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Abstract: In this paper, we study a predator-prey system, the modified Holling-Tanner model with
strong Allee effect. The existence and stability of the non-negative equilibria are discussed first. Several
kinds of bifurcation phenomena, which the model may undergo, such as saddle-node bifurcation, Hopf
bifurcation, and Bogdanov-Takens bifurcation, are studied second. Bifurcation diagram for Bogdanov-
Takens bifurcation of codimension 2 is given. Then, possible dynamical behaviors of this model are
illustrated by numerical simulations. This paper appears to be the first study of the modified Holling-
Tanner model that includes the influence of a strong Allee effect.
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1. Introduction

Predator-prey is one of three major types of interactions between species besides symbiosis and
competition. Understanding the interactions between predators and their prey has been one of the
leading research interests in population dynamics [1]. A predator-prey system is dominated by two
important factors: the population growth function and the functional response. Tanner [2] presented a
predator-prey system in which the environmental carrying capacity of the predator is proportional to
the prey population size, and the reduction rate of the prey is proportional to the predator size. It takes
the following form: 

dx
dt

=x
[
r
(
1−

x
K

)
−

ky
x+D

]
,

dy
dt

=sy
(
1−

hy
x

)
,

(1)

where x(t) is the prey population and y(t) is the predator population at time t; r and s are the intrinsic
growth rate of the prey and predator respectively; h, k,K and D are all positive parameters. The term
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kx
x+D is called Holling-II functional response, generally reflecting the reduction rate of the prey caused
by per capita of the predator.

By variable changes:

u (τ) =
x (t)
K

, v (τ) =
hy (t)

K
, τ = rt, a=

k
hr
, b=

s
r
, d=

D
K
,

system (1) can be rewritten in a nondimensional form:
du
dτ

=u (1−u)−
auv
u+d

= f (u, v) ,

dv
dτ

=bv
(
1−

v
u

)
=g (u, v) .

(2)

System (2) has been extensively studied [3–7]. Aziz-Alaoui and Okiye [8] considered the following
system with alternative food sources for predators, which is called the modified Holling-Tanner model:

dx
dt

= x
[
r
(
1 −

x
K

)
−

ky
x + D

]
,

dy
dt

= sy
(
1 −

y
hx + K2

)
,

(3)

where K2 > 0, hx + K2 in system (3) is the new carrying capacity for predators. K2 can be seen as an
extra constant carrying capacity from all other food sources for predators. Several researchers [9–15]
studied the existence of periodic solutions and bifurcation phenomena of system (3).

Allee effect refers to the phenomenon that low population density inhibits growth. Bioresearch in-
dicates that clustering benefits the growth and survival of species. However, extreme sparsity and over-
crowding will prevent population growth and negatively affect reproduction [16–19]. Every species
has its optimal density. Species with small population densities are generally vulnerable. Once the
population density falls below a critical level, interactions within the species will diminish. Ye et
al. [20] considered a predator-prey model with a strong Allee effect and a nonconstant mortality rate.
They found that a strong Allee effect may guarantee the coexistence of the species. Hu and Cao [21]
considered a predator-prey model with Michaelis-Menten type predator harvesting. Their model ex-
hibits a Bogdanov-Takens bifurcation of codimension 2. Xiang et al. [22] studied the Holling-Tanner
model with constant prey harvesting. They found a degenerate Bogdanov-Takens bifurcation of codi-
mension 4 and at least three limit cycles. In [23], Xiang et al. considered the Holling-Tanner model
with predator and prey refuge and proved that this model undergoes a Bogdanov-Takens bifurcation of
codimension 3. Arancibia et al. [24] adjusted the Holling-Tanner model by adding a strong Allee effect
to prey. They found a Bogdanov-Takens bifurcation of codimension 2 and a heteroclinic bifurcation.
It seems that a strong Allee effect gives rise to the heteroclinic bifurcation. Jia et al. [25] studied a
modified Leslie-Gower model with a weak Allee effect on prey. This model undergoes a degenerate
Bogdanov-Takens bifurcation of codimension 3 and has at least two limit cycles. Zhang and Qiao [26]
analyzed the SIR model with vaccination and proved that this model undergoes a Bogdanov-Takens
bifurcation of codimension 3 in some specific cases.
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In this paper, we will analyze the following predator-prey model with the parameter M indicating
strong Allee effect: 

dx
dt

= rx
(
1 −

x
K

)
(x − M) −

αxy
x + m

,

dy
dt

= sy
(
1 −

βy
x + m

)
,

(4)

where α > 0 and β > 0 are real numbers. We shall assume M � K from now on. If the original
population of the prey is less than M, the prey will have a negative growth rate and become extinct
ultimately. In system (4), m > 0 measures the extent of protection to which the environment provides
to prey (or, to predators). It means that the growth rate of prey and predators are not negative infinity
when x reduces to zero.

