In the paper, under the stress of aggregation and reproduction mechanism of algae, we proposed a modified algae and fish model with aggregation and Allee effect, its main purpose was to further ascertain the dynamic relationship between algae and fish. Several critical conditions were investigated to guarantee the existence and stabilization of all possible equilibrium points, and ensure that the model could undergo transcritical bifurcation, saddle-node bifurcation, Hopf bifurcation and B-T bifurcation. Numerical simulation results of related bifurcation dynamics were provided to verify the feasibility of theoretical derivation, and visually demonstrate the changing trend of the dynamic relationship. Our results generalized and improved some known results, and showed that the aggregation and Allee effect played a vital role in the dynamic relationship between algae and fish.
Citation: Shengyu Huang, Hengguo Yu, Chuanjun Dai, Zengling Ma, Qi Wang, Min Zhao. Dynamic analysis of a modified algae and fish model with aggregation and Allee effect[J]. Mathematical Biosciences and Engineering, 2022, 19(4): 3673-3700. doi: 10.3934/mbe.2022169
In the paper, under the stress of aggregation and reproduction mechanism of algae, we proposed a modified algae and fish model with aggregation and Allee effect, its main purpose was to further ascertain the dynamic relationship between algae and fish. Several critical conditions were investigated to guarantee the existence and stabilization of all possible equilibrium points, and ensure that the model could undergo transcritical bifurcation, saddle-node bifurcation, Hopf bifurcation and B-T bifurcation. Numerical simulation results of related bifurcation dynamics were provided to verify the feasibility of theoretical derivation, and visually demonstrate the changing trend of the dynamic relationship. Our results generalized and improved some known results, and showed that the aggregation and Allee effect played a vital role in the dynamic relationship between algae and fish.
[1] | A. T. C. Bourke, R. B. Hawes, A. Neilson, N. D. Stallman, An outbreak of hepato-enteritis (the palm island mystery disease) possibly caused by algal intoxication, Toxicon, 21 (1983), 45–48. https://doi.org/10.1016/0041-0101(83)90151-4 doi: 10.1016/0041-0101(83)90151-4 |
[2] | S. J. Jipanin, S. R. M. Shaleh, P. T. Lim, C. P. Leaw, S. Mustapha, The monitoring of harmful algae blooms in sabah, malaysia, J. Phys. Conf. Ser., 1358 (2019), 012014. https://doi.org/10.1088/1742-6596/1358/1/012014 doi: 10.1088/1742-6596/1358/1/012014 |
[3] | C. A. Weirich, T. R. Miller, Freshwater harmful algal blooms: toxins and Children's health, Curr. Probl. Pediatr. Adolesc. Health Care, 44 (2014), 2–24. https://doi.org/10.1016/j.cppeds.2013.10.007 doi: 10.1016/j.cppeds.2013.10.007 |
[4] | Y. X. Xu, T. Zhang, J. Zhou, Historical occurrence of algal blooms in the northern beibu gulf of china and implications for future trends, Front. Microbiol., 10 (2019), 451. https://doi.org/10.3389/fmicb.2019.00451 doi: 10.3389/fmicb.2019.00451 |
[5] | L. V. Bertalanffy, Theoretische Biologie, Springer, Berlin, 1932. https://doi.org/10.1007/978-3-662-36634-9 |
[6] | H. G. Yu, M. Zhao, R. P. Agarwal, Stability and dynamics analysis of time delayed eutrophication ecological model based upon the Zeya reservoir, Math. Comput. Simul., 97 (2014), 53–67. https://doi.org/10.1016/j.matcom.2013.06.008 doi: 10.1016/j.matcom.2013.06.008 |
[7] | H. G. Yu, M. Zhao, Q. Wang, R. P. Agarwal, A focus on long-run sustainability of an impulsive switched eutrophication controlling system based upon the Zeya reservoir, J. Franklin Inst., 351 (2014), 487–499. https://doi.org/10.1016/j.jfranklin.2013.08.025 doi: 10.1016/j.jfranklin.2013.08.025 |
