, Li-Chyong C, et al. (2010) Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density. Nanotechnology 21: 465705. doi: 10.1088/0957-4484/21/46/465705 |
[50] | Bointon TH, Barnes MD, Russo S, et al. (2015) High Quality Monolayer Graphene Synthesized by Resistive Heating Cold Wall Chemical Vapor Deposition. Adv Mater 27: 4200–4206. doi: 10.1002/adma.201501600 |
[51] | Ferrari AC (2007) Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143: 47–57. doi: 10.1016/j.ssc.2007.03.052 |
[52] | Nemanich RJ, Solin SA (1979) First- and second-order Raman scattering from finite-size crystals of graphite. Phys Rev B 20: 392–401. doi: 10.1103/PhysRevB.20.392 |
[53] | Calizo I, Teweldebrhan D, Bao W, et al. (2008) Spectroscopic Raman nanometrology of graphene and graphene multilayers on arbitrary substrates. J Phys 109: 5. |
[54] | Zhang Y, Gao T, Gao Y, et al. (2011) Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano 5: 4014–4022. doi: 10.1021/nn200573v |
[55] | Nie S, Wofford JM, Bartelt NC, et al. (2011) Origin of the mosaicity in graphene grown on Cu(111). Phys Rev B Condens Matter 84: 155425. doi: 10.1103/PhysRevB.84.155425 |
[56] | Rybin MG, Pozharov AS, Obraztsova ED (2010) Control of number of graphene layers grown by chemical vapor deposition. Phys Status Solidi C 7: 2785–2788. doi: 10.1002/pssc.201000241 |
[57] | Liang C, Wang W, Li T, et al. (2012) Optimization on the synthesis of large-area single-crystal graphene domains by chemical vapor deposition on copper foils. Xi'an. |