As a first step in analyzing system (4), we nondimensionalize system (4) by writing

x
K
→ x,

αy
rK2 → y, rKt → t,

and it becomes 
dx
dt

= x (1 − x) (x − a) −
xy

x + b
,

dy
dt

= cy
(
1 −

dy
x + b

)
,

(5)

where a = M
K < 1, b = m

K , c = s
rK and d =

βrK
α
.

This paper is organized as follows. Section 2 discusses the stability of the equilibria. Section 3 deals
with possible bifurcations that system (5) undergoes, such as Hopf bifurcation and Bogdanov-Takens
bifurcation. Section 4 summarizes our conclusions.

2. Equilibria and their stability

2.1. Boundary equilibria and their stability

The equilibria of system (5) satisfy the following equations
x (1 − x) (x − a) −

xy
x + b

= 0,

cy
(
1 −

dy
x + b

)
= 0.

We get four boundary equilibria on the axes: E0 = (0, 0), E1 = (1, 0), E2 = (a, 0) and E3 = (0, b
d ).

These equilibria are all hyperbolic because corresponding linearized matrices at the equilibria Ei (i =

0, 1, 2, 3) are

JE0 =

(
−a 0
0 c

)
, JE1 =

(
a − 1 − 1

1+b
0 c

)
,

JE2 =

(
a(1 − a) −a

a+b
0 c

)
, JE3 =

(
−a − 1

d 0
c
d −c

)
.

Because we have assumed 0 < a < 1, we get the stability of the boundary equilibria.
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Theorem 2.1. System (5) has four equilibria Ei (i = 0, 1, 2, 3) on the boundary. E0(0, 0) and E1(1, 0)
are both hyperbolic saddles, E2(a, 0) is a hyperbolic unstable node and E3(0, b

d ) is a hyperbolic stable
node (see Figure 1(c)).

a = 0.1,b = 0.1,c = 0.1713,d = 5
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Figure 1. The number of equilibria: (a) 6 equilibria. (b) 5 equilibria. (c) 4 equilibria.

2.2. Positive equilibria and their stability

Theorem 2.2. If ∆ = (a−1)2− 4
d > 0, system (5) has two positive equilibria E4(x4,

x4+b
d ) and E5(x5,

x5+b
d ),

where x4 = 1+a−
√

∆
2 and x5 = 1+a+

√
∆

2 . E4 is always a hyperbolic saddle. E5 may be a source, a sink or
a center depending on the parametric values (see Figure 1(a)).

Proof. The positive equilibria of system (5) satisfy the equations
x2 − (1 + a)x + a +

1
d

= 0,

y =
x + b

d
.

If ∆ = (a − 1)2 − 4
d > 0, the equation x2 − (1 + a)x + a + 1

d = 0 has two roots xi (i = 4, 5).
The linearized matrix of system (5) at Ei = (xi,

xi+b
d ) (i = 4, 5) is

JEi =

 −2x2
i + (1 + a)xi + xi

d(xi+b) −
xi

xi+b
c
d −c

 , i = 4, 5.

The determinant of E4 is detJE4 = −cx4
√

∆ < 0, from which we get that E4 is a hyperbolic saddle.
Because detJE5 = cx5

√
∆ > 0 and trJE5 = −x5

√
∆ − c +

x5
d(x5+b) , the stability of E5 depends on the

parameters a, b, c and d. That is, E5 is a sink if trJE5 < 0, a source if trJE5 > 0.

Theorem 2.3. If ∆ = (a − 1)2 − 4
d = 0, i.e., d = 4

(a−1)2 , system (5) has a unique positive equilibrium
E6(x6, y6), where x6 = 1+a

2 and y6 = 1+a+2b
2d (see Figure 1(b)).

1) If c > 1+a
d(1+a+2b) (c < 1+a

d(1+a+2b) ), E6 is an attracting (a repelling) saddle-node;
2) If c = 1+a

d(1+a+2b) , E6 is a nilpotent cusp of codimension 2 (i.e., the Bogdanov-Takens singularity).
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The phase portraits are given in Figure 3.

Proof. The linearized matrix at the equilibrium E6 is

JE6 =

 1+a
d(1+a+2b) −

1+a
1+a+2b

c
d −c

 .
E6 is not hyperbolic because detJE6 = 0. By a shift transformation x − x6 → x and y − y6 → y,

system (5) becomes
dx
dt

=
(1 + a)(x − dy)
d(1 + a + 2b)

+

[
4b

d(1 + a + 2b)2 −
1 + a

2

]
x2 −

4b
(1 + a + 2b)2 xy + O(|x, y|3),

dy
dt

=
c
d

x − cy −
2c

d(1 + a + 2b)
x2 +

4c
1 + a + 2b

xy −
2cd

1 + a + 2b
y2 + O(|x, y|3).

(6)

The eigenvalues of JE6 are λ1 = 0 and λ2 = 1+a
d(1+a+2b) − c.