[8] | M. Sambath, K. Balachandran, L. N. Guin, Spatiotemporal patterns in a predator-prey model with cross-diffusion effect, Int. J. Bifurc. Chaos, 28 (2018), 1–12. https://doi.org/10.1142/S0218127418300045 doi: 10.1142/S0218127418300045 |
[9] | D. Mukherjee, C. Maji, Bifurcation analysis of a Holling type II predator-prey model with refuge, Chin. J. Phys., 65 (2020), 153–162. https://doi.org/10.1016/j.cjph.2020.02.012 doi: 10.1016/j.cjph.2020.02.012 |
[10] | K. Chakraborty, S. S. Das, Biological conservation of a prey-predator system incorporating constant prey refuge through provision of alternative food to predators: a theoretical study, Acta Biotheor., 62 (2014), 183–205. https://doi.org/10.1007/s10441-014-9217-9 doi: 10.1007/s10441-014-9217-9 |
[11] | T. K. Kar, Stability analysis of a prey-predator model incorporating a prey refuge, Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 681–691. https://doi.org/10.1016/j.cnsns.2003.08.006 doi: 10.1016/j.cnsns.2003.08.006 |
[12] | B. Dubey, A. Kumar, A. P. Maiti, Global stability and Hopf-bifurcation of prey-predator system with two discrete delays including habitat complexity and prey refuge, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 528–554. https://doi.org/10.1016/j.cnsns.2018.07.019 doi: 10.1016/j.cnsns.2018.07.019 |
[13] | L. N. Guin, B. Mondal, S. Chakravarty, Existence of spatiotemporal patterns in the reaction-diffusion predator-prey model incorporating prey refuge, Int. J. Biomath., 9 (2016), 87–111. https://doi.org/10.1142/S1793524516500856 doi: 10.1142/S1793524516500856 |
[14] | L. N. Guin, E. Das, M. Sambath, Pattern formation scenario via Turing instability in interacting reaction-diffusion systems with both refuge and nonlinear harvesting, J. Appl. Nonlinear Dyn., 9 (2020), 1–21. https://doi.org/10.5890/JAND.2020.03.001 doi: 10.5890/JAND.2020.03.001 |
[15] | X. Y. Guan, F. D. Chen, Dynamical analysis of a two species amensalism model with Beddington–DeAngelis functional response and Allee effect on the second species, Nonlinear Anal. Real World Appl., 48 (2019), 71–93. https://doi.org/10.1016/j.nonrwa.2019.01.002 doi: 10.1016/j.nonrwa.2019.01.002 |
[16] | U. Kumar, P. S. Mandal, E. Venturino, Impact of Allee effect on an eco-epidemiological system. Ecol. Complex., 42 (2020), 100828. https://doi.org/10.1016/j.ecocom.2020.100828 |
[17] | D. Sen, S. Ghorai, S. Sharma, M. Banerjee, Allee effect in prey's growth reduces the dynamical complexity in prey-predator model with generalist predator, Appl. Math. Model., 91 (2021), 768–790. https://doi.org/10.1016/j.apm.2020.09.046 doi: 10.1016/j.apm.2020.09.046 |
[18] | D. Y. Bai, Y. Kang, S. G. Ruan, L. S. Wang, Dynamics of an intraguild predation food web model with strong Allee effect in the basal prey, Nonlinear Anal. Real World Appl., 58 (2021), 103206. https://doi.org/10.1016/j.nonrwa.2020.103206 doi: 10.1016/j.nonrwa.2020.103206 |
[19] | P. J. Pal, P. K. Mandal, Bifurcation analysis of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and strong Allee effect, Math. Comput. Simul., 97 (2014), 123–146. https://doi.org/10.1016/j.matcom.2013.08.007 doi: 10.1016/j.matcom.2013.08.007 |
[20] | C. Rebelo, C. Soresina, Coexistence in seasonally varying predator-prey systems with Allee effect, Nonlinear Anal. Real World Appl., 55 (2020), 103140. https://doi.org/10.1016/j.nonrwa.2020.103140 doi: 10.1016/j.nonrwa.2020.103140 |
[21] | S. T. Wang, H. G. Yu, Complexity anaylsis of a modified predator-prey system with Beddington-DeAngelis functional response and Allee-like effect on predator, Discrete Dyn. Nat. Soc., 2021 (2021), 1–18. https://doi.org/10.1155/2021/5618190 doi: 10.1155/2021/5618190 |