Case 1. λ2 , 0, i.e., c , 1+a
d(1+a+2b) .

By variable changes  x

y

 =

 d 1+a
d(1+a+2b)

1 c
d

  u

v

 ,
system (6) can be rewritten as 

du
dt

=
cd2(1 + a)

2λ2
u2 + O(|u, v|3),

dv
dt

= λ2v + O(|u, v|2).

(7)

By Theorem 7.1 in chapter 2 of [27], we obtain that E6 is a saddle-node. There is a parabolic sector
neighborhood in which all trajectories approach to E6 when λ2 < 0, and leave it when λ2 > 0.
Case 2. λ2 = 0, i.e., c = 1+a

d(1+a+2b) .
According to [28], the cusp is a kind of nonhyperbolic critical point. The cusp can be illustrated by

the following example: ξ̇ = η,

η̇ = ξ2.

The phase portrait for this system is shown in Figure 2. The neighborhood of the origin consists of two
hyperbolic sectors and two separatrices.

Now consider the case when the linearized matrix (denoted as A) has two zero eigenvalues, i.e.,
det A = 0, tr A = 0, but A , 0. In this case it is shown in [28], that the system can be put in the normal
form: ξ̇ = η,

η̇ = akξ
k [1 + h(ξ)

]
+ bnξ

nη
[
1 + g(ξ)

]
+ η2R(ξ, η),

(8)

where h(ξ), g(ξ) and R(ξ, η) are analytic in a neighborhood of the origin, h(0) = g(0) = 0, k ≥ 2, ak , 0
and n ≥ 1. The following lemma is given in [28].
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Figure 2. A cusp at the origin.

Lemma 2.1. Let k = 2m with m ≥ 1 in system (8). Then the type of the origin is given by Table 1.

Table 1. The relationship of bn, n,m and the type of the origin.

The relationship of bn, n and m Type of the origin

bn = 0
Cusp

bn , 0
n ≥ m

n < m Saddle-node

Next, we transform system (6) into a normal form by coordinate transformations. The correspond-
ing linearized matrix of system (6) at E6 is

JE6 =

 c −cd
c
d −c

 .
By variable changes  x

y

 =

 d d
c

1 0

  u

v

 ,
system (6) can be rewritten as

du
dt

= v −
2d2

1 + a
v2 + O(|u, v|3) , P(u, v),

dv
dt

= −
(1 + a)2

2(1 + a + 2b)
u2 −

d
[
(1 + a)3 + (3 + a)(1 + 3a)b + 4(1 + a)b2

]
(1 + a + 2b)2 uv

−
d2(ab + 2a + b)

1 + a
v2 + O(|u, v|3) , Q(u, v).

(9)
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Lemma 2.2. ( [28]) System (10)ẋ = y + Ax2 + Bxy + Cy2 + O(|x, y|3),

ẏ = Dx2 + Exy + Fy2 + O(|x, y|3),
(10)

is equivalent to system (11) near the origin, where system (11) isẋ = y,

ẏ = Dx2 + (E + 2A)xy + O(|x, y|3).
(11)

Therefore, by Lemma 2.2, we can transform system (9) into the following form:
du
dt

= v,

dv
dt

= −
(1 + a)2

2(1 + a + 2b)
u2 −

d((1 + a)3 + (3 + a)(1 + 3a)b + 4(1 + a)b2)
(1 + a + 2b)2 uv + O(|u, v|3).

(12)

Using the notations of Lemma 2.1, we obtain k = 2m, m = n = 1, a2m = −
(1+a)2

2(1+a+2b) and

bn = −
d[(1+a)3+(3+a)(1+3a)b+4(1+a)b2]

(1+a+2b)2 . Consequently, by Lemma 2.1, we find that E6(x6, y6) is a degen-
erate critical point (cusp). More exactly, by the results in [28], E6 is a cusp of codimension 2.

For example, we take a = 0.1, b = 0.1 and d = 4.9383, which satisfy (a − 1)2 − 4
d = 0. E6 is a cusp

for c = 1+a
d(1+a+2b) = 0.1713. E6 is a saddle-node with parabolic sector approaching it for c = 0.3. E6 is a

saddle-node with parabolic sector repelling it for c = 0.05 (see Figure 3).

c = 0.1713
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Figure 3. (a) A cusp. (b) A saddle−node(λ2 < 0). (c) A saddle-node(λ2 > 0).

3. Bifurcation analysis

3.1. Hopf bifurcation

As stated in Theorem 2.2, the positive equilibrium E5 may be a center, source, or sink because
detJE5 > 0. Considering c as the bifurcation parameter, Hopf bifurcation occurs when c = cH, where
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cH satisfies trJE5 |c=cH = 0. The local stability of E5 changes when c passes through c = cH. We
summarize our results in the following theorem.

Theorem 3.1. Hopf bifurcation occurs at E5 in system (5) when c = cH > 0.

Proof. Take c as the bifurcation parameter. By trJE5 = −x5
√

∆ +
x5

d(x5+b) − c, we have

cH = −x5

√
∆ +

x5

d(x5 + b)
,

∂

∂c
trJE5 |c=cH = −1 , 0,

detJE5 = cx5

√
∆ > 0.

Hopf bifurcation may occur when c crosses cH.
Next, we discuss the stability of E5 as c = cH. Moving E5 to (0, 0) by X = x + x5 and Y = y + y5,

the Taylor expansion of system (5) at E5 takes the form
dX
dt = A10X + A01Y + A20X2 + A11XY + A30X3 + A21X2Y + O

(
|X,Y |4

)
,

dY
dt = B10X + B01Y + B20X2 + B11XY + B02Y2 + B30X3 + B21X2Y + B12XY2 + O

(
|X,Y |4

)
,

(13)

where

A10 = cH, A01 = −
x5

x5 + b
, A20 = 1 + a − 3x5 +

by5

(x5 + b)3 ,

A11 = −
b

(x5 + b)2 , A30 = −1 −
by5

(x5 + b)4 , A21 =
b

(x5 + b)3 ,

B10 =
cH

d
, B01 = −cH, B20 = −

cHy2
5d

(b + x5)3 , B11 =
2cHy5d

(b + x5)2 ,

B02 = −
cHd

b + x5
, B30 =

cHy2
5d

(b + x5)4 , B21 = −
2cHy5d

(b + x5)3 , B12 =
cHd

(b + x5)2 .

With ω =

√
−A2

10 − A01B10 > 0 and(
X
Y

)
=

(
ω A10

0 B10

) (
U
V

)
, i.e.,

(
U
V

)
=

( 1
ω
− d
ω

0 1
B10

) (
X
Y

)
,

we transform system (13) into the following system dU
dt = −ωV + F(U,V),
dV
dt = ωU + G(U,V),

(14)

where F(U,V) and G(U,V) are the sum of those terms with orders not less than 2.
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The stability of O(0, 0) relies on the number

K =
1

16
(FUUU + FUVV + GUUV + GVVV)

+
1

16ω
(FUV FUU + FUV FVV + FVVGVV) −

1
16ω

(GUVGVV + GUVGUU + FUUGUU) .

The following simplified expression of K can be obtained by Maple:

8K
cH

= cH

[
2A2

20

x5
√

∆
+

2A20

x5 + b
−

(
2b

d(x5 + b)3 + 3
)]

+

2A2
20 +

2x5
√

∆A20

x5 + b
− 3x5

√
∆

(
1 +

b
d(x5 + b)3

)
+

[
cHb2

(x5 + b)4d2x5
√

∆
−

A20b
d(x5 + b)2 −

3cHA20b

x5
√

∆d(x5 + b)2

]
= I1 + I2 + I3,

∆ = (a − 1)2 −
4
d
< (1 − a)2, x5 =

1 + a +
√

∆

2
>
√

∆, cH =
x5

d(x5 + b)
− x5

√
∆ > 0,

A20 = 1 + a − 3x5 −
b

d(x5 + b)2 < −(x5 +
√

∆) −
b

d(x5 + b)2 < 0,

I1

cH
=

2A2
20

x5
√

∆
+

2A20

x5 + b
−

(
2b

d(x5 + b)3 + 3
)

=
A20

x5
√

∆

A20 +
2x5
√

∆

x5 + b

 +
1

x5
√

∆

A2
20 − 3x5

√
∆ −

2bx5
√

∆

d(x5 + b)3


>

A20

x5
√

∆

(
−(x5 +

√
∆) + 2

√
∆
)

+
1

x5
√

∆

(
(x5 +

√
∆)2 − 3x5

√
∆
)

+

2b
(
x5 +

√
∆ −

x5
√

∆

x5+b

)
d(x5 + b)2x5

√
∆

> 0,

I2 = 2A2
20 +

2x5
√

∆A20

x5 + b
− 3x5

√
∆

(
1 +

b
d(x5 + b)3

)
= A20

A20 +
2x5
√

∆

x5 + b

 +

(
A2

20 − 3x5

√
∆

(
1 +

b
d(x5 + b)3

))
> A20

(
−

(
x5 +

√
∆
)

+ 2
√

∆
)

+
(
(x5 +

√
∆)2 − 3x5

√
∆
)

+
b

d(x5 + b)2

2(x5 +
√

∆) −
3x5
√

∆

x5 + b

 > 0,

I3 =
cHb2

(x5 + b)4d2x5
√

∆
−

A20b
d(x5 + b)2 −

3cHA20b

x5
√

∆d(x5 + b)2
.