[22] | T. K. Ang, H. M. Safuan, Dynamical behaviors and optimal harvesting of an intraguild prey-predator fishery model with Michaelis-Menten type predator harvesting, Biosystems, 202 (2021) 104357. https://doi.org/10.1016/j.biosystems.2021.104357 |
[23] | E. Bellier, B. E. Sether, S. Engen, Sustainable strategies for harvesting predators and prey in a fluctuating environment, Ecol. Modell., 440 (2021), 109350. https://doi.org/10.1016/j.ecolmodel.2020.109350 doi: 10.1016/j.ecolmodel.2020.109350 |
[24] | L. N. Guin, B. Mondal, S. Chakravarty, Spatiotemporal patterns of a pursuit-evasion generalist predator-prey model with prey harvesting, J. Appl. Nonlinear Dyn., 7 (2018), 165–177. https://doi.org/10.5890/JAND.2018.06.005 doi: 10.5890/JAND.2018.06.005 |
[25] | R. Han, L. N. Guin, B. Dai, Cross-diffusion-driven pattern formation and selection in a modified Leslie-Gower predator-prey model with fear effect, J. Biol. Syst., 28 (2020), 27–64. https://doi.org/10.1142/S0218339020500023 doi: 10.1142/S0218339020500023 |
[26] | X. X. Li, H. G. Yu, C. J. Dai, Z. L. Ma, Q. Wang, M. Zhao, Bifurcation analysis of a new aquatic ecological model with aggregation effect, Math. Comput. Simul., 190 (2021), 75–96. https://doi.org/10.1016/j.matcom.2021.05.015 doi: 10.1016/j.matcom.2021.05.015 |
[27] | R. Smith, C. Tan, J. K. Srimani, A. Pai, K. A. Riccione, A. Katherine, et al., Programmed Allee effect in bacteria causes a tradeoff between population spread and survival, Proc Natl. Acad. Sci., 111 (2014), 1969–1974. https://doi.org/10.1073/pnas.1315954111 doi: 10.1073/pnas.1315954111 |
[28] | L. X. Qi, L. J. Gan, M. Xue, S. Sysavathdy, Predator-prey dynamics with Allee effect in prey refuge, Adv. Differ. Equ., 340 (2015), 143–174. https://doi.org/10.1186/s13662-015-0673-6 doi: 10.1186/s13662-015-0673-6 |
[29] | Y. S. Zhang, H. Y. Li, F. X. Kong, Role of conony intercellular space in the Cyanobacteria bloom-forming, Environ. Sci., 32 (2011), 1602–1607. https://doi.org/10.1016/j.ecocom.2020.100816 doi: 10.1016/j.ecocom.2020.100816 |
[30] | Z. Yang, F. X. Kong, X. L. Shi, H. S. Cao, Morphological response of Microcystis aeruginosa to grazing by different sorts of Zooplankton, Hydrobiologia, 563 (2006), 225–230. https://doi.org/10.1007/s10750-005-0008-9 doi: 10.1007/s10750-005-0008-9 |
[31] | N. Q. Gan, Y. Xiao, L. Zhu, Z. X. Wu, J. Liu, C. L. Hu, et al., The role of microcystins in maintaining colonies of bloom-forming Microcystis spp, Environ. Microbiol., 14 (2012), 730–742. https://doi.org/10.1111/j.1462-2920.2011.02624.x. doi: 10.1111/j.1462-2920.2011.02624.x |
[32] | X. X. Liu, Q. D. Huang, Analysis of optimal harvesting of a predator-prey model with Holling type IV functional response, Ecol. Complex., 42 (2020), 100816. https://doi.org/10.1016/j.ecocom.2020.100816 doi: 10.1016/j.ecocom.2020.100816 |
[33] | L. Perko, Differential Equations and Dynamical Systems, Springer, 2001. |
[34] | A. Singh, P. Malik, Bifurcations in a modified Leslie-Gower predator-prey discrete model with Michaelis-Menten prey harvesting, J. Appl. Math. Comput., 67 (2021), 143–174. https://doi.org/10.1007/s12190-020-01491-9 doi: 10.1007/s12190-020-01491-9 |
[35] | D.Y. Wu, H. Y. Zhao, Spatiotemporal dynamics of a diffusive predator–prey system with Allee effect and threshold hunting, J. Nonlinear Sci., 30 (2020), 1015–1054. https://doi.org/10.1007/s00332-019-09600-0 doi: 10.1007/s00332-019-09600-0 |
[36] | D. Y. Wu, H. Y. Zhao, Y. Yuan, Complex dynamics of a diffusive predator-prey model with strong Allee effect and threshold harvesting, J. Math. Anal. Appl., 469 (2019), 982–1014. https://doi.org/10.1016/j.jmaa.2018.09.047 doi: 10.1016/j.jmaa.2018.09.047 |