It is obvious that I3 > 0 because all the elements are positive. Therefore, E5 undergoes a subcritical
bifurcation when c = cH. When c > cH and |c − cH | � ε, there is an unstable limit cycle (see Figure
4(b)).
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Figure 4. Hopf Bifurcation of system (5): (a) E5 is an unstable focus. (b) E5 is a stable focus
and there is an unstable closed orbit. (c) E5 is a linear center.

3.2. Bogdanov-Takens bifurcation

Theorem 3.2. When c and d are selected as two bifurcation parameters, detJE5 |(c,d)=(cBT ,dBT ) = 0 and
trJE5 |(c,d)=(cBT ,dBT ) = 0, system (5) undergoes a Bogdanov-Takens bifurcation of codimension 2 in a small
neighborhood of E5 as (c, d) varies near (cBT , dBT ) = ( (a−1)2

4
1+a

1+a+2b ,
4

(a−1)2 ).

Proof. Perturb parameters c and d by c = cBT + ε1 and d = dBT + ε2, where (ε1, ε2) is sufficiently small,
and system (5) takes the following form:

dx
dt

= x (1 − x) (x − a) −
xy

x + b
,

dy
dt

= (cBT + ε1)y
(
1 −

(dBT + ε2)y
x + b

)
.

(15)

The Taylor expansion of system (15) at E5(x5, y5) is
dx
dt

=p10x + p01y + p20x2 + p11xy + O
(
|x, y, ε1, ε2|

3
)
,

dy
dt

=q00 + q10x + q01y + q11xy + q02y2 + O
(
|x, y, ε1, ε2|

3
)
,

(16)

where

p10 = −2x2
5 + (1 + a)x5 +

x5

d(x5 + b)
, p01 = −

x5

x5 + b
, p20 = 1 + a − 3x5 +

by5

(x5 + b)3 ,

p11 = −
b

(x5 + b)2 , q00 = −
ε2y5(cBT + ε1)

dBT
, q10 =

(cBT + ε1)(dBT + ε2)
d2

BT

,

q01 = (cBT + ε1)(1 −
2(dBT + ε2)

dBT
), q11 =

2(cBT + ε1)(dBT + ε2)
dBT (x5 + b)

, q02 = −
(cBT + ε1)(dBT + ε2)

x5 + b
.

Take a C∞ change of coordinates around (0, 0)

u1 = x, v1 =
dx
dt
,
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then system (16) is changed into the following form
u̇1 =v1,

v̇1 =n00 + n10u1 + n01v1 + n20u2
1 + n11u1v1 + n02v2

1 + O
(
|u1, v1, ε1, ε2|

3
)
,

(17)

where
n00 = p01q00, n10 = p01q10 − p10q01 + p11q00, n01 = p10 + q01,

n20 = q20 p01 − q11 p10 + p11q10 − q01 p20 +
p2

10q02

p01
,

n11 = 2p20 + q11 −
p11 p10 + 2q02 p10

p01
, n02 =

p11 + q02

p01
.

After rescaling the time by (1 − n02u1)t → t, system (17) is rewritten as
u̇1 = v1(1 − n02u1),

v̇1 = (1 − n02u1)
[
n00 + n10u1 + n01v1 + n20u2

1 + n11u1v1 + n02v2
1 + O

(
|u1, v1, ε1, ε2|

3
)]
.

(18)

Letting u2 = u1 and v2 = v1(1 − n02u1), we get system (19) as follows
u̇2 = v2,

v̇2 = θ00 + θ10u2 + θ01v2 + θ20u2
2 + θ11u2v2 + O

(
|u2, v2, ε1, ε2|

3
)
,

(19)

where
θ00 = n00, θ10 = n10 − 2n00n02, θ01 = n01,

θ20 = n20 − 2n10n02 + n00n2
02, θ11 = n11 − n01n02.

Case 1: For small εi (i = 1, 2), if θ20 > 0, by the following change of variables

u3 = u2, v3 =
v2
√
θ20

, t →
√
θ20t,

system (19) becomes
u̇3 = v3,

v̇3 = s00 + s10u3 + s01v3 + u2
3 + s11u3v3 + O

(
|u3, v3, ε1, ε2|

3
)
,

(20)

where
s00 =

θ00

θ20
, s10 =

θ10

θ20
, s01 =

θ01
√
θ20

, s11 =
θ11
√
θ20

.

To eliminate the u3 term, letting u4 = u3 + s10
2 and v4 = v3, we get system (21) as follows

u̇4 = v4,

v̇4 = r00 + r01v4 + u2
4 + r11u4v4 + O

(
|u4, v4, ε1, ε2|

3
)
,

(21)
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where

r00 = s00 −
s2

10

4
, r01 = s01 −

s10s11

2
, r11 = s11.

Clearly, r11 = s11 = θ11√
θ20
, 0 if θ11 , 0.

Setting u5 = r2
11u4, v5 = r3

11v4 and τ = 1
r11

t, we obtain the universal unfolding of system (16)
u̇5 = v5,

v̇5 = µ1 + µ2v5 + u2
5 + u5v5 + O

(
|u5, v5, ε1, ε2|

3
)
,

(22)

where
µ1 = r00r4

11, µ2 = r01r11. (23)

Case 2: For small εi(i = 1, 2), if θ20 < 0, by the following change of variables

u′3 = u2, v′3 =
v2
√
−θ20

, t →
√
−θ20t,

system (19) becomes
u̇′3 = v′3,

v̇′3 = s′00 + s′10u3 + s′01v3 − u2
3 + s′11u3v3 + O

(
|u3, v3, ε1, ε2|

3
)
,

(24)

where
s′00 = −

θ00

θ20
, s′10 = −

θ10

θ20
, s′01 =

θ01
√
−θ20

, s′11 =
θ11
√
−θ20

.

To eliminate the u3 term, letting u′4 = u′3 −
s′10
2 and v′4 = v′3, we get system (25) as follows

u̇′4 = v′4,

v̇′4 = r′00 + r′01v′4 − u′24 + r′11u′4v′4 + O
(∣∣∣u′4, v′4, ε1, ε2

∣∣∣3) , (25)

where

r′00 = s′00 +
s′210

4
, r′01 = s′01 +

s′10s′11

2
, r′11 = s′11.

Clearly, r′11 = s′11 = θ11√
−θ20
, 0 if θ11 , 0.

Setting u′5 = −r′211u′4, v′5 = r′311v′4 and τ = − 1
r′11

t, we obtain the universal unfolding of system (16)


u̇′5 = v′5,

v̇′5 = µ′1 + µ′2v′5 + u′25 + u′5v′5 + O
(∣∣∣u′5, v′5, ε1, ε2

∣∣∣3) , (26)

where
µ′1 = −r′00r′411, µ

′
2 = −r′01r′11. (27)
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Retain µ1 and µ2 to denote µ′1 and µ′2. If the matrix
∣∣∣∣∂(µ1,µ2)
∂(ε1,ε2)

∣∣∣∣
ε1=ε2=0

is nonsingular, the parameter
transformations (23) and (27) are homeomorphisms in a small neighborhood of (0, 0), and µ1, µ2 are
independent parameters. Direct computation shows that θ20 = −

(1+a)2(a−1)2(a2+2ab+2b2+2b+1)
4(1+a+2b)3 < 0 when

εi = 0 (i = 1, 2) and

∣∣∣∣∣∂(µ1, µ2)
∂(ε1, ε2)

∣∣∣∣∣
ε1=ε2=0

= −
2
(
a3 + (3b + 3)a2 +

(
4b2 + 10b + 3

)
a + 4b2 + 3b + 1

)5
(1 + a + 2b)(

a2 + 2ab + 2b2 + 2b + 1
)4 (1 + a)6(a − 1)2

, 0.

By Perko [28], we know that systems (22) and (26) undergo the Bogdanov-Takens bifurcation
when ε = (ε1, ε2) is in a small neighborhood of the origin. The local representations of the unfolding
bifurcation curves are as follows (“+” for θ20 > 0, “-” for θ20 < 0):
1) The saddle-node bifurcation curve SN = {(ε1, ε2) : µ1 (ε1, ε2) = 0, µ2 (ε1, ε2) , 0};
2) The Hopf bifurcation curve H =

{
(ε1, ε2) : µ2 (ε1, ε2) = ±

√
−µ1 (ε1, ε2), µ1 (ε1, ε2) < 0

}
;

3) The homoclinic bifurcation curve HOM =
{
(ε1, ε2) : µ2 (ε1, ε2) = ±5

7

√
−µ1 (ε1, ε2), µ1 (ε1, ε2) < 0

}
.

For example, in system (15), we can set a = 0.1, b = 0.1 and dBT = 4
(a−1)2 ≈ 4.93827. Further

computation yields x5 = 1+a
2 = 0.55, y5 =

x5+b
d = 0.131625 and cBT = −2x2

5 + (1 + a)x5 +
x5

d(x5+b) ≈

0.171346. Since ∣∣∣∣∣∂(µ1, µ2)
∂(ε1, ε2)

∣∣∣∣∣
ε1=ε2=0

=

∣∣∣∣∣∣ 0 −1.74742
−7.54666 −0.323622

∣∣∣∣∣∣ ≈ −13.1872 , 0,

the parametric transformation (27) is nonsingular. Moreover, θ20 = −0.139409 − 0.81361ε1 −

0.058426ε2 − 0.340982ε1ε2 < 0 and θ11 = −1.05207 + 1.81818ε1 + 0.126173ε2 + 8.97868ε2
1 +

1.67098ε1ε2 + 0.021619ε2
2 , 0 for small εi (i = 1, 2). The local representations of the bifurcation

curves of system (15) up to second-order approximations are as follows. The details of the computation
are given in Appendix.

Figure 5. Bifurcation diagram of the parameter c and d with a = 0.1 and b = 0.1.
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Figure 6. Phase portraits of system (5): (a) A cusp point. (b) There is no positive equilibrium.
(c) A saddle and an unstable focus. (d) An unstable limit cycle and a stable focus. (e) An
unstable homoclinic cycle. (f) A saddle and a stable focus. (g) E1 connects with E4. (h) E1

connects with E5.

1) The saddle-node bifurcation curve SN, is expressed as {(ε1, ε2) : ε2 = 0, ε1 < 0} ;
2) The Hopf bifurcation curve H, is expressed as{

(ε1, ε2) : −1.74742ε2 + 56.9521ε2
1 + 37.3603ε1ε2 + 3.09997ε2

2 = 0, ε1 < 0
}

;

3) The homoclinic bifurcation curve HOM, is expressed as{
(ε1, ε2) : −1.74742ε2 + 111.626ε2

1 + 42.0495ε1ε2 + 3.20051ε2
2 = 0, ε1 < 0

}
;
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4) The heteroclinic bifurcation curve HET, can be detected with MATCONT, the numerical bifurcation
package.

(a) When (ε1, ε2) = (0, 0), E5 is a cusp of codimension 2 (see Figure 6(a)).
(b) When (ε1, ε2) is below SN, there are no positive equilibria (see Figure 6(b)).
(c) When (ε1, ε2) crosses the SN curve and locates in the area between H and SN, there are two positive
equilibria E4 and E5. E4 is a saddle and E5 is unstable (see Figure 6(c)).
(d) When (ε1, ε2) crosses H, an unstable limit cycle will appear (see Figure 6(d)).
(e) When (ε1, ε2) is on the curve HOM, there is an unstable homoclinic orbit (see Figure 6(e)).
(f) When (ε1, ε2) is between the curve HOM and HET, E4 connects with E2 (see Figure 6(f)).
(g) When (ε1, ε2) falls on the HET curve, E4 connects with E1 (see Figure 6(g)).
(h) When (ε1, ε2) crosses the HET curve, E1 connects with E5 (see Figure 6(h)).

4. Conclusions

This paper considers the modified Holling-Tanner model with a strong Allee effect. The aim is to
explore the dynamical behaviors occurring in the predator-prey model with a strong Allee effect and
alternative food sources for predators. Section 2 considers the equilibria and their stability. There
exist four equilibria on the boundary. E0(0, 0) and E1(1, 0) are saddles, E2(a, 0) is an unstable node and
E3(0, b

d ) is a stable node. As for the positive equilibria, when d < 4
(a−1)2 , there is no positive equilibrium.

When d = 4
(a−1)2 , saddle-node bifurcation occurs and there is a unique positive equilibrium E6, which is

a cusp when c =
(a−1)2

4
1+a

1+a+2b and a saddle-node when c , (a−1)2

4
1+a

1+a+2b . When d > 4
(a−1)2 , the saddle-node

E6 separates into two positive equilibria, a saddle E4 and a hyperbolic equilibrium E5. We examine the
local stability of E5 and find that E5 is stable if c > cH and unstable if c < cH. In Section 3.1, we prove
that system (5) undergoes a Hopf bifurcation near E5 when c = cH by showing that the constantK > 0.
In Section 3.2, we prove that system (5) exhibits a Bogdanov-Takens bifurcation of codimension 2 by
calculating the universal unfolding near the cusp E6. Besides, we give the bifurcation diagram with a
little perturbation (ε1, ε2) added to (cBT , dBT ).

Our main result is that, after adding a strong Allee effect and alternative food sources, system (5)
allows the independent survival of predators. In addition, a strong Allee effect makes the system more
stable. Since, in the original Holling-Tanner system (2), there are at least two limit cycles [29], while
after adding a strong Allee effect, there seems to be a unique stable limit cycle [24].

From the ecological viewpoint, alternative food sources for predators help them survive without
prey. Besides, a strong Allee effect makes prey extinct at low density. Codimension of the Bogdanov-
Takens bifurcation is at most two and the Hopf bifurcation is nondegenerate. We compare Holling-
Tanner models with and without a strong Allee effect. It is found that a strong Allee effect increases
and changes the dynamics. The first is that a strong Allee effect introduces saddle-node bifurcation.
Second, heteroclinic bifurcation is brought about by the Allee effect, which means that the prey and
predators may take different paths to reach distinct ultimate states. These indicate that the ecosystem
may be sensitive to disturbances. It is essential to be aware of such bifurcations and protect the environ-
ment to weaken the Allee effect. In the future, we plan to study the system with different environmental
protection for prey and predators. We will introduce m1 and m2 in place of b to system (5) and consider
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the following equation:  ẋ = rx
(
1 − x

K

)
(x − M) − αxy

x+m1
,

ẏ = sy
(
1 − βy

x+m2

)
.

(28)

If the functional response depends on the time as well as the prey and predator population, the
model could exhibit more interesting dynamical behavior even chaos. We will do some research in our
future works.
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Appendix

For a = 0.1, b = 0.1, system (16) takes the form
dx
dt

=p10x + p01y + p20x2 + p11xy + O
(
|x, y, ε1, ε2|

3
)
,

dy
dt

=q00 + q10x + q01y + q11xy + q02y2 + O
(
|x, y, ε1, ε2|

3
)
,

(A.1)

where

p10 = 0.171346, p01 = −0.846154, p20 = −0.502071, p11 = −0.236686,

q00 = −0.004567ε2, q10 = 0.034698 + 0.2025ε1 + 0.007026ε2,

q01 = −0.171346 − ε1 + 0.069395ε2, q11 = 0.527219 + 3.076923ε1 + 0.106762ε2,

q02 = −1.301775 − 7.597341ε1 − 0.263609ε2.

Take a C∞ change of coordinates around (0, 0)

u1 = x, v1 =
dx
dt
,

then system (A.1) is changed into the following form
u̇1 =v1,

v̇1 =n00 + n10u1 + n01v1 + n20u2
1 + n11u1v1 + n02v2

1 + O
(
|u1, v1, ε1, ε2|

3
)
,

(A.2)

where
n00 = 0.003864ε2, n10 = 0.007026ε2, n01 = −ε1 − 0.069395ε2,

n20 = −0.139409 − 0.813609ε1 − 0.045651ε2,

n11 = −1.052071, n02 = 1.818182 + 8.978676ε1 + 0.311538ε2.
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Letting u2 = u1, v2 = v1(1 − n02u1), we get system (A.3) as follows
u̇2 = v2,

v̇2 = θ00 + θ10u2 + θ01v2 + θ20u2
2 + θ11u2v2 + O

(
|u2, v2, ε1, ε2|

3
)
,

(A.3)

where

θ00 = 0.003864ε2, θ10 = −0.007026ε2, θ01 = −ε1 − 0.069395ε2,

θ20 = −0.139409 − 0.813609ε1 − 0.058426ε2, θ11 = −1.052071 + 1.818182ε1 + 0.126173ε2.

For small εi (i = 1, 2), θ20 < 0, by the following change of variables

u3 = u2, v3 =
v2
√
−θ20

, t →
√
−θ20t,

system (A.3) becomes
u̇3 = v3,

v̇3 = s00 + s10u3 + s01v3 − u2
3 + s11u3v3 + O

(
|u3, v3, ε1, ε2|

3
)
,

(A.4)

where
s00 = 0.027720ε2, s10 = −0.050400ε2, s01 = −2.678273ε1 − 0.185859ε2,

s11 = −2.817733 + 13.091929ε2 + 0.928379ε2.

To eliminate the u3 term, letting u4 = u3 −
s10
2 , v4 = v3, we get system (A.5) as follows

u̇4 = v4,

v̇4 = r00 + r01v4 − u2
4 + r11u4v4 + O

(
|u4, v4, ε1, ε2|

3
)
,

(A.5)

where
r00 = 0.027720ε2, r01 = −2.678273ε1 − 0.114852ε2,

r11 = −2.817733 + 13.091929ε1 + 0.928379ε2.

Setting u5 = −r2
11u4, v5 = r3

11v4, τ = − 1
r11

t, we obtain the universal unfolding of system (A.6)
u̇5 = v5,

v̇5 = µ1 + µ2v5 + u2
5 + u5v5 + O

(
|u5, v5, ε1, ε2|

3
)
,

(A.6)

where
µ1 = −1.747416ε2, µ2 = −7.546659ε1 − 0.323622ε2. (A.7)

1) The saddle-node bifurcation curve SN ={(ε1, ε2) : µ1 (ε1, ε2) = 0, µ2 (ε1, ε2) , 0};
2) The Hopf bifurcation curve H=

{
(ε1, ε2) : µ2 (ε1, ε2) = ±

√
−µ1 (ε1, ε2), µ1 (ε1, ε2) < 0

}
;

3) The homoclinic bifurcation curve HOM=
{
(ε1, ε2) : µ2 (ε1, ε2) = ±5

7

√
−µ1 (ε1, ε2), µ1 (ε1, ε2) < 0

}
.
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With the specific parameters, we have
1) The saddle-node bifurcation curve, denoted SN, is expressed as

{(ε1, ε2) : ε2 = 0, ε1 < 0} ;

2) The Hopf bifurcation curve, denoted H, is expressed as{
(ε1, ε2) : −1.74742ε2 + 56.9521ε2

1 + 37.3603ε1ε2 + 3.09997ε2
2 = 0, ε1 < 0

}
;

3) The homoclinic bifurcation curve, denoted HOM, is expressed as{
(ε1, ε2) : −1.74742ε2 + 111.626ε2

1 + 42.0495ε1ε2 + 3.20051ε2
2 = 0, ε1 < 0

}
.